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Abstract 

Devdatt Dubhashi§ 

We establish a lower bound on the efficiency of area-universal circuits. The 
area Au of every graph H that can host any graph G of area (at most) A with 
dilation d, and congestion c ~ ../AI log log A satisfies the tradeoff 

Au = O(AlogAI(c2 log(2d»), . 

In particular, ifAu = 0 (A) then max( c, d) = O( Jlog AI log log A). 

1 Introduction 

Bay and Bilardi [2] showed that there is a graph H whieh ean be laid out in area 
O(A) and into which any graph G of area at most A ean be embedded with load 1, 
and dilation and eongestion O(log A). As a eonsequenee, they showed the existenee of 
. an area O( A) VLSI eireuit that ean simulate any area A eireuit with a slowdown of 
O(1og A). This note explores the feasibility of more efficient embeddings. 

Dur main result is Theorem 5 which establishes a limitation relating the area of a 
universal graph . to the parameters of the embedding. Informa.Ily, it . asserts thatany 
cireuit which is universal for a family of graphs of area A, and itself has area O(A), 
must ineur a slowdown of !1(y1Og'AjloglogA). To prove it, we eonsider a family of 
graphs, each a eolleetion of expanders, and show that eaeh graph poses eonstraints on 
the number of edges of the universal graph in different edge-length ranges. 
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2 Definitions 

An embedding of a graph G into a graph H is a mapping of the nodes of G to the nodes 
of H and of the edges of G to paths in H eonneeting the images of the endpoints of 
the edge. 

For an embedding, 

• the dilation is the maximal length of a path used to realize an edge, 

• the load is the maximal number of nodes of G mapped to any single node of H, 
and -

• the conge$tion is . the maximal number of paths realizing edges of G thatpass 
through the a fixed edge of H. 

For c > 0, an I, c-Iayout of a graph G is a special kind of embedding: the host graph 
H is the two-dimensional grid, the load is I and the eongestion is c. In other words, 
at most I vertiees of G are mapped onto a single grid point and edges are mapped into 
grid paths, and at most c different paths ean use any given grid edge. A 1, I-layout is 
simply ealled a layout. Note that in the layout of a graph, each pair of distinet edges is 
mapped onto edge disjoint grid paths. Layouts play an important role in VLSI theory 
[5, 4]. 

The area of a layout is the area of the smallest reet angle eontaining the layout. Ha. 
graph has a layout ofarea Athen it is ealled a graph 0/ area A. A graph eontaining 
a vertex with degree greater than 4 has no layout, thus, the area of a gr~ph is defined 
only for graphs with maximum degree 4. 

A graph His ealled (A, I, d, c)-universalif every graph of area A ean be embeddp.d into 
H with load I; dilation d, and eongestion c. 

Using this notation, we may phrase the result of Bay and Bilardi [2] as showing the 
existenee of an (A,), O(log A), O(log A»-universal graph of area Au = O(A). The 
well-known tree-of-:-meshes with Aleaves is an (A, 1, O( JA), 1)-universal graph of 
area O(Alog2 A) [3]. 

We will use the following definition of an expander graph from [1]. 

A k-reghlar bipartite graph G = «U, V)E) is an (n,ß) expander If IUI = lVI = n/2 
and \/X C U, lXI ~ n/4, Ir(X)1 ~ (1 + ß)IXI, where r(X) ~. V is the neighbourhood 
ofX. 

Ajtai gave a eonstruetion of 3-regular (n, ß) expanders for a eonstant ß > 0, for suffi.­
ciently large n [1]. For a sufficiently large value of n, where "sufficiently large" will be 
dear from the eontext, we will denote by Gn the 3-regular expander with ß > 0. For 
a positive integer r, let G.,.,n denote the graph eonsisting of r disjoint eopies of such an 
expander Gn -
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3 Layouts of Expanders 

The following is an easy observation on layouts of graphs: it is actually well-knowD. 
(see, for instance, Exercise 5.6 in [4]), but we reproduce the proof herefor completeness . 

