Real-time Text Queries with
Tunable Term Pair Indexes

Andreas Broschart Ralf Schenkel

MPI-I-2010-5-006 October 2010

Authors’ Addresses

Andreas Broschart

Max-Planck-Institut fir Informatik und
Universitat des Saarlandes

Campus E 1 7

D-66123 Saarbriicken

Ralf Schenkel

Max-Planck-Institut fiir Informatik und
Universitat des Saarlandes

Campus E 1 7

D-66123 Saarbriicken

Abstract

Term proximity scoring is an established means in information retrieval for im-
proving result quality of full-text queries. Integrating such proximity scores into
efficient query processing, however, has not been equally well studied. Existing
methods make use of precomputed lists of documents where tuples of terms, usu-
ally pairs, occur together, usually incurring a huge index size compared to term-
only indexes. This paper introduces a joint framework for trading off index size
and result quality, and provides optimization techniques for tuning precomputed
indexes towards either maximal result quality or maximal query processing per-
formance under controlled result quality, given an upper bound for the index size.
The framework allows to selectively materialize lists for pairs based on a query
log to further reduce index size. Extensive experiments with two large text col-
lections demonstrate runtime improvements of several orders of magnitude over
existing text-based processing techniques with reasonable index sizes.

Contents

1

Introduction

1.1 Motivation
1.2 Contributions
1.3 Outline of the paper .

Related Work
Proximity Scoring

Indexes
4.1 Index Organization .
4.2 Index Compression .

Parameter Tuning

5.1 Tuning as optimization problem
5.2 Implementation of the Tuning Framework

Query Processing

Log-based Term Pair Pruning

Experimental Evaluation
81 Setup

8.2 Index Tuningon GOV2
8.3 Query Processing withGOV2
8.4 Log-based pruning withGOV2

8.5 Results with ClueWeb

Conclusion and Outlook

11
11
16

19

21

23
23
24
28
34
35

38

1 Introduction

1.1 Motivation

The proximity of query terms is often used to improve result quality for keyword-
based text retrieval over scores that simply consider the frequency of terms in
documents; Section 2 gives an extensive overview of proximity-aware scores. In
addition to standard content-based scores, proximity scores reward occurrences of
query terms within short distance in the same document with higher scores. As
an example, consider the query ‘efficient query processing with term pairs’. With
standard content scores, a document that talks about ‘efficient query processing’
in one section and about ‘term pairs’ in another section could be falsely identi-
fied as good result. On the other hand, phrase queries are often too strict and
rule out many relevant results (that talk, for example, about ‘pair-based efficient
processing of term queries’). The soft and automatic phrase queries provided by
proximity scores can help in this situation.

The integration of such proximity scores into efficient query processing algo-
rithms for quickly computing the best & results, however, has not been equally
well studied. Existing methods like [9, 19, 22] make use of precomputed lists
of documents where tuples of terms, usually pairs, occur together, usually incur-
ring a huge index size compared to term-only indexes, or focusing on conjunctive
queries only. Unlike and orthogonally to existing techniques for lossy index com-
pression in this scenario that materialize only a subset of all term pair lists, this
paper aims at limiting the size of each pair list by limiting the maximal list size
and imposing a minimal proximity score per list. At the same time, the choice
of term pair index lists to be materialized can be based on frequent queries in a
query log. Our method can be tuned towards either guaranteeing maximal result
quality or maximal query performance at controlled result quality within a given
index size constraint. For both optimization goals, the result of the method are
pruned index lists of a fixed maximal length, which means that the worst-case
cost for evaluating a query with this index can be tightly bound as well. In our

experiments with the GOV2 collection (reported in Section 8), we show that 310
entries per list can be enough to give the same result quality as a standard score
taking only term frequencies into account, which results in an average cold-cache
retrieval time of less than 110 ms (warm cache less than 1 ms) for a standard
query load, with approximately 12KB of data being read per query. In this con-
figuration, the size of the compressed index is 95GB, only slightly larger than the
compressed collection. Similar query processing costs can be achieved for much
larger collections, such as the recent ClueWeb collection.

1.2 Contributions

This paper makes the following important contributions:

e [t introduces a tunable indexing framework for terms and term pairs for op-
timizing index parameters towards either maximal result quality or maximal
query processing performance under result quality control, given a maximal
index size.

e [t allows for a selective materialization of term pair index lists based on
information from a query log.

e It transparently supports index compression, and presents a proof-of-concept
implementation of a compressed index.

e The resulting indexes provide dependable query execution times while pro-
viding result quality comparable to or even better than unpruned text in-
dexes.

e It experimentally demonstrates that the resulting index configurations allow
for query processing that is several orders of magnitudes cheaper than ex-
isting text-based techniques in terms of execution cost and runtime while
yielding results of at least comparable quality.

1.3 Outline of the paper

The remainder of the paper is structured as follows. Section 2 reviews related
work, Section 3 introduces the proximity score used in this paper, Section 4 elab-
orates on the index organization and the employed index compression techniques,
Section 5 presents the index tuning framework, Section 6 details the simple yet
efficient query processing algorithm, Section 7 shows how the size of the index

can be reduced further using a query log, and Section 8 experimentally evalu-
ates our methods with two large text collections from TREC, namely GOV2 and
ClueWeb.

2 Related Work

Term proximity has been increasingly used recently to improve result quality for
term queries without phrases, for example in [4, 5, 11, 17, 18, 20, 22, 24, 25, 32].
While some of these techniques demonstrate significant improvements in result
quality, they do not consider the problem how these scores can be efficiently im-
plemented in a search engine. Usually, implementations therefore resort to enrich-
ing term index lists with position information (e.g., [30]) and compute proximity
scores after having determined an initial set of documents with ‘good’ text scores
(e.g., [20]). One of the first approaches to integrate proximity scores as an integral
part of query processing has been introduced by [22] which showed that proximity
scores can not only improve result quality, but also efficiency. Our paper builds
on results from there, but extends it towards a configurable indexing framework
which can be tuned either for maximal and dependable query performance under
result quality control or for maximal result quality.

On the other hand, there has been a noticeable amount of work using pre-
computed lists for documents containing two or more terms to speed up process-
ing of conjunctive queries, for example [9, 15, 16] for centralized search engines
and [19] for distributed search engines. None of these approaches includes prox-
imity scores, so they can only improve processing performance, not result quality.
Another bunch of papers deals with efficiently precomputing indexes for phrase
queries [2, 8, 29], but again they do not include proximity scores. Some of these
consider the problem of reducing the index size while providing decent perfor-
mance for most queries, usually by restricting to phrases or term pairs in fre-
quently occurring queries.

Processing of non-conjunctive queries with ranking has been dominated so far
by highly efficient top-k or dynamic pruning algorithms [1, 13, 14, 33]. They
access precomputed index lists where index entries are sorted in descending or-
der of score. They incrementally read entries from these lists, maintaining partial
scores for documents found during this process and a current estimate for the top-
k results, consisting of the £ documents which currently have the highest partial
score. The algorithms additionally maintain upper bounds for the maximal score

any non-top-k item can get, including documents that have not yet been seen,
by combining partial scores with current high score bounds in lists where a doc-
ument has not yet been encountered. The algorithms can safely stop when no
non-top-k result can get a final score that is above of the score of any document
currently in the top-k. There are numerous extensions of this baseline algorithm,
like adding random accesses to the score of selected items [7], probabilistic result
pruning [26], clever access scheduling [3], execution with limited budget [23], or
list organization based on term impacts [1].

A very recent approach to use term pair indexes for improving bounds in top-k
text retrieval was presented in [31], which however focuses on distributed evalua-
tion of queries in a cluster of machines.

3 Proximity Scoring

This section gives a short introduction of the proximity score used throughout the
paper, which has been introduced in [22] as a modified version of the score devel-
oped by Biittcher et al. [4, 5]. We consider a fixed collection C' of text documents.
For a document d € C, we denote by the term frequency tf;(¢) the number of
times term ¢ occurs in d, and the length [(d) = >t f4(t) of document d is the sum
of the term frequencies of all terms it contains. The most established content or
term-only score in text retrieval is the BM25 score [21], which is computed for a
query g = {t1,...,t,} of terms as

tfa(t) - (k1 +1) :
a 1(d) ’ de(t>

scoregyps(d,q) =
teq tfd(t) + kl ’ (1 —b+ bavgdl)

where k; and b are tunable parameters, avgdl is the average length of all docu-
ments in the collection, and idf (¢) is the inverse document frequency of ¢ in the
collection: Denoting by df (¢) the number of documents in which ¢ occurs and by
N the number of documents in C, idf (¢) is defined as

idf (t) = log (3.1)

N
df (t)
We denote by p;(d) the term at position i of d, omitting d when the document
is clear from the context. For a term ¢, P;(t) denotes the positions in d where ¢
occurs. For a query ¢ = {t1,....,t,}, Pa(q) := U, Pa(t;) denotes the positions
of those terms in d, and

Qalq) = {(i,j) € Palq) x Palq) | i < j A pi # pj}

denotes the position pairs of distinct terms from ¢ in d. The score for a query
q = {t1,...,t,} is then a linear combination of a standard BM25 content score
and a BM25-style proximity score where term frequencies are replaced by per-

term accumulators acc’:

scoregiitcher(d> 9) = scoregmps(d; q)
, , accy(t) - (k1 + 1)
§ 1,idf (t d
+ = min{1, idf (t)} accl(t) +1

Here, the accumulator for term ¢; € ¢ is defined as
idf (p;
win) = > A
(1,J)€Qa(q):pi=tk

n Z idf (pz)

;o 2
Yy).

This score shows two major differences from the original score developed by
Biittcher et al.: (1) it does not include the document length in the proximity score,
and (2) accumulators combine not only adjacent query term occurrences. It has
been shown in [22] that these modifications do not have an impact on result qual-
ity, but allow for efficient precomputation and indexing. A simple reformulation
of the definition of acc/,(tx) yields

) 1
acc(ty) = szf(t) : Z e
teq (4,7) € Qalq) :
(pi = t,pj = 1)
V(p; = t,p; = tx)

(. J
v~

:=accq(ty,t)

= Y ddf(t) - accy(ti,t)

teq

Now acc),(ti) is represented as a monotonous combination of per-pair scores
accq(tg,t), which can be precomputed for all possible term pairs and stored in
an inverted index.

In an initial set of experiments with the 100 topics from the TREC Terabyte
tracks 2004 and 2005 on the GOV2 collection (see Section 8.1 for details on the
collection), we evaluated the effect of Biittcher’s score over standard BM25 for 60
combinations of values for k; and b, for precision at different cutoffs and MAP.
For all experiments, the results with Biittcher’s score were always at least as good
as the results with BM25, significantly better (with p < 0.05 for a signed t-test)
for 42 configurations in precision at 10 results, for 59 configurations in precision
at 100 results, and always for MAP. We use the parameter setting from [4, 5] (k; =
1.2, b = 0.5), which was among the best configurations in our experiments as well.

4 Indexes

4.1 Index Organization
Following [22], we maintain two kinds of index lists:

o text index lists (short: text lists) where each list stores, for a single term ¢,
an entry of the form (d.docid, scoregppp5(d, t)) for each document d where
this term occurs (d.docid is a unique numerical id for document d),

e combined index lists (short: combined lists) where each list contains, for a
single term pair (1, ¢2), an entry of the form
(d.docid, accy(t1,t2), scoregppas(d, t1), scoregyps(d, ta)) for each doc-
ument where this term pair occurs within a certain window W (we’ll discuss
the window size in Subsection 5.1).

We denote the index consisting of all text index lists for collection C' by T'(C'),
and the index consisting of all text and combined index lists for C' by I(C'). We
will use the term inverted lists synonymously for index lists.

4.2 Index Compression

Index compression is an established technique for reducing the size of an in-
verted index. The index tuning framework described in this paper transparently
supports all kinds of index compression. This section introduces our proof-of-
concept implementation of index compression which applies delta and v-byte en-
coding [10, 33]; we did not perform any specific optimization for the parameters,
for example the number of bits to represent a score, but we think that the values
we chose are reasonable.

Our inverted lists are usually sorted by docid, but may be also sorted by de-
scending score (scoregppops for text lists, accy for combined lists). We store all
index lists in a single index file, sorted by descending key (term or term pair).

9

Every compressed index list starts with its key and the offset to the next index
list in the index file (which is encoded as v-bytes). For each entry in the list, all
scores are first normalized into the interval [0, 2!* — 1] by first dividing them by
the maximal score, multiplying them by 2'4 — 1 and rounding to the next integer;
for combined lists, this is done separately for each of the three scores. The header
of the list stores the maximal score(s). If the list is sorted in docid-order, docids
are first delta-encoded and then stored as v-bytes, and the score(s) of the entries
are encoded as v-bytes with at most 2 bytes per score. For score-order, the score
after which the lists are sorted is first delta-encoded, then it (and, for combined
lists, the two content scores) and the docid are encoded as v-bytes.

The access structure to find the inverted list for a given key is implemented
analogously to that of MapFiles in Hadoop [28]; again, this is just a proof-of-
concept implementation, we could alternatively have implemented the access struc-
ture with B+-trees, for example. An in-memory index keeps every 128th key and
a pointer to the offset of its inverted list in the index file. To locate the inverted list
for a key, the key or its closest neighbor key (in sort order) are determined in the
in-memory index, then the index file is searched linearly from the offset of that
key until either the right list is found or a larger key is encountered; in the latter
case, there is no list for that key in the index.

10

S5 Parameter Tuning

5.1 Tuning as optimization problem

It has been demonstrated in [22] that using text and combined index lists together
for query processing can reduce processing cost by an order of magnitude com-
pared to using only text index lists and a state-of-the-art top-% algorithm. At the
same time, the proximity component of the score helps to additionally improve
result quality. However, these great properties come at a big price: An index that
maintains complete information for all combined lists will be several orders of
magnitude larger than the original collection of documents and is therefore infea-
sible even for medium-sized collections. [22] proposed to keep only prefixes of
fixed length of each list, and demonstrated that this improved both result quality
and query performance while greatly reducing index size. It also included exper-
iments indicating that term pair occurrences that are more than approximately 10
positions apart hardly play a role for result quality and can therefore usually be
ignored. We take over this finding for this paper, so whenever we talk about term
pair occurrences, we mean occurences of different terms within a window of at
most 10 positions in the same document. Note, however, that all our methods are
still valid when this constraint is relaxed.

However, [22] did not provide any means for selecting the list length cutoff,
which usually depends on the document collection and on the required result qual-
ity. There is a tradeoff between index size and quality: Longer lists usually mean
better results, but also a bigger index, while setting the length cutoff too low will
greatly reduce index size, but at the same time also hurt result quality.

This section introduces an automated method to tune index parameters such
that both the size of the resulting index and the quality of results generated using
this index meet predefined requirements. (Note that for the moment, our approach
keeps all combined lists, but limits the information stored in each list. We will
discuss in Section 7 how a subset of all combined lists can be selected based on
the occurrence of the pairs in a query log). We will proceed as follows: We first

11

define several parameters for tuning the index size, then we show how to estimate
the size of an index given the tuning parameters. Next, we define measures for
the quality of a pruned index, and finally, we formally define index tuning as an
optimization problem and show how to solve it.

Parameters

We start with defining two parameters to tune the selection of index entries stored
in each text or combined index list:

e minimal score cutoff: We keep only index entries with a score that is not
below a certain lower limit m.

o list length cutoff: We keep at most the [entries from each list that have the
highest scores.

These two parameters allow us to systematically reduce the size of the resulting
index with a controllable influence on result quality. Figure 5.1 shows how the
index size for GOV2, relative to an unpruned index, changes with varying [and
m.

index size
0.1

0.01

20000)
18000
16000 i
14000 E minscore cutoff m
120004000

8000
list length cutoff | 6000 4000 S550

Figure 5.1: Relative index size with varying list length and minscore cutoffs

We write I(C, 1, m) for the index for document collection C' that consists of
text and combined index lists, where each list is limited to the [entries with highest

12

score and the combined lists contain only entries with an accy-score of at least m.
We use the similar notation 7°(C, [) for an index consisting of only text lists where
each list contains only the [entries with highest score. Note that we currently do
not perform score-based pruning on text lists. We omit C' when the collection is
clear from the context.

Index Size

An important constraint in our optimization process is the maximal storage space
that the final pruned index is allowed to occupy. We will denote the size of an
index I in bytes by |I|. The size of an uncompressed index depends on (1) the
aggregated number N (/) of index entries in each list, (2) the size s of each index
entry in bytes, (3) the number of different keys K (/) (i.e., terms and/or term pairs)
in the index, and (4) the per-key overhead a of the access structure to associate a
key with an offset in the inverted file; for a compressed index, s depends on the
entry and the previous entry (due to delta encoding). We can therefore formally
define the size of the uncompressed index [as

I|:==s-N()+a-K(I)

This simple definition is only valid when all index lists are of the same type. In
our application, we may have two different index lists, text lists and combined
lists, which may differ in number of entries, number of keys and entry size. We
therefore write IV;(I) for the number of text list entries in index [and N.(I) for
the number of combined list entries in I, with N(I) = Ny(I) + N.(I), and use
a similar notation for s and K (7). The more accurate size of an uncompressed
index [is then

1] :=s¢- Ne(I) + se - Ne(I) +a- (K (1) + K.(I))

Assuming that integers and floats need 4 bytes to store, we can set s; :=4+4 =8
(document id and content score) and s, := 4+ 4 + 4 + 4 = 16 (document id,
proximity score, and content scores for both terms). We can estimate a similarly
(for example, by assuming that a corresponds to the average key length plus the
space for a pointer into the inverted file).

We are typically interested in estimating the size of a pruned index ([, m) or
T'(1) without actually materializing it (because materializing it takes a lot of time
and the index may be too large to be completely materialized anyway). In the fol-
lowing we discuss how to estimate |7(/, m)|, the adaption to |T'(1)| is straightfor-
ward. We consider only a sample P of all possible keys (i.e., terms and term pairs)
and use it to approximate the distribution of list lengths, given a list length cutoff
[and minscore cutoff m. Formally, we denote by X (/,m) a random variable for

13

the length of an index list in index (I, m), and want to estimate the distribution
F(l,m) of that random variable, i.e., estimate F'(I,m;z) = P[X(l,m) < z]|. We
sample the index lists for a subset P of n keys chosen independently from all keys;
each sample yields a value X;(/, m) for the length of that list in 7(/,m). Using the
empirical distribution function [27], we can estimate the cdf of this distribution as

Fn(l,m;x) — Yo J(Xi(l,m) < x)

n

where ()
1 if X;(I,m) <z
J(Xi(l,m) <zx)= { 0 else

All we actually need is the expected length E[F' (I, m)], which can again be
estimated from the sample as X;(/, m) [27]. Assuming that there are K (P) keys in
the sample, the expected number of entries in the index for the sample is therefore
K(P) - X;(I,m). To extend this estimate to the complete collection, we make
sure that the size of P relative to the size of the collection is known, for example
by sampling p% of all keys (this can be easily implemented using hash values of
keys). The expected number of keys in the index is therefore 100-K(P) " and the
expected number of entries in the index is

100 - K (P) X

N(l,p) =
The size estimator for a compressed index is built similarly, but instead of com-
puting just the length X;(l, m), we materialize and compress the list, and use its
actual size, avoiding the need to multiply by s.

As the space of feasible values for the parameters [and m is in principle in-
finitely large, we cannot compute the estimate for all combinations. Instead, our
implementation considers only selected step sizes for [and m, computes estimates
for those values, and interpolates sizes for other value combinations. We currently
consider a step size of 100 for [and 0.05 for m.

Index Quality

Intuitively, the fewer entries we keep in each list, the more will reduce the quality
of query results, since the probability that relevant documents are dropped from
the pruned lists increases. The goal is to find values for 72 and [that maximize
index quality while generating an index that fits into a predefined amount of mem-
ory. We now define different notions of index quality measures M (C, 1, m, k) for
index I(C,1,m) and a fixed number % of results.

In the best case, a set of predefined reference or training topics A is available
that include human assessments of the relevance of documents in the collection.

14

Such a set of topics can be build, for example, by first selecting a set of representa-
tive topics from a query log, then computing top-£ results for different parameters
settings, pooling those results per topic, and have human assessors determine the
relevance of each result. Topic sets of this kind are frequently available for test
collections such as TREC .GOV or .GOV2, but they cannot be reused for differ-
ent document collections. Given such a set A of reference topics, we denote by
palk; I] the average quality of the top-k results (e.g., precision or NDCG) com-
puted using index [; our implementation currently uses precision. We can now
define effectiveness-oriented and efficiency-oriented absolute index quality:

o Effectiveness-oriented absolute index quality: this is quantified as the ratio
of the quality of the first k results with the pruned index to the quality of the

. . 2N [kJ(Cvl:mH
first £ results with the unpruned index or, formally, NS

o Efficiency-oriented absolute index quality: this is quantified as the recipro-
cal of the maximal query processing cost per query term (i.e., 2) when the
result quality of the pruned index is not worse than that of an unpruned text-
only index without proximity lists (formally, when % >1),and 0
otherwise.

Here, the effectiveness-oriented index quality measure aims at finding the best
possible results by including as much proximity information in the index as possi-
ble. The efficiency-oriented quality measure, on the other hand, assumes that the
quality of a text-only index is already sufficient and tries to minimize the length
of index lists (assuming that query processing efforts are directly proportional to
the lengths of index lists).

For most applications, such a set of reference topics does not exist or would
be too expensive to generate. In this case, we fix a set [' of queries (e.g., repre-
sentative samples from a query log) and use relative quality to estimate how good
results with the pruned index are, compared to results with the unpruned index.
We define, for each query v; € I, the set of relevant results to be the top-k docu-
ments with some index configuration I’ and use this to compute result quality of
index configuration /. When the quality measure is precision, this boils down to
computing the overlap of the top-£ results with index configurations / and I’. We
formally denote the resulting quality of index I as prl|k; I|I’].