. Proposition 1 Any graph on n vertices with maximum degree -4 has a layout with area 
(4n)2. 

Proof: .' Let G be the graph. We demonstrate a layout of G in a squ~e grid of 
area (4n)2. Index the columns ofthe grid by 0 through 4n - 1 from left to right and 
the rows similarly from top to bottom. Then, each grid point may be identmed by 
(i,j), i,j E {O,. ~. ,4n -1}. Let the vertices of G be vo, ... ,Vn-l' We locate Vi at grid 
point (4i + 2, 4i + 1). Say that rows and columns 4i,4i + 1,4i + .2, 4i + 3 belong to Vi, 

and initially, mark each row and: column as free. 

We may now greedily layout the edges. Consider an edge (Vi, Vj). Without loss of 
generality, let i < j. Pick a free row a, belonging to Vi and a free colunin b, belonging 
to Vj, and mark these used. Since the degree of each vertex is at most 4, such a 
free row and column will always exist. We then layout this edge along the path 
(a,a) --? (a,b)--? (~ib). We have still to connect (4i + 2,4i + 1) to (a,a) and (b,b) 
to (4j + 2,,4j + 1), but we will do this later. Notice that .all the paths laid ' out in 
this manner do not share any edges and they only pass through points (z, y) such that 
z :::; y. Once we have accomplishedthis for all edges, it only remains to connect points 
(4i,4i), (4i + 1,4i + 1), (4i + 2,4i + 2) and (4i + 3,4i +3) to (4i + 2,4i + 1), for each 
i. It is easy to do this with paths that use only vertices (z,y) such that z ~ y, and 
z, y E {4i, 4i + 1, 4i + 2} and do not uS.e the same edge. Clearly these paths cannot use 
any of the edges that were allocated earlier. This shows that G can be laid out in area 
(4n)2. I 

The following fact ab out layouts of expanders is now immediate. 

Fact 2 

• There is a positive constant 0:, such that Gn can be laid out in area o:n2 • 

• For 0: as above, the graph G~ln can be laid out in area o:rn2 . 

In the following, ß > 0 will be the expansion factor of Gn • 

Proposition 3 For 1 :::; ßn/4, c :::; ßn/64, in any I, c-Iayout of Gn there are at least 
fln edges ofGn whose layouts have .length at least f2n/c, for some constants f1l f2 > O. 
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Proof: We will use a bisection width argument as introduced by Thompson [5]. We 
first review the argument that there exist cuts of a certain shape that have the property 
that at least (n -1)/2 vertices of Gn lieon either side of the cut. 

Consider a rectangle enclosing the c-layout of Gn • Let z < n be a nonnegative integer. 
Then there exists a cut consisting of two verticalline segments joined by a horizontal 
line segment of length 1 or 0, such that there are at least z - 1/2 vertices of Gn to 
the left of the cut and at least n - z -1/2 'vertices to the right. To see this consider 
sweeping two verticallines, ml and m2, separated by one unit, across the rectangle. 
Let i be the rightmost column such that if we place ml between columns i and i + 1, 
then there are at most :z< - 1/2 vertices to the left of ml. Ifthere are exactly z - 1/2 
vertices to the left, then ml is the desired cut. Otherwise, let z' < z be the number of 
vertices to the left of ml and z" > z be the number of vertices to the left of m2. N ow 
sweep a horizontalline segment of length 1 between ml and m2, from bottom to top, 
till the first position such that there are at least z - 1/2 - z' vertices in column i + 1 
below the segment. Since, at the previous position, there were less than z - 1/2 - z' 
vertices below the segment, and each grid vertex can have at most 1 vertices of Gn , 

there are at mostz + 1/2 - z' vertices of Gn below the segment. Then, the upper part 
of ml, the horizontal segment and the lower part of m2 give the desired cut. 