We can now define relative index quality measures in an analogous way to
the absolute measures defined before. However, we then would always favor in-
dex configurations that produce exactly the results of the corresponding unpruned
index, as we assume that any results not in the top-£ results with the unpruned
index are non-relevant. This is often overly conservative in practice, as many
of the new results will be relevant to the user as well. It is therefore often suf-
ficient to provide a “high” overlap, not a perfect one. We therefore introduce

15

another application-specific tuning parameter « that denotes the threshold for rel-
ative quality above which we accept an index configuration. This is especially
important for efficiency-oriented index quality: We cannot expect that we will get
the same results with the pruned index with text and combined lists than with just
the unpruned text lists, so achieving an overlap of 1 there would be impossible.
Instead, we use I(C') also in that case and set « to a value below 1.

o Effectiveness-oriented relative index quality: this is the relative result qual-
ity prlk; I(C,1,m)|I(C)] of the pruned index.

e Efficiency-oriented relative index quality: this is the reciprocal of the max-
imal query processing cost per query term (i.e., %) when the relative result
quality pr|k; [(C,1,m)|I(C)] of the pruned index is at least « and O other-
wise.

Index Tuning
We can now formally specify the index tuning problem:

Problem 1 Given a collection C' of documents, an upper limit S for the index
size, a target number of results k, and an index quality measure M, estimate
parameters ™ and | such that M (C, 1, m, k) is maximized, under the constraint
that |I(C,1,m)| < S. When there is more than one combination of m and | that
maximize the quality measure and satisfy the size constraint, pick one of them
where the index size is minimal.

Note that even though the index is tuned for a specific number £ of results, it
can be still used to retrieve any other number of results. We will experimentally
validate in Section 8.2 that result quality does not degrade much in these cases.

5.2 Implementation of the Tuning Framework

We implemented our tuning framework within the MapReduce paradigm [12],
dividing the tuning process into several map-reduce operations. As stated before,
the input to the tuning process is the collection C, a target index size .S, a target
number of results &, and an index quality measure)M that includes a set of training
topics 7'. Additionally, we fix the fraction p of index keys (terms, term pairs) to
be sampled. The tuning process then proceeds in the following order, where each
step is implemented as a map-reduce operation:

1. Compute index for sample and training topics. The map phase consid-
ers each document in the collection, parses it and creates index entries for

16

terms and term pairs that are either part of the sample or the training top-
ics. These entries are still incomplete, because the final BM25 scores can
be computed only when global properties of the collection are known, so
they contain only term frequencies and document lengths (but already com-
plete accy(ty, ty) values for term pairs); their key is the term or term pair.
The reduce phase then combines items with the same key into an index
list, completing their scores as all global parameters of the score (average
document length, number of documents and document frequency of each
term) are now known.! The output of this phase are two indexes, one for
the sample, the other for the set of training topics.

2. Prepare the estimator for the index size. In an initial map-reduce oper-
ation, we compute the baseline precisions. The map phase then considers
each key in the sample and computes, for each combination ([, m) it consid-
ers, the size s of the corresponding index list when pruned according to the
[and m cutoffs (or the size of its compressed representation for compressed
indexes), which is then written out with key (I, m). The algorithm starts
with [= k and increases it by the step size for [, and considers all values for
m, starting at 0 and increasing it by the step size for m. The reduce phase
combines all values for a single pair of (I, m) cutoffs and computes the av-
erage index list size for this cutoff. This value is then stored in an on-disk
data structure as size estimate for (I, m). This phase also counts the overall
number of keys in the sample.

3. Prepare solving the optimization problem. The map phase considers each
topic with its corresponding assessments and computes, for each (I, m) pair
provided by the size estimator, the quality of the index for this topic. This
can be efficiently implemented by a stepwise incremental join algorithm.

In the first step, it reads the first k entries from each list and incrementally
computes results for (k, m), starting at the highest value for m and decreas-
ing it by the step size. This yields, for each m, a temporary set of results
with (partial) scores, from which the £ documents with highest partial score
are considered as result. The index quality for this result is computed and
written out with key (k,m). Note that for the efficiency-oriented quality
measures, not 1// is written, but the actual precision of the results; the re-
duce phase will transfer this to the ‘real’ quality measure later. If the score
of the entry at position £ is less than m (i.e., the list would be cut before
it), the value m is marked as completed and will not be considered later. As

U At least Hadoop 0.20 does not directly provide these global parameters to the reduce phase, so we need to store them
in files and aggregate them in each reducer. The alternative would be to combine the initial map with a do-nothing reducer,
include additional map-reduce operations to compute the global values, and then have a map-reduce with a do-nothing
mapper and the reducer we just described.

17

soon as m exceeds the score of the last read entry, all smaller values for m
will get the same index quality.

In the following steps, the process reads more entries from each list corre-
sponding to the step size for [. Assume that it read up to [entries from each
list. It continues with the temporary set of partial results from the previous
step and the highest value for m not yet marked as completed and repeats
the above process. This phase ends when either all values for [have been
considered or all lists have been completely read. It is evident that each
entry of the lists is read at most once, so the complexity is linear in the
aggregated number of entries in the index lists for this topic.

The reduce phase averages, for each combination of (/,m), the per-topic
index quality values computed by the map phase, and computes the final in-
dex quality for this combination. For the efficiency-oriented measures, this
means that it compares the average precision with the result quality of the
text-only index and uses 1/! as final index quality when the average preci-
sion is high enough. If the (/,m) combination has a non-zero index quality,
the reducer estimates its size using the size estimator. For each (I, m) com-
bination with a non-zero index quality that matches the size constraint S, the
reduce phase outputs an (I, m, g, s) tuple, where ¢ is the index quality and s
is the index size.

. Compute an approximate solution of the optimization problem. The
following centralized phase scans all output tuples from the previous step
and determines the tuple (1,77, G,) with highest quality. Optionally, it can
further explore the solution space around (I,7) for better solutions. The
output of this step is an approximate solution to Problem 1.

. Materialize the final index. Analogously to phase 1, the final index is
materialized in a single map-reduce operation. Note that each mapper can
already restrict the index entries it generates: For term pair entries, it does
not emit any entries whose score is below 2, and for term entries, it emits
only the [entries with highest scores (which can be achieved using an ad-
ditional combiner). An additional optimization for this step would be to
generate only an approximation of the final index: If there are M/ mappers
used to parse the collection, each mapper needs to emit at most % -1 en-
tries, where 3 > 1 is a tuning parameter that steers the expected number of
entries missing in the final index.

18

6 Query Processing

The highly efficient top-k or dynamic pruning algorithms [1, 13] that are fre-
quently applied for efficient query processing incur a non-negligible processing
overhead for maintaining candidate lists and candidate score bounds, for mapping
newly read index entries to a possibly existing partially read document using hash
joins, and for regularly checking if the algorithm can stop. In our scenario with
index lists that are pruned to a maximal length, this processing overhead is not
necessary. Instead, it is sufficient to evaluate queries in document-at-a-time eval-
uation. Our merge-based processing architecture for this consists of the following
components:

1. After pruning index lists to a fixed maximal size (and, possibly, using a
minimal score cutoff for combined lists), we resort each list in ascending
order of document ids, and optionally compress it.

2. At query time, the n text and combined lists for the query are combined
using an n-way merge join that combines entries for the same document
and computes its score. If that score is higher than the current kth best
score, the document is kept in a heap of candidate results, otherwise it is
dropped.

3. Once all index entries have been read, the content of the heap is returned.

Instead of maintaining a heap with the currently best £ results, an even simpler
implementation could keep all results as result candidates and sort them at the
end; however, this would increase the memory footprint of the execution as not k,
but all encountered documents and their scores need to be stored.

Independent of the actual algorithm, processing a query with our pruned index
lists has a guaranteed maximal abstract execution cost (i.e., the number of index
entries read from disk during processing a query), so worst- and best-case runtime
are very similar and basically depend only on the number of lists involved in the
execution and the cutoff for list lengths. This is a great advantage over using non-
pruned text lists with algorithms for dynamic pruning and early stopping, which

19

can read large and uncontrollable fractions of the index lists to compute the results,
and may give arbitrarily bad results when stopped earlier [23].

20

7 Log-based Term Pair Pruning

Even with relatively short list length cutoffs [, the overall space consumption of
the pruned combined lists can still be pretty huge, because there are a lot more
combined lists than text lists. On the other hand, the majority of combined lists
are unlikely to ever occur in any query. A possible solution can be to selectively
materialize only combined lists for term pairs that occur at least ¢ times in a query
log, which can drastically reduce the number of lists. However, when one of these
unlikely queries occurs for which not all or even no combined lists are available,
answering it using the pruned text lists and the available subset of combined lists
only may affect result quality for this query. Figure 7.1 demonstrates this effect,
using the AOL query log and our training topics on .GOV2 (see Section 8.1), with
[= 4310 and 7 = 0.00. The x-axis of this chart shows different values for the
threshold ¢ of query pairs in the AOL log, and the y-axis shows the precision at 10
results. The blue line (with diamonds) depicts the result of running our algorithm
from Section 6 with the available index lists only. It is evident that the higher
the threshold, the lower result quality gets, which can be explained by fewer and
fewer combined lists being materialized. For very high thresholds (not depicted
in the chart), the precision drops to 0.396, compared to 0.617 when using all lists.

To overcome this negative effect, we propose to keep the unpruned text index
lists when log-based pruning is applied. As soon as one combined list or all com-
bined lists for a query term are missing, we read the available combined lists and
the unpruned text list for that term. This improves result quality to at least the
quality of an unpruned text index, but at the same time incurs an increased cost
for query evaluation as longer text lists have to be read. Figure 7.1 also depicts the
effect of these approaches on result quality (pink line with squares: read full text
lists when at least one pair is missing; green line with triangles: read full text lists
when all combined lists are missing), it is evident that this combined execution
helps to keep precision close to the level of the precision with the unpruned 7'(C')
index only (which is 0.585). Our tuning framework can be extended to consider
only combined lists where the corresponding term pair occurs at least ¢ times in a
query log, and tunes the parameters to reach the optimization goals even with this

21

0.65

—&— Pruned lists only
—=—Full TL when one pair list missing
—a— Full TL when all pair lists missing
0.6 |
20.55 1
®
c
o
@
[3}
e
%05
0.45 -
g
0.4

0 5 10 15 20 25 30 35 40 45 50
minimal frequency in the query log

Figure 7.1: Effect of log-based pruning on query performance (on training topics)

limited selection of combined lists.

To limit storage overhead, we split unpruned text lists in two pieces: the [
entries with highest scores are stored in docid-order and the remaining entries in
score-order. When processing a query where some combined lists are missing, we
first process the first piece of the text lists and the available combined lists with
the algorithm from Section 6, keeping all documents and their scores in memory.
After that, a standard top-k algorithm (in our case NRA [13]) consumes the second
piece of the text lists, using the already read documents as candidates. The acc,
contribution for non-available combined lists is 0 in both steps. This algorithm
will terminate more quickly than running it on the unpruned text lists alone, and
will usually give better results due to the proximity score from the combined lists.

22

8 Experimental Evaluation

8.1 Setup

We evaluated our methods with two standard collections from TREC, the GOV?2
collection and the ClueWeb collection. The TREC GOV?2 collection consists of
approximately 25 million documents from U.S. governmental Web sites with an
aggregated size of approx. 426GB. Here, we used the 100 adhoc topics from the
TREC 2004 and 2005 Terabyte tracks as training topics for tuning index param-
eters, and the TREC 2006 Terabyte topics for testing the quality of results com-
puted from the resulting indexes. We used the AOL query log! for the log-based
technique. We measure result quality as precision @k, i.e., the average number of
relevant results among the first & results.

The ClueWeb collection® consists of approximately 1 billion Web documents
crawled in January and February 2009. Following standards at the TREC Web
Track, we restricted the collection first to the approximately 500 million English
documents, from which we chose the 50% documents with the smallest probabili-
ties to be spam according to the Waterloo Fusion spam ranking®. As only 50 topics
from the TREC Web track 2009 are available with relevance assessments, we can
run only a limited set of experiments on this collection as it would be hardly pos-
sible to separate test and training topics with such a small set. We therefore report
detailed tuning results for GOV2 only.

Whenever we report times for parameter tuning or index construction, they
were measured on a cluster of 10 servers in the same network, where each server
had 8 CPU cores plus 8 virtual cores through hyperthreading, 32GB of memory,
and four local hard drives of 1TB each. The cluster was running Hadoop 0.20 on
Linux, with replication level set to two for space reasons.

"http://gregsadetsky.com/aol-data/
nttp://boston.lti.cs.cmu.edu/Data/clueweb09/
Shttp://durum0.uwaterloo.ca/clueweb09spam/

23

8.2 Index Tuning on GOV2

We evaluated our index tuning techniques from Section 5 for different maximal
index sizes and result counts (10 and 100), with and without index compression.
The effect of additional log-based combined list pruning will be evaluated in Sec-
tion 8.4. For each setting, we first estimated index parameters using the training
topics, built an index with these parameters, and then evaluated result quality on
the test topics.

Absolute Index Quality

Table 8.1 shows the results of index tuning on the training topics with selected
size limits below the collection size, for uncompressed indexes. In this table,
each row shows results for a given index size constraint and number of query re-
sults, namely the resulting index parameters, the estimated and real index size for
these parameters, and the result quality on the training and test topics with this
index. The rows with size limit co denote the corresponding unpruned indexes
with text+combined lists or text lists, respectively. Estimating one set of param-
eters took approximately 5 hours, where about 3.5 hours were required for the
first map-reduce phase to build the index for the sample and the test topics. The
time for building the final index strongly depends on the chosen parameters; for
an index with up to 310 entries per list and a score threshold of 0.05, this took less
than five hours on our cluster.

Opt. size size[GB] prec@k on
goal k limit 1 m est. l real train test
100GB || 19010 | 0.40 | 96.4 | 969 || 0.596 | 0.572
10 200GB || 19010 | 0.15 | 170.5 | 170.8 || 0.610 | 0.578
effective- 400GB 4310 | 0.00 | 396.4 | 396.4 || 0.617 0.592
ness 00 I1(C) 757.0 || 0.614 | 0.578
oriented 100GB || 10200 | 0.35 97.4 | 97.6 || 0.3899 | 0.3146
index 100 200GB || 17900 | 0.15 | 169.1 | 169.4 || 0.3975 | 0.3244
quality 400GB 4200 | 0.00 | 394.3 | 394.3 || 0.4035 | 0.3176
00 I1(C) 757.0 || 0.4108 | 0.3338
efficiency- 100GB 5010 | 0.30 87.2 87.0 || 0.586 | 0.578
oriented 10 | 200GB 310 | 0.05 | 128.1 | 127.9 || 0.588 0.534
index 00 T(C) 229 || 0.585 0.538
quality 100 400GB 800 [0.00 | 270.6 | 270.6 || 0.3848 | 0.2850
00 T(C) 22.9 || 0.3847 | 0.3002

Table 8.1: GOV2: Index tuning results for absolute index quality, without index
compression

It is evident that all indexes with the estimated parameters meet the index size
constraint. For the effectiveness-oriented quality goal, all precision results (for
the training and, more importantly, also for the test topics) are better than the pre-
cision with an unpruned text-only index (significantly better under a paired t-test

24

with p < 0.05 when the size limit is at least 200GB), so the additional com-
bined index lists help to improve precision even when they are pruned. For the
efficiency-oriented quality goal, it turns out that already very short list prefixes
(310 entries for top-10, 800 entries for top-100 results) are enough to yield results
with a quality comparable to standard text indexes, given a sufficiently large in-
dex size constraint. If this constraint is too tight, short lists cannot guarantee the
quality target.

060 -
0.56 -
0.52 ~
0.48
0.44 ~
0.40
0.36
0.32
0.28 —+ -
0.24 +-

P@k

10 40 Kk 70 100

@19010,0.4 m19010,0.15 [4310,0.0 010200, 0.35
W 17900,0.15 [@4200,0.0 = () @5010, 0.3
=310, 0.05 = 800,0.0 O T(C)

Figure 8.1: Precision@k on test topics for effectiveness- and efficiency-oriented
absolute index quality

Figure 8.1 shows precision values for the test topics with all index configu-
rations from Table 8.1 for varying numbers of retrieved results. It is evident that
result quality with indexes tuned for 10 results does not degrade much when re-
turning longer result lists.

Tuning results with index compression are depicted in Table 8.2, which has a
similar layout as the table before; the size of a compressed /(C') (in score-order for
use with top-£ algorithms) is 468.9GB, the size of a compressed 7'(C') is 14.5GB.
It is evident that index compression helps to achieve better result quality for a
given index size constraint; alternatively, smaller indexes are sufficient to reach a
quality goal. Our index compression scheme is effective: an index in configuration
(4310, 0.00) requires 396.4GB uncompressed, but only 248.8GB compressed; the
size estimator for compressed indexes is effective as well, with usually only minor
overestimation.

Compared to the original runs from the TREC 2006 Terabyte Track [6], our
tuned indexes do well in terms of precision. The best P@20 we get for the effec-

25

Opt. size B size[GB] prec@k on
goal k limit l m est. [real train test

40GB 510 | 0.30 39.3 39.2 0.570 0.524
50GB 6810 | 0.75 48.3 48.1 0.589 0.586
70GB 19010 | 0.30 64.6 64.5 0.599 0.574
10 100GB 19010 | 0.20 98.5 98.0 0.608 0.574
200GB 19010 | 0.05 | 173.8 | 172.8 0.615 0.584

effective- 400GB 4310 | 0.00 | 249.7 | 248.8 0.617 0.592
ness 00 I(C) 468.9 0.614 0.578
oriented 40GB 900 | 0.40 39.3 39.2 || 0.3585 | 0.2624
index 50GB 10400 | 0.85 49.9 49.7 || 0.3795 | 0.3124
quality 70GB 19800 | 0.30 64.9 64.7 || 0.3926 | 0.3250

100 | 100GB || 20000 | 0.20 99.0 98.5 || 0.3970 | 0.3248
200GB 19700 | 0.05 | 174.4 | 173.4 || 0.4008 | 0.3264
400GB 14400 | 0.00 | 295.1 | 293.5 || 0.4067 | 0.3272

00 1(C) 468.9 || 0.4108 | 0.3338
40GB 510 | 0.30 39.3 39.2 0.570 0.524
50GB 6310 | 0.75 479 47.7 0.585 0.588
70GB 5010 | 0.30 55.6 55.4 0.586 0.578

10 100GB 310 | 0.05 94.9 94.9 0.588 0.534

200GB 310 | 0.05 94.9 94.9 0.588 0.534

efficiency- 400GB 310 | 0.05 94.9 94.9 0.588 0.534
oriented 00 T(C) 14.5 0.585 0.538
index 40GB 900 | 0.40 39.9 39.7 || 0.3585 | 0.2624
quality 50GB 10400 | 0.85 49.9 49.7 || 0.3795 | 0.3124

70GB 6000 | 0.30 56.9 56.7 || 0.3847 | 0.2988
100 | 100GB 3600 | 0.15 84.6 84.2 || 0.3849 | 0.2946

200GB 900 | 0.00 | 193.8 | 193.5 || 0.3861 | 0.2868
400GB 900 | 0.00 | 193.8 | 193.5 || 0.3861 | 0.2868
S T(C) 14.5 || 0.3847 | 0.3002

Table 8.2: GOV2: Index tuning results for absolute index quality, with index
compression

tiveness-oriented goal is 0.5310 (for (10200, 0.35)), none of the P@20 values
underscores 0.5210. Our best indexes outperform 14 of 20 competitors in P@20.
Note that our index tuning was not carried out with the TREC 2006 topics but with
the training topics and for retrieval of the top-10 or top-100 results instead of the
top-20, which clearly imposes a penalty on us. For the efficiency-oriented goal
the best index (5010, 0.30) reaches a P@20 of 0.5210 while it is natural that very
short list lengths deteriorate in later precision values, at 0.4520 for (310, 0.05).

Relative Index Quality

Here, we first performed an experiment to estimate good values for a: We com-
puted, for a selection of possible values for o, optimal index parameters for the
training topics under relative index quality, then instantiated the corresponding
pruned indexes and compared the resulting absolute precisions (using the assess-
ments from TREC) to the precision of the same topics with I(C') and 7'(C'). The
results of this experiment are displayed in Table 8.3. This allows to estimate val-
ues for « that are sufficient to yield similar precision as the unpruned text-only

26

index for the efficiency-oriented measure; a good choice is o = 0.75.

| a] 07] 075] 08 [085 [09 | 095 |
PIOGITCLm)] T 93431 0.9471 | 0.9626 | 0.9759 | 0.9914 | 1.0010

p[100;1(C)]
pIOOICC.Lm)] T 9945 | 1,0081 | 1.0246 | 1.0388 | 1.0553 | 1.0655

p[100;T(C)]

Table 8.3: Relative result quality for different values of «

Table 8.4 gives tuning results for relative index quality with uncompressed
indexes. We can get close to the result quality for top-10 results of an unpruned
index with the effectiveness-oriented techniques (we even get better quality for
some scenarios), for both the test and the training topics. For top-100 results,
the situation is slightly worse, there is a small gap to the quality of an unpruned
index (which, however, may be tolerable). For the efficiency-oriented indexes, we
achieve comparable or even better precisions than the unpruned text indexes, at
a reasonable index size of less than 100GB. Figure 8.2 depicts precision values
for efficiency-oriented and effectiveness-oriented index quality goals on all (I, m)
combinations from Table 8.4, for varying numbers of retrieved results. It is evident
that the relative index quality approach ensures retrieval quality on test topics even
without relevance assessments.