Let Co be the cut, as above, such that there are at least (n -1)/2 vertices on both 
sides. For a given positive integer i, consider the verticalline ml that is i units to the 
left of the leftmost vertical segment of Co and the verticalline m2 that is i units to the 
right of the rightmost vertical segment of Co. Let y and z be the number of vertices to 

. the left of ml and the right of m2 respectively. Note that one of y, z ~ n/2. Without 
loss of generality, y :5 nj2. Letz = n/2 - y. Eyan argument similar to the one above, 
we can show that there exists a cut C, consisting of two horizontal segments joined 
by a vertical segment of length at most 1 joining ml and m2 such that the number of 
vertices between ml and m2 that are below the cut is between z -1/2 and z + 112. We 
denote by Ci the cut consisting of the upper part of ml, the horizontal part C and the 
lower part of m2. Observe that Ci has at least (n -1)/2 vertices on both sides. We 
shall referto the upper part of ml and the lower part· of m2 together as the vertical 
.part of Ci, and the remaining part as the horizontal part. 

Consider ac-layout of Gn = ((U, V), E) and a cut Ci such that exact1y n/2 vertices 
are to the left. Without loss of generality we may assume that there are at least n/4 
vertices from U to the left of Ci and at least n/4 - 1/2 vertices of V to the right. Ey 
the expansion property, there are at least ßn/4 -1/2 edges connecting vertices of U on 
the left to vertices of V on the right. Thus, the layout of at least ßn/4 - 1/2 edges of 
Gn cross the cut Ci. 

The number of grid edges that cross the horizontal part of Ci is at most 2i+2. Since each 
of these edges may be part of the layout of at most c edges of Gn , at most c( 2i + 2) edges 
of Gn can cross Ci without crossing the vertical part. Let Wi > ßn/4 -1/2 - c(2i + 2) 
be the number of edges of Gn that cross the vertical part of Ci. In the range 0 ~ i ~ 
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ßn/64c, with the assumptions I ::; ßn/4 and c ::; ßn/64, we have Wi ~ ßn/16. Hence 

ßn/64c 

L Wi ~ ß2n 2/1024c. 
i=O 

The cuts Co, CI, ... were chosen so that an edge whose layout has length q can cross 
the vertical part of at most q cu,ts, and therefore can contribute at most q to the above 
sumo Also, anyedge can contribute at most 1 to each Wi, so no edge can contribute 
more th~ ßn/64c to the above sumo If z is the fraction of edges whose layouts have 
length .at most 12n/c, then by upperbounding the contribution of each edge, we have 

and so 
z(312 - 3ß/64) ~ ß(ß/16- 3)/64. 

Choosing 12 = ß2/6144, and substituting, we get z ::; (48 - ß)/(48 - ß/2) < 1. 

Choosing 11 = 3(1 - z), and the above value for I" sUHice to prove the proposition. I 

It now follows that 

CoroHary 4 For 1 ::; ßn/4, c::; ßn/64, in any 1, c-layout 01 G.,.,n, there are at least 
. r 11 n edges 01 G",nwhose layouts have length at least 12n / c (Ior constants 11, 12 as 

above): 

4 Constraints on Embeddings 

Let H be a (A, 1, c, d)-universal graph and denote the area of an optimal (minimal area) 
layout of H by Au. Let mh denote the number of edges in H which have lengths in the 
interval [2h , 2h+1). Clearly, 

(1) 

We focus ,attention on the family of graphs {GA / a4',2'} for 0 ::; i ::; L := ~ 10g(A/a). 
Note that each of these graphs can be laid out in area A by Fact 2. Since H is 
(A, 1, c, d)-universal, it embeds each of the graphs in this family with load 1, congestion 
c and dilation d (at most). This embedding, composed with the layout of H, yields a 
1, c-Iayout of each graph in this family. 