0.60 -
0.56 + -
0.52
0.48 ~
0.44 —+
0.40 ~
0.36 -
0.32 +
0.28
0.24 +

P@k

10 40 70 100
k

I 12010, 0.3 M 19810, 0.15 O 19810, 0.05 O 18100, 0.35 M 19800, 0.15
[19800, 0.05 W I(C) @1910,0.3 MW8800,0.3 O T(C)

Figure 8.2: Precision@k on test topics for effectiveness- and efficiency-oriented
relative index quality

Our tuning experiments for compressed indexes yielded similar findings; Ta-
ble 8.5 shows the detailed results. Index compression helps to achieve a higher

27

Opt. size size[GB] overlap prec@k on
goal k limit 1 m est. [real on train | train test
100GB || 12010 | 0.30 | 99.7 | 100.1 0.837 | 0.591 | 0.580
10 200GB || 19810 | 0.15 | 171.4 | 171.8 0.893 | 0.609 | 0.578
effective- 400GB || 19810 | 0.05 | 293.3 | 293.4 0.924 | 0.615 | 0.584
ness 00 I1(C) 757.0 - | 0.614 | 0.578
oriented 100GB || 18100 | 0.35 | 100.0 | 100.4 0.773 | 0.3899 | 0.3252
index 100 200GB || 19800 | 0.15 | 1714 | 171.8 0.829 | 0.3983 | 0.3248
quality 400GB || 19800 | 0.05 | 293.3 | 293.4 0.868 | 0.4008 | 0.3266
00 1(C) 757.0 - | 0.4108 | 0.3338
efficiency- [| [100GB [[1910 [030 [73.1] 727] 0750 [0.574 [0.554
oriented 00 T(C) 229 -1 0.585 | 0.538
index 100 100GB 8800 [0.30 [953] 954 0.750 | 0.3903 | 0.3104
quality 00 T(C) 229 - | 0.3847 | 0.3002

Table 8.4: GOV2: Index tuning results for relative index quality, without index
compression

Opt. size size[GB] overlap prec@k on

goal k limit l m est. l real on train | train test

50GB 7010 | 0.55 | 499 | 49.7 0.776 | 0.584 | 0.588
70GB 19810 | 0.30 | 649 | 64.7 0.854 | 0.596 | 0.576
effective- 10 | 100GB || 19810 | 0.20 | 98.9 | 98.4 0.882 | 0.606 | 0.580

ness 200GB || 19810 | 0.05 | 174.5 | 173.5 0.924 | 0.614 | 0.584
oriented 400GB || 19810 | 0.00 | 306.8 | 304.9 0.946 | 0.613 | 0.586
index 70GB || 20000 | 0.30 | 649 | 64.8 0.786 | 0.3923 | 0.3252
quality 100 100GB || 20000 | 0.20 | 99.0 | 98.5 0.819 | 0.3968 | 0.3250

200GB || 19800 | 0.05 | 174.5 | 173.5 0.867 | 0.4007 | 0.3266
400GB || 19800 | 0.00 | 306.7 | 304.8 0.903 | 0.4062 | 0.3282
50GB 1910 | 0.30 | 48.6 | 484 0.750 | 0.572 | 0.556
70GB 1910 | 0.30 | 48.6 | 484 0.750 | 0.572 | 0.556
10 | 100GB 1010 | 0.10 | 91.3 | 91.1 0.755 | 0.585 | 0.568

efficiency- 200GB 510 | 0.00 | 176.1 | 176.0 0.752 | 0.614 | 0.556
oriented 400GB 510 | 0.00 | 176.1 | 176.0 0.752 | 0.614 | 0.556
index 70GB 8900 | 0.30 | 59.6 | 59.4 0.750 | 0.3903 | 0.3102
quality 100 100GB 4100 | 0.15 | 86.1 | 85.7 0.751 | 0.3874 | 0.2978

200GB 2100 | 0.05 | 130.1 | 129.7 0.752 | 0.3844 | 0.2940
400GB 1200 | 0.00 | 203.5 | 203.2 0.750 | 0.3893 | 0.2900

Table 8.5: GOV2: Index tuning results for relative index quality, with index com-
pression

overlap on the training topics which is usually equivalent to a higher result qual-
ity for a given index size constraint. Alternatively, smaller indexes are sufficient
to reach a quality goal. An index in configuration (1910, 0.30) requires 72.7GB
uncompressed, but only 48.4GB compressed.

8.3 Query Processing with GOV2

We compared the query processing performance using pruned indexes and our
merge-based technique from Section 6 with the performance of a state-of-the-art
top-k processing algorithm that uses sequential accesses to the index lists only

28

(coined NRA in [13]) as a representative of the class of dynamic pruning algo-
rithms; a similar algorithm was used in [22]. We also present a qualitative com-
parison with the recent methods from [1] and [3]. Note that NRA (and also the
other top-k algorithms) would show similar performance as our algorithm when
run on the pruned lists; the goal of this section is to compare query performance
with pruned indexes to dynamic pruning on unpruned indexes.

To assess processing performance, we use both abstract cost measures and
query processing times. Abstract cost in the form of the average number of entries
or bytes read from disk to process the training or test topics is not influenced by
transient effects like caching or other processes running on the same machine, and
it masks out the quality of the actual implementation. We additionally provide
processing times of a single-threaded, Java-based implementation running on a
single cluster node. These measurements were taken by running the complete
batch of queries five times and taking the average; for the results with cold cache,
the filesystem cache was emptied before running each query (not just each batch);
this is a very conservative setting.

Opt. size size[GB] || @reads-10~—° [@gbytes-10~° | @twarm[ms] Dteorglms]
goal k | limit 1 m | est. l real || train | test | train | test | train l test train l test
100GB || 19010|0.40| 96.4| 96.9| 0.63| 0.61| 6.01| 5.81| 2839| 31.61| 226.89| 243.57
10 200GB || 19010]0.15[170.5{170.8 || 0.66| 0.64| 6.56| 6.24| 28.21| 27.78| 232.91| 245.80
effective- 400GB || 4310/0.00(396.4|396.4|| 0.21| 0.19] 2.32| 2.07 9.53 8.61| 177.43] 182.61
ness 00 I1(C) 757.0| 8.43| 3.37| 71.73]29.70| 898.29| 429.83|1368.07|1020.75
oriented 100GB [|10200(0.35| 97.4| 97.6| 0.38| 0.36| 3.76| 3.53| 16.43| 15.43| 199.59| 203.76
index 100 200GB || 17900|0.15[169.1{169.4|| 0.63| 0.61| 6.27| 596| 27.52| 25.96| 236.69| 243.03
quality 400GB || 4200(0.00(394.3|394.3|| 0.20| 0.19] 2.27| 2.03 9.34 8.47| 174.68| 175.37
00 I(C) 757.0(/16.81| 12.91| 71.73]29.70|1978.76|1628.06 | 2276.06 | 2068.93
efficiency- 100GB || 5010|0.30| 87.2| 87.0(| 0.21| 0.19| 2.14| 2.00 8.87 8.44| 172.76| 181.61
oriented 10 |200GB 310(0.05(128.1{127.9|] 0.02| 0.02| 0.21| 0.20 1.19 1.11| 135.03| 131.86
index 00 T(C) 2291/ 14.05] 9.45(112.40(75.60|1550.40| 926.13|1764.85|1311.10
quality 100 400GB 800]0.00[270.6[270.6]| 0.04] 0.04[0.52] 0.49 2.30 2.22| 145.27| 150.60
00 T(C) 22.91/20.33| 15.09(112.40(75.60|3453.74|2159.41|4078.60|2669.32

Table 8.6: GOV2: Query performance for absolute index quality, without index
compression

Results with uncompressed indexes are depicted in Tables 8.6 and 8.7 for train-
ing and test topics that show the number of read index entries as well as the num-
ber of bytes and runtimes with cold and warm caches, averaged over all topics.
Results with the top-k algorithm on the unpruned indexes are included in the rows
for I(C') and T'(C'), respectively. For the efficiency-oriented indexes, these re-
sults clearly demonstrate that query processing on the pruned indexes is up to two
orders of magnitude (0.0.m.) more efficient than on the unpruned indexes. For
top-10 results, we require less than 1,800 reads per topic on average with an index
of 128GB, which is less than one disk block per index list. For the effectiveness-

29

Opt. size size[GB] || @reads-10~° [@bytes-10~° | @twarm [ms] Dteorg[ms]
goal k | limit 1 m est.l real || train | test | train | test | train l test train l test
100GB [[12010{0.30| 99.7|100.1|| 0.44| 0.41| 431| 4.06| 2046| 22.00| 203.65| 214.74
10 200GB || 19810]0.15[171.4[171.8| 0.69| 0.66| 6.77| 6.44| 29.81| 29.77| 232.32| 243.00
effective- 400GB [[19810]0.05(293.3|293.4|| 0.72| 0.68| 7.34| 6.86| 31.95| 29.81| 240.28| 257.10
ness 00 I1(C) 757.0| 8.43| 3.37| 71.73]29.70| 898.29| 429.83|1368.07|1020.75
oriented 100GB || 18100{0.35[100.0{ 100.4|| 0.61| 0.59] 5.83| 5.61| 26.35| 24.85| 219.07| 232.50
index 100 200GB || 19800]0.15[171.4{171.8| 0.69| 0.66| 6.76| 6.44| 30.07| 27.99| 245.75| 259.52
quality 400GB [19800 (0.05(293.3|1293.4|| 0.72] 0.68| 7.34| 6.86| 32.07| 29.47| 247.53| 258.77
00 I1(C) 757.0(/16.81| 12.91| 71.73]29.70|1978.76|1628.06 | 2276.06 | 2068.93
efficiency- 10 100GB 1910[0.30[73.11 72.7|| 0.09| 0.08| 0.96| 0.87 4.05 3.77| 146.11| 151.57
oriented 00 T(C) 22.9([14.05| 9.45[112.40(75.60|1550.40| 926.13|1764.85|1311.10
index 100 100GB|[8800]0.30] 95.3[95.4[0.33] 0.32] 3.37[3.15] 14.67] 13.53[187.33] 191.77
quality 00 T(C) 22.9((20.33| 15.09]112.40(75.60|3453.74]2159.41|4078.60 | 2669.32

Table 8.7: GOV2: Query performance for relative index quality, without index
compression

oriented indexes, the pruned index requires up to one o0.0.m. less reads than the
unpruned index. For absolute index quality tuning, query performance for larger
indexes is actually better, because the smaller indexes need to use long list length
cutoffs, but high minscore cutoffs to meet the index size constraint, which makes
query processing expensive. For relative index quality tuning, query performance
for larger indexes slightly deteriorates, because the larger indexes use longer list
length cutoffs but also provide higher precision values. The runtimes reported
in these tables demonstrate that the theoretical cost advantage of our approach
is very beneficial in practice for warm cache as well as cold cache scenarios,
with average warm cache times of about 1 ms for top-10 retrieval with the best
efficiency-oriented index. This corresponds to two to three 0.0.m. performance
advantage over standard top-k algorithm evaluation on unpruned text index lists.
Unlike that, the number of read items and the runtime of our technique does not
increase when retrieving more than 10 results by the nature of the merge join.

Results with compressed indexes are depicted in Tables 8.8 and 8.9, which in-
clude the average number of entries and bytes read per query; the general findings
for abstract costs are similar to those for uncompressed indexes. Figure 8.3 shows
runtimes on the test topics for a selection of configurations from Table 8.2 for top-
10 results; times for top-100 results with these indexes are very similar (the run
time depends mostly on the list length, not on the number of results). From that
figure, it is evident that decompressing the index is not expensive, delivering run-
ning times often beating the time required to process queries over similar uncom-
pressed settings. This means that both in compressed and uncompressed settings,
processing performance is excellent compared to NRA, with the additional bonus
of lower space requirements for compressed settings which potentially allows for
small list lengths resulting in fast query processing at low index size limits.

In a second line of experiments, we ran the 50,000 queries from the TREC

30

Opt. size size[GB] Zreads-10~° ﬁbytes-l()_5 Dtwarm[ms] | Dteorq[ms]
goal k | limit 1 m | est l real trainl test |[train| test trainl test | train l test
40GB 510{0.30| 39.3| 39.210.03 0.02{0.17 0.16| 1.88| 2.20{111.52|109.83
S0GB || 6810]0.75] 48.3| 48.1(0.26 0.25]1.33 1.26| 8.09| 8.21(190.74]193.28
70GB || 19010 [0.30| 64.6| 64.5] 0.64 0.61{2.93 2.82(17.70| 17.98|270.14 | 254.78

10 100GB |[19010 [0.20| 98.5| 98.0 | 0.66 0.633.11 2.96 | 17.58 | 18.52|245.71|245.52
effective- 200GB || 19010{0.05|173.8 | 172.8 || 0.70 0.66 | 3.37 3.16|18.54| 18.16|238.10 | 228.23
ness 400GB || 4310(0.00{249.7|248.8 || 0.21 0.19] 1.18 1.06| 631 590(177.82|175.61
oriented 40GB 900(0.40| 39.3| 39.2 0.04 0.04 {0.27 0.25| 3.08| 2.92]143.14|143.06
index 50GB || 10400 0.85] 49.9| 49.7] 0.38 0.36 | 1.83 1.72111.43| 11.43|186.81|201.13
quality 100 70GB || 19800 0.30| 64.9| 64.7| 0.66 0.63 | 3.01 291(17.66| 18.43|298.94|290.48

100GB |[20000 0.20| 99.0| 98.5]| 0.69 0.66 | 3.22 3.08|18.28 | 19.77 | 324.06 | 320.26
200GB || 19700 0.05 | 174.4 | 173.4 || 0.72 0.68 | 3.46 3.25|19.36| 18.74|281.63 | 289.48
400GB || 14400 | 0.00 | 295.1 | 293.5 || 0.59 0.54 (298 2.71(16.44 | 15.58|232.98|266.87
40GB 510]0.30| 39.3| 39.2 0.03 0.02(0.17 0.16| 1.88| 2.20{111.52|109.83
50GB || 6310(0.75| 47.9| 47.7]/0.24 0.2311.26 1.19] 6.92| 6.83(232.75|232.40
70GB || 5010]0.30| 55.6| 55.41 0.21 0.19]1.10 1.03] 6.06| 5.90|183.71|187.79

10 100GB 310[0.05| 949 949 0.02 0.02]0.12 0.11{ 0.81] 0.88]107.30| 98.84
efficiency- 200GB 31010.05| 94.9| 94.9(0.02 0.02{0.12 0.11| 0.81| 0.88{107.30| 98.84
oriented 400GB 310{0.05| 949 949 0.02 0.02]0.12 0.11| 0.81| 0.88{107.30| 98.84
index 40GB 900{0.40| 39.9| 39.7 | 0.04 0.04 1 0.27 0.25| 3.08| 2.92]143.14|143.06
quality 50GB || 10400 | 0.85| 49.9| 49.7] 0.38 0.36 | 1.83 1.7211.43 | 11.43|186.81|201.13
100 70GB || 6000{0.30| 56.9| 56.7| 0.24 0.2311.26 1.18| 7.00| 6.82]214.27|210.03

100GB || 3600|0.15| 84.6| 84.2 0.16 0.15(0.91 0.83| 5.04| 4.90|140.28|136.67
200GB 900 0.00 | 193.8 | 193.5 || 0.05 0.05]0.32 030 1.89| 1.86]127.25{117.92
400GB 900 0.00 | 193.8 | 193.5 || 0.05 0.05(0.32 030 1.89| 1.86|127.25|117.92

Table 8.8: GOV2: Query performance for absolute index quality, with index com-
pression

Terabyte Efficiency Track 2005 with compressed indexes from Table 8.1 and mea-
sured the number of read index entries and runtimes. While we cannot report
detailed results here for space reasons, trends from our earlier experiments are
validated.

As a showcase we present performance values for the (310, 0.05) compressed
index setting where average runtimes are 1.4 ms for warm caches and 127 ms for
cold caches, respectively. For a more realistic simulation of a running system,
we also performed an experiment where we emptied the file system cache only
before the first query and then ran all queries sequentially without further cache
invalidation. In this scenario that corresponds to a steady-state execution in a
running search engine, processing takes 24 ms on average. Figure 8.4 depicts the
average running times and the standard deviations of the running times depending
on the number of keywords in the query. As expected, the average running time
is monotonous in the number of query terms as more query terms potentially lead
to more fetched index lists at processing time. However the variance of running
times for a given query length is low such that the average running time is usually
a good approximation for the expected running time of a query.

Here, we can make an interesting comparison to results by Anh and Mof-
fat [1] for their technique based on impact order: They report an average number

31

Opt. size size[GB] greads-10~° | gbytes-10~°

goal k limit 1 m est. | real train test train test
30GB 210 | 0.55 29.7 29.7 || 0.01 0.01 | 0.08 0.07
40GB 1310 | 0.55 40.0 39.8 || 0.06 0.06 | 0.37 0.34

50GB 7010 | 0.55 49.9 49.7 0.27 026 | 1.37 1.29
10 70GB 19810 | 0.30 64.9 64.7 0.66 0.63 | 3.01 291
100GB 19810 | 0.20 98.9 98.4 || 0.68 0.65 | 3.20 3.05

effective- 200GB 19810 | 0.05 | 174.5 | 1735 0.72 0.68 | 3.47 3.26
ness 400GB 19810 | 0.00 | 306.8 | 304.9 0.76 0.71 | 3.75 3.46
oriented 30GB 200 | 0.55 29.4 29.4 0.01 0.01 | 0.07 0.06
index 40GB 1400 | 0.60 39.9 39.7 0.07 0.06 | 0.39 0.35
quality 50GB 10300 | 0.80 50.0 49.9 0.37 035 | 1.82 1.71

100 70GB || 20000 | 0.30 64.9 64.8 0.66 0.64 | 3.03 2.93
100GB || 20000 | 0.20 99.0 98.5 0.69 0.66 | 3.22 3.07
200GB 19800 | 0.05 | 1745 | 173.5 0.72 0.68 | 3.47 3.26
400GB 19800 | 0.00 | 306.7 | 304.8 0.76 0.71 | 3.75 3.46

30GB 210 | 0.55 29.7 29.7 0.01 0.01 | 0.08 0.07

40GB 1310 | 0.55 40.0 39.8 0.06 0.06 | 0.37 0.34

50GB 1910 | 0.30 48.6 48.4 || 0.09 0.08 | 0.52 0.47

10 70GB 1910 | 0.30 48.6 48.4 || 0.09 0.08 | 0.52 0.47

100GB 1010 | 0.10 91.3 91.1 0.05 0.05 | 0.33 0.31

efficiency- 200GB 510 | 0.00 | 176.1 | 176.0 || 0.03 0.03 | 0.19 0.18
oriented 400GB 510 | 0.00 | 176.1 | 176.0 || 0.03 0.03 | 0.19 0.18
index 30GB 200 | 0.55 29.4 29.4 || 0.01 0.01 | 0.07 0.07
quality 40GB 1400 | 0.60 39.9 39.7 0.07 0.06 | 0.39 0.35

50GB 10300 | 0.80 50.0 49.9 0.37 035 | 1.82 1.71
100 70GB 8900 | 0.30 59.6 594 || 0.34 0.32 | 1.69 1.59

100GB 4100 | 0.15 86.1 85.7 0.18 0.17 | 1.01 0.92
200GB 2100 | 0.05 | 130.1 | 129.7 0.10 0.10 | 0.62 0.57
400GB 1200 | 0.00 | 203.5 | 203.2 || 0.06 0.06 | 041 0.38

Table 8.9: GOV2: Query performance for relative index quality, with index com-
pression

of 110,000 index entries read per query (for the top-20 results) for 49,990 queries
from the TREC Terabyte Efficiency track (Table 2 in [1]) on the GOV2 collection,
using a standard text score. We read only 1,119 index entries per query (7,106
bytes) to retrieve the top-10 results. So even though we cannot directly compare
these two experiments, we think it is fair to say that their method is at least one
order of magnitude more expensive than our best method, while providing a com-
parable result quality.

In addition, our method comes with a much smaller memory footprint during
execution as we keep only the best k results plus the current document in memory,
compared to on average 104,000 accumulators in [1]. We achieve this at the cost
of a larger disk-based index, which is 94.9GB for our method compared to 6.1GB
for the method in [1]; however, given the availability of cheap, huge hard disks,
this seems to be tolerable, and our method allows to trade some performance off
for smaller indexes.

We can also compare the abstract execution cost with our pruned indexes to
that reported in [3], which currently seems to be the state-of-the-art method for
top-k evaluation making use of random accesses. Experiments in that paper are

32

1000

@ cold cache
Fc’ B warm cache
@
o
S 1071-gmmm - P - - - - - - - - - - - - - - --
o
°Q
E
3
2
> 101
(]
=}
[op
@
o
()
£ (RS EEEEN T B T . e - e --
(]
()]
@
g
@
0+ .
))] >
S 0,0'~b \99 0,0'-b A A P S p@ <&
& N ° 3d N > S & &
4 ® ® & & & 9 9

configurations (I;m)

Figure 8.3: Average cold/warm cache times on test with compressed indexes

done with the GOV2 collection on the 50 topics from the TREC Terabyte Track
2005, using the same BM25 score that we use (even though there may be small
differences due to different parsing, tokenization, or stopword lists). Their cost
measure is the weighted sum of sorted and random accesses, where sorted ac-
cesses have weight 1 and the weight of random accesses can vary; it therefore
corresponds directly to our execution cost (which is also the number of sorted
accesses to our pruned indexes). They report average costs of 2,890,768 index
accesses for the full merge (about 144.5M accesses for all 50 queries) compared
to average costs of 788,511 for retrieving the top-10 results with their NRA im-
plementation (total 39.4M). The best result reported in [3]—for a random access
weight of 1,000—has average costs of 386,847 which is about two orders of mag-
nitude more expensive than our method: for the same query load on the efficiency-
oriented (310, 0.05) compressed index, our average cost is just 1,633 sequentially
accessed tuples per topic. Additionally, we do not need to provide specific indexes
for supporting random access. So we can again make the conservative statement
that, even though we cannot directly compare absolute costs, our method is about
two orders of magnitude faster than the best method from [3]. We do not think that
it is valid to compare runtimes of our implementation to that of [3], since they use
a heavily optimized C-based implementation, whereas our method is pure Java,
and they don’t state if and when file system caches were cleared.