Fix i, 0 < i < L, let n := 2i
, and concentrate on G := GA / a4',2i. For any edge e of G, 

let P( e) denote the set of edges of H realising it in the embedding of G in H. For an 
edge e of G or H, let L( e) denote the grid path realising e in the c-Iayout of G or the 
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layout of H respectively, and let l( e) denotethe (grid) length of the realisation. For 
an edge e, of G, L(e) is simply the concatenation of the grid paths realising the edges 
in P(e) in the layout of H. Thus, l(e) = EeEP(e) l(e). 

From Corollary 4, there are atleast flA/an edges oflength at least f2n/c. For any edge 
eof G, let P'(e) ~ P(e) denote the sub set of edges of length at least /2n/2cd. Then, 
EeEP(e)\P'(e) l(e) ~ f2n/2c since P( e) .consists of at most d edges and l(e) < f2n/2cd 
for any e E P(e) \ pl(e). Altogether then, we deduce thatthere are flA/an .edges 
of G with EEEP'(e) l(e) ~ f2n/2c. Clearly then, there are flA/an edges e of G with 
EeEP'(e)min(l(e),f2n / 2c) ~ f2n / 2c I. Hence, 

eEG eEP'(e) 

< L . C· min(l(e), f2 n / 2c) 
eEH,l(e)"?/2n /2cd 

where the last inequality follows from the facts that for any edge e of H, there can be 
at most c edges of G with e E P( e), and anyedge in'pl( e) has length at least f2n/2cd. 

In terms of mh, the number of edges of H in the range [2h, 2h+I ), we can write the 
previous inequality as: 

L mh2h+1 + L mhf2n / 2c ~ flf2A/2ac2 (2) 
1og{/2n/2cd)$.h$.log(/2n/2c) h>1og(/2n/2c) 

Recall now that n := 2' and that i was arbitrarily chosen in the range between 0 and 
L := ! 10g(A/a). · Summing over this range Qf i's and rearranging terms yields: 

Lmh[L!22'/2c+ L 2h+1] ~ flf2AL/2ac2 (3) 
h 'EI,. iEJ,. 

where In:= {i: log(f22'/2c) < h} = {i: A2i /2c < 2h} and Jh := {i: log(f22'/2cd) ~ 
h ~ log (f22' /2c)}. ClearlY"lJhl ~ 1 + log d and EiEI,. f22' /2c ~ 2h+1. The value of the 
square bracket is therefore bounded above by 2h+I (2 + log d) and so we get: 

L mh2h+l(2 + log d) ~ fl/2AL/2ac2 

h 

Combining inequalities proves We can nowprove 

(4) 

Theorem ,5 The area Au of every (A, 1, d, c)-universal graph, when c ~ VA/ log log A, 
satisfies the tradeoff 

Au = n(Alog A/(c210g(2d))). 

lIndeed if min(l(e), hn/2c) = hn/2c ever holds, then trivially the inequality holds as well; other­
wise the inequality ' holds !rom the previous statement. 
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Proof: Consider any graph that requires area A. Proposition 1 implies that the 
number of vertices in the graph is n ~ VA14. Then, we have c :::; ßn164, for sufficiently 
!arge A. Note that I :::; 4c always holds, since, if a vertex has more than 4c vertices 
mapped 'to it, then some edge will have congestion more than c. This yields 1 :::; ßn/16. 
Thus the conditions of Corollary 4 hold, and inequalities 1 and 4 are valid. Combining 
the two yields the theorem. I 

Corollary 6 In particular, if Au = O(A) then max( c, d) = n( y'log AI log log A). 

Proof: Observe that Au = O(A) implies that c2 log d = n'(log A}. Subject to this 
constraint, max( c, .d) is minimized for c, d : = n( J10g AI log log A). I 

5 Conclusions and Open Problems 

We dose with three open problems. 

• Is there a (A, 1,0(1), 0(1))-universal graph of area O(Alog A) ? 

• Is the log d term in the lower bound really necessary? 

• Can the c2 term in the lower bound be replaced by something smaller? 
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