33

400

B gtime[ms]

O go(timelms)) | o
300 -
250 |
200 |
150
100 -

o L ffffffff

0 ,_—:l_,_-_| ._l : l_‘
1 2 3 4 5 6 7 8 9

number of query terms

Figure 8.4: Efficiency Track: real system performance, query size

8.4 Log-based pruning with GOV2

Table 8.10 shows index tuning results for =1, i.e., materializing combined lists
for term pairs that occur at least once in the AOL query log, without index com-
pression. It is evident that using log-based pruning helps to get smaller index sizes
for the efficiency-based techniques (down to approximately twice the size of the
unpruned text index) with similar result quality, but with much longer lists, which
in turn affects run times (cp. Table 8.11): compared to the best results without
log-based pruning, query processing takes an order of magnitude longer (which

Opt. size size[GB] prec @k on

goal k limit 1 m est. [real train [test
effectiveness- 10 | 100GB 5010 | 0.00 96.0 96.0 || 0.610 0.586
oriented 100 100GB 19800 | 0.10 93.6 93.6 || 0.3927 | 0.3192
index quality 400GB || 20000 | 0.00 | 293.4 | 293.4 || 0.3969 | 0.3196
efficiency- 10 50GB 2210 | 0.15 47.8 47.8 || 0.538 0.462
oriented 100GB 1810 | 0.00 64.7 64.7 || 0.587 0.554
index 100 50GB 7200 | 0.35 50.0 50.2 || 0.3771 | 0.3036
quality 100GB 3800 | 0.00 86.2 86.2 || 0.3847 | 0.2980

Table 8.10: Index tuning results with log-based pruning (¢=1) for absolute index
quality, without index compression

34

Opt. prec@k Zreads-10~° Dtwarm[ms] Dteorg[ms]

goal k 1 m train test train test train l test train l test
efficiency- 10 2210 | 0.15 || 0.538 0.462 1.22 197 | 1624 | 241.6 | 427.1 | 514.2
oriented 1810 | 0.00 || 0.587 0.554 1.20 1.96 | 162.2 | 229.6 | 441.3 | 525.7
index 100 7200 | 0.35 || 0.3771 | 0.3036 1.38 2.12 | 2294 | 388.8 | 504.3 | 685.7
quality 3800 | 0.00 || 0.3847 | 0.2980 1.29 2.03 | 255.6 | 341.8 | 471.0 | 649.7

Table 8.11: Query performance with log-based pruning (¢=1) for absolute index
quality, without index compression

is due to the text lists that are read completely to preserve retrieval quality if all
corresponding combined lists are missing as detailed in Section 7), but it is still
a lot faster than NRA with unpruned 7'(C'). We could not achieve the quality
goal for the effectiveness-based methods as there were not enough combined lists
left to boost quality enough; we did not evaluate performance for these settings.
Log-based pruning therefore mostly serves to reduce index size in situations with
strong resource constraints, where it can still significantly improve execution cost,
while result quality stays comparable to a text-only index.

8.5 Results with ClueWeb

size[GB] oreads | @bytes | Ftwarm Dteold

Opt. goal k 1 m est. [real prec@k || 102 10~° [ms] [ms]
effectiveness-o. 10 1410 | 1.00 | 640.2 | 636.2 0.200 0.04 0.24 2.32 67.35
index quality 100 4600 | 0.30 | 979.0 | 977.9 0.1344 0.14 0.75 5.35 83.69
efficiency-o. 10 410 | 1.00 | 503.6 | 499.8 0.190 0.01 0.07 0.77 79.61
index quality 100 400 | 1.00 | 464.6 | 462.8 0.1170 0.01 0.07 0.63 69.05

Table 8.12: ClueWeb: Index tuning results and evaluation of query performance
for absolute index quality, with index compression, size limit set to 1TB

To demonstrate the scalability of our index tuning approach, we carried out
experiments on the recent ClueWeb collection similar to the ones shown in Sec-
tion 8.2 for GOV2. We considered the 50% least spammy English ClueWeb docu-
ments according to the Waterloo Fusion spam scores (approx. 6 TB uncompressed
size) as described in Subsection 8.1. As currently only the 50 topics from the Ad-
Hoc Task of TREC Web Track 2009 are available with relevance assessments, we
used them to train and optimize index parameters. Whenever we retrieve a docu-
ment without assessment, we consider it non-relevant. We use the 50 AdHoc Task
Web Track 2010 topics as test data to provide additional data on query processing
speed and costs. Relevance assessments for the test topics are not yet available,
so we can’t report precision values for them. As the collection size of ClueWeb
is large and it turned out that query processing on compressed indexes for GOV2

35

is often faster than for similar uncompressed settings, we restricted our tuning ex-
periments to compressed indexes for ClueWeb. For all experiments we keep the
index size limit of 1 TB fixed which corresponds to about 17% of the size of the
uncompressed collection.

Table 8.12 shows the results of absolute index quality tuning on the training
topics for compressed ClueWeb indexes. With index parameters tuned for ef-
ficiency and top-10 document retrieval, the most efficient resulting index (410,
1.00) requires on average less than 1 ms and 80 ms per query for warm and cold
caches, respectively (1,302 reads on average), providing a result quality compa-
rable to pure BM25 scores (where precision@ 10 is 0.180) for the training topics.
Due to shorter index lists (1,045 reads on average) for the test topics, query pro-
cessing is even a bit faster for them, showing better warm cache times and cold
cache times of about 70 ms at an index size of less than 500 GB. Our effectiveness-
oriented index (1410, 1.00) requires 640 GB and provides a retrieval quality com-
parable to using the proximity score without index pruning (with precision@ 10 of
0.198). Query execution takes about 2 ms for the training topics and slightly more
than 1 ms for the test topics for warm caches.

Efficiency-oriented indexes for top-100 document retrieval require less than
500 GB disk space and provide running times of less than 1 ms for warm caches
and around 70 ms for cold caches on the training topics at a result quality compara-
ble to pure BM25 scores (with precision@ 100 of 0.1110). On the test topics query
processing is again faster and takes about 55 ms on cold caches. Effectiveness-
oriented indexes for top-100 document retrieval require less than 1 TB disk space
and thus stay within our index size limit, providing a result quality comparable
to the proximity score without index pruning (which yields a precision@ 100 of
0.1324). Query execution takes about 5 ms and 3 ms for warm caches, whereas
cold cache times range below 85 and 65 ms for training and test topics respec-
tively. The results show that the size estimator for compressed indexes also works
effectively on the ClueWeb collection with only minor overestimation.

Table 8.13 shows the results for relative index quality tuning on ClueWeb with
the training topics. While the effectiveness-oriented approaches result in indexes
which deliver result quality comparable to using the proximity score without in-
dex pruning (at the price of longer lists compared to absolute index quality), result
quality with the efficiency-oriented indexes falls shortly behind BM25 score qual-
ity, but the difference could still be tolerable in applications. We assume that this
effect can at least partly be attributed to the fact that relevance assessments from
TREC 2009 are very sparse compared to those from earlier years; unassessed doc-
uments contribute to the overlap with the groundtruth, but do not increase preci-
sion values if they are in the result list of a query, even though a user may consider
them relevant.

Although the indexed part of the ClueWeb collection is one order of magnitude

36

larger in size than GOV2 (6 TB vs. 426 GB uncompressed), the required index
space doesn’t grow as fast as the collection (e.g., index size grows from 94.9 GB
to 499.8 GB for the efficiency setting (310, 0.05) on GOV2 compared to (410,
1.00) on ClueWeb). For absolute index quality tuning, the indexes tend to have
shorter list lengths on ClueWeb such that query processing is often even faster on

ClueWeb indexes.
size[GB] oreads | gbytes | Ftwarm | Dleold
Opt. goal k 1 m est. l real overlap | prec@k || -10=% | -10~° [ms] [ms]
effect.-o. 10 9810 | 1.00 | 927.9 | 923.6 0.986 | 0.198 2.89 1.45 8.46 | 152.17
index qual. | 100 || 19000 | 0.80 | 1008.3 | 1006.5 0.972 | 0.1330 5.52 2.72 1377 | 135.93
effic.-o. 10 110 | 1.00 | 3953 | 391.6 0.856 | 0.160 0.04 0.02 0.28 70.89
index qual. | 100 200 | 1.00 | 408.1 | 407.6 0.781 | 0.1010 0.06 0.04 0.43 82.95

Table 8.13: ClueWeb: Index tuning results for relative index quality and evalua-
tion of query performance, with index compression, size limit set to 1TB

37

9 Conclusion and Outlook

We clearly demonstrated that indexing terms and term pairs, together with tun-
able list pruning, is a viable method to improve either result quality or, provid-
ing a similar quality as pure text indexes, processing performance. Results with
effectiveness-oriented indexes are comparable to the best results using unpruned
indexes, and query performance with efficiency-oriented indexes is up to two or-
ders of magnitude better than with top-k algorithms on unpruned text indexes.

Future work will consider improving the construction of the final index by
reducing the number of temporary index entries, and improving the estimation
stage which currently needs to parse the complete collection. We will further
consider the impact of pruned indexes on cache effectiveness as well as index
maintenance.

38

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed im-
pacts. In SIGIR, pages 372-379, 2006.

D. Bahle, H. E. Williams, and J. Zobel. Efficient phrase querying with an
auxiliary index. In SIGIR, pages 215-221, 2002.

H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. lo-top-k:
Index-access optimized top-k query processing. In VLDB, pages 475-486,
2006.

S. Biittcher and C. L. A. Clarke. Efficiency vs. effectiveness in terabyte-scale
information retrieval. In TREC, 2005.

S. Biittcher, C. L. A. Clarke, and B. Lushman. Term proximity scoring for
ad-hoc retrieval on very large text collections. In SIGIR, pages 621-622,
2006.

S. Biittcher, C. L. A. Clarke, and I. Soboroff. The trec 2006 terabyte track.
In TREC, 2006.

K.-C. Chang and S.-W. Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In SIGMOD, pages 346-357, 2002.

M. Chang and C. K. Poon. Efficient phrase querying with common phrase
index. In ECIR, pages 61-71, 2006.

S. Chaudhuri, K. W. Church, A. C. Konig, and L. Sui. Heavy-tailed distri-
butions and multi-keyword queries. In SIGIR, pages 663-670, 2007.

B. Croft, D. Metzler, and T. Strohman. Search Engines - Information Re-
trieval in Practice. Addison Wesley, 2010.

O. de Kretser and A. Moffat. Effective document presentation with a
locality-based similarity heuristic. In SIGIR, pages 113—120, 1999.

39

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. C. ACM, 51(1):107-113, 2008.

[13] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for mid-
dleware. J. Comput. Syst. Sci., 66(4):614—656, 2003.

[14] I F Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query process-
ing techniques in relational database systems. ACM Comput. Surv., 40(4),
2008.

[15] R. Kumar, K. Punera, T. Suel, and S. Vassilvitskii. Top-k aggregation using
intersections of ranked inputs. In WSDM, pages 222-231, 2009.

[16] X. Long and T. Suel. Three-level caching for efficient query processing in
large web search engines. In WWW, pages 257-266, 2005.

[17] Y. Lv and C. Zhai. Positional language models for information retrieval. In
SIGIR, pages 299-306, 2009.

[18] C.Monz. Minimal span weighting retrieval for question answering. In SIGIR
Workshop on Information Retrieval for Question Answering (IR4QA), 2004.

[19] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Scalable peer-to-
peer web retrieval with highly discriminative keys. In ICDE, pages 1096—
1105. IEEE, 2007.

[20] Y. Rasolofo and J. Savoy. Term proximity scoring for keyword-based re-
trieval systems. In ECIR, pages 207-218, 2003.

[21] S. E. Robertson and H. Zaragoza. The probabilistic relevance framework:
BM25 and beyond. Foundations and Trends in Information Retrieval,
3(4):333-389, 2009.

[22] R. Schenkel, A. Broschart, S. won Hwang, M. Theobald, and G. Weikum.
Efficient text proximity search. In SPIRE, pages 287-299, 2007.

[23] M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman, R. Schenkel, and
G. Weikum. Best-effort top-k query processing under budgetary constraints.
In ICDE, pages 928-939. IEEE, 20009.

[24] R. Song, M. J. Taylor, J.-R. Wen, H.-W. Hon, and Y. Yu. Viewing term
proximity from a different perspective. In ECIR, pages 346-357, 2008.

[25] T. Tao and C. Zhai. An exploration of proximity measures in information
retrieval. In SIGIR, pages 295-302, 2007.

40

[26] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with
probabilistic guarantees. In VLDB, pages 648—659, 2004.

[27] L. Wasserman. All of Statistics. Springer, 2005.
[28] T. White. Hadoop - The definite guide. O’Reilly, 2009.

[29] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with combined
indexes. ACM Trans. Inf. Syst., 22(4):573-594, 2004.

[30] H. Yan, S. Ding, and T. Suel. Compressing term positions in web indexes.
In SIGIR, pages 147-154, 2009.

[31] H. Yan, S. Shi, F. Zhang, T. Suel, and J.-R. Wen. Efficient term proximity
search with term-pair indexes. In CIKM, 2010.

[32] J. Zhao and Y. Yun. A proximity language model for information retrieval.
In SIGIR, pages 291-298, 2009.

[33] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comput.
Surv., 38(2), 2006.

41

Below you find a list of the most recent research reports of the Max-Planck-Institut fiir Informatik. Most of them
are accessible via WWW using the URL http://www.mpi-inf.mpg.de/reports. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
— Library and Publications —
CampusE 14

D-66123 Saarbriicken

E-mail: 1ibrary@mpi-inf.mpg.de

MPI-1-2010-RG1-001
MPI-1-2010-5-002

MPI-1-2010-5-001

MPI-1-2009-RG1-005
MPI-1-2009-RG1-004
MPI-1-2009-RG1-002
MPI-1-2009-RG1-001
MPI-1-2009-5-007
MPI-1-2009-5-006

MPI-1-2009-5-005

MPI-1-2009-5-004

MPI-1-2009-5-003
MPI-1-2009-5-002
MPI-1-2009-4-006

MPI-1-2009-4-005

MPI-1-2009-4-004

MPI-1-2009-4-003

MPI-1-2009-4-002
MPI-1-2009-4-001

MPI-1-2008-RG1-001
MPI-1-2008-5-004
MPI-1-2008-5-003
MPI-1-2008-5-002
MPI-1-2008-5-001

MPI-1-2008-4-003

MPI-1-2008-4-002
MPI-1-2008-1-001

MPI-1-2007-RG1-002
MPI-1-2007-5-003

M. Suda, C. Weidenbach, P. Wischnewski

M. Theobald, M. Sozio, F. Suchanek,
N. Nakashole

K. Berberich, S. Bedathur, O. Alonso,
G. Weikum

M. Horbach, C. Weidenbach

M. Horbach, C. Weidenbach

P. Wischnewski, C. Weidenbach

M. Horbach, C. Weidenbach

G. Kasneci, G. Weikum, S. Elbassuoni

S. Bedathur, K. Berberich, J. Dittrich,
N. Mamoulis, G. Weikum

G. de Melo, G. Weikum

N. Preda, FM. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

T. Neumann, G. Weikum
M. Ramanath, K.S. Kumar, G. Ifrim
C. Stoll

A. Berner, M. Bokeloh, M. Wand,
A. Schilling, H. Seidel

V. Havran, J. Zajac, J. Drahokoupil,
H. Seidel

M. Fuchs, T. Chen, O. Wang, R. Raskar,
H.P.A. Lensch, H. Seidel

A. Tevs, M. Wand, 1. Ihrke, H. Seidel

M.B. Hullin, B. Ajdin, J. Hanika, H. Seidel,
J. Kautz, H.P.A. Lensch

A. Fietzke, C. Weidenbach

F. Suchanek, M. Sozio, G. Weikum
G. de Melo, F.M. Suchanek, A. Pease
T. Neumann, G. Moerkotte

G. Kasneci, M. Ramanath, M. Sozio,
F.M. Suchanek, G. Weikum

T. Schultz, H. Theisel, H. Seidel

D. Wang, A. Belyaev, W. Saleem, H. Seidel
D. Ajwani, I. Malinger, U. Meyer, S. Toledo

T. Hillenbrand, C. Weidenbach
F.M. Suchanek, G. Kasneci, G. Weikum

On the saturation of YAGO

URDF: Efficient Reasoning in Uncertain RDF Knowledge Bases
with Soft and Hard Rules

A language modeling approach for temporal information needs

Superposition for fixed domains

Decidability results for saturation-based model building
Contextual rewriting

Deciding the inductive validity of V3* queries

MING: Mining Informative Entity-Relationship Subgraphs

Scalable phrase mining for ad-hoc text analytics

Towards a Universal Wordnet by learning from combined
evidenc

Coupling knowledge bases and web services for active
knowledge

The RDF-3X engine for scalable management of RDF data
Generating concise and readable summaries of XML documents

Optical reconstruction of detailed animatable human body
models

Generalized intrinsic symmetry detection

MPI Informatics building model as data for your research

A shaped temporal filter camera

A Bayesian approach to manifold topology reconstruction

Acquisition and analysis of bispectral bidirectional reflectance
distribution functions

Labelled splitting

SOFT: a self-organizing framework for information extraction
Integrating Yago into the suggested upper merged ontology
Single phase construction of optimal DAG-structured QEPs

STAR: Steiner tree approximation in relationship-graphs

Crease surfaces: from theory to extraction and application to
diffusion tensor MRI

Estimating complexity of 3D shapes using view similarity

Characterizing the performance of Flash memory storage devices
and its impact on algorithm design

Superposition for finite domains

Yago : a large ontology from Wikipedia and WordNet

MPI-1-2007-5-002

MPI-1-2007-5-001

MPI-1-2007-4-008

MPI-1-2007-4-007

MPI-1-2007-4-006
MPI-1-2007-4-005
MPI-1-2007-4-004
MPI-1-2007-4-003
MPI-1-2007-4-002
MPI-1-2007-4-001

MPI-1-2007-2-001

MPI-1-2007-1-003
MPI-1-2007-1-002

MPI-1-2007-1-001

MPI-1-2006-5-006
MPI-1-2006-5-005

MPI-1-2006-5-004

MPI-1-2006-5-003

MPI-1-2006-5-002

MPI-1-2006-5-001

MPI-1-2006-4-010

MPI-1-2006-4-009

MPI-1-2006-4-008
MPI-1-2006-4-007

MPI-1-2006-4-006

MPI-1-2006-4-005

K. Berberich, S. Bedathur, T. Neumann,
G. Weikum

G. Kasneci, FM. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

J. Gall, T. Brox, B. Rosenhahn, H. Seidel

R. Herzog, V. Havran, K. Myszkowski,
H. Seidel

C. Dyken, G. Ziegler, C. Theobalt, H. Seidel

T. Schultz, J. Weickert, H. Seidel

C. Stoll, E. de Aguiar, C. Theobalt, H. Seidel

R. Bargmann, V. Blanz, H. Seidel
T. Langer, H. Seidel
J. Gall, B. Rosenhahn, H. Seidel

A. Podelski, S. Wagner

A. Gidenstam, M. Papatriantafilou
E. Althaus, S. Canzar

E. Berberich, L. Kettner

G. Kasnec, FM. Suchanek, G. Weikum
R. Angelova, S. Siersdorfer

F. Suchanek, G. Ifrim, G. Weikum

V. Scholz, M. Magnor

H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

M. Bender, S. Michel, G. Weikum,
P. Triantafilou

A. Belyaev, T. Langer, H. Seidel

J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

1. Albrecht, M. Kipp, M. Neff, H. Seidel
O. Schall, A. Belyaev, H. Seidel

C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

A. Belyaev, H. Seidel, S. Yoshizawa

A time machine for text search
NAGA: searching and ranking knowledge

Global stochastic optimization for robust and accurate human
motion capture

Global illumination using photon ray splatting

GPU marching cubes on shader model 3.0 and 4.0

A higher-order structure tensor

A volumetric approach to interactive shape editing

A nonlinear viseme model for triphone-based speech synthesis
Construction of smooth maps with mean value coordinates

Clustered stochastic optimization for object recognition and pose
estimation

A method and a tool for automatic veriication of region stability
for hybrid systems

LFthreads: a lock-free thread library

A Lagrangian relaxation approach for the multiple sequence
alignment problem

Linear-time reordering in a sweep-line algorithm for algebraic
curves intersecting in a common point

Yago - a core of semantic knowledge

A neighborhood-based approach for clustering of linked
document collections

Combining linguistic and statistical analysis to extract relations
from web documents

Garment texture editing in monocular video sequences based on
color-coded printing patterns

10-Top-k: index-access optimized top-k query processing

Overlap-aware global df estimation in distributed information
retrieval systems

Mean value coordinates for arbitrary spherical polygons and
polyhedra in R3

Interacting and annealing particle filters: mathematics and a
recipe for applications

Gesture modeling and animation by imitation

Feature-preserving non-local denoising of static and
time-varying range data

Enhanced dynamic reflectometry for relightable free-viewpoint
video

Skeleton-driven laplacian mesh deformations

