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Abstract

The thickness problem on graphs is A'P-hard and only few results concerning
this graph invariant are known. Using a decomposition theorem of Truemper, we
show that the thickness of the class of graphs without G12-minors is less than or
equal to two (and therefore, the same is true for the more well-known class of the
graphs without Kjs-minors). Consequently, the thickness of this class of graphs
can be determined with a planarity testing algorithm in linear time.
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1 Introduction

The thickness 6(G) of a graph G = (V| E) is the minimum number k such that G
is the union of k planar subgraphs (here, by “union of k planar subgraphs” we mean
that the edge-set E can be partitioned into k sets so that the graph induced by each
set is planar). Therefore, the thickness is one measure of the degree of nonplanarity of
a graph.

Clearly, 6(G) = 1 if and only if G is planar. The thickness problem, asking for the
thickness of a given graph G, is A'P-hard ([Man83]), so there is little hope to find a
polynomial time algorithm for the thickness problem on general graphs. However, for
some graph classes, the thickness can be determined in polynomial time. For example,
the thickness is known for complete and complete bipartite graphs [BW78]. In some
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cases, there are (often relatively poor) bounds on the thickness of a graph ([DHS91]
and [Hal91]).

The thickness problem has applications in VLSI-design. In electronic circuits, compo-
nents are joined by means of conducting strips. These may not cross, since this would
lead to undesirable signals. In this case, an insulated wire must be used. For that reason,
circuits with a large number of crossings are decomposed into several layers without
crossings, which are then pasted together. The goal is to use as few layers as possible.
In this application it would be desirable to know the thickness of a hypergraph whose
nodes are cells to be placed and whose hyperedges correspond to the nets connecting
the cells. If the thickness problem could be solved for graphs, it would be a useful
engineering tool in the layout of electronic circuits.

We have restricted our attention to a minor-excluded class of graphs, the class of
graphs without Giy-minors (G, is displayed in Figure 1). Our method to determine
the thickness of this class of graphs is based on a decomposition theorem of Truemper
[Tru92]. The paper is organized as follows. The concept of graph decomposition is
introduced in section 2. In section 3 we prove the main result of this paper. Finally, in
section 4 we give negative results on using our approach for the two graph invariants
crossing number and skewness.

Figure 1: Graph Gy,

2 Decomposition of Graphs

In this section, we present the 1-, 2- and A-sums of graphs. Furthermore, we describe
a recursive construction process for graphs without G;s-minors, based on Truemper’s
decomposition theorem.

For that purpose, let G = (V, E) be a connected graph. G is called a 1-sum of the
graphs G4 = (W4, E1) and G, = (Va, E»), denoted G = G1 @, G, if the identification of
an arbitrary node v; of G; with an arbitrary node v, of G5 produces G. Analogously, G
is called a 2-sum (A-sum) of G; and G», denoted G = G; B, G (G = G1 Pa Go), if
identification of an edge (triangle) of G; with an edge (triangle) of G5 and subsequent
deletion of this edge (triangle) produces G (see Figure 2). Conversely, if G = G; @, G,
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Figure 2: 1-, 2- and A-sum

G =G @D,G;0r G =Gy @y Go, wesay that G; and G, are a 1-, 2- or A-sum decompo-

sition of G. Let @ € {@1,D,, Pat- If, for k>2 G=((G1 D G2) D G3)D---) D Gy,
we call the graphs G; (1 < ¢ < k) building blocks of G.

A decomposition theorem by Truemper [Tru92] allows us to restrict our attention to
certain building blocks for all 2-connected graphs without Gi,-minors.

Theorem 2.1 (Truemper, 1992)

Any 2-connected graph without Gia-minors is planar, or isomorphic to Ky, K33, Gs,
Gis, Gi,, G2,, Gi,, G2, G3,, Gi., or may be constructed recursively by 2-sums and
A-sums. The building blocks of such a construction are as follows.

2-sums : planar graphs, and graphs isomorphic to K5, K33, Gs, Gis, G1,, G3,,
Gls, Gis, Gis, or Gis.
A-sums : planar graphs, and graphs isomorphic to Ky.



The building blocks of Theorem 2.1 can be seen in Figure 3. All graphs are not planar,
but obviously their thickness equals 2.
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Figure 3: Graphs of Theorem 2.1

3 Thickness Theorem

Before we state the main result of this paper, we prove several lemmas. For notational
convenience, we denote the planar graphs demonstrating thickness 2 for a given graph
G as planar decomposition graphs of G.

Lemma 3.1 Any 1- or 2-sum of two planar graphs is planar.

Proof. The sum operations cannot introduce K33 or Ks-minors, hence must preserve
planarity. O

Lemma 3.2 Any I- or 2-sum G3 = G @, G or Gz = G @, G2, where graph Gy has
thickness 2, and graph G4 is planar has thickness 2.



Proof. Let G| and GY be planar decomposition graphs of G;. The 1-sum of G} and G,
is planar by Lemma 3.1. Clearly, the obtained 1-sum and G are planar decomposition
graphs of the 1-sum of G; and G,.

We can assume without loss of generality that the edge e to be identified in the 2-sum
is embedded in G}. Then the 2-sum of G} and G is planar by Lemma 3.1, and hence
the obtained 2-sum and G are planar decomposition graphs of the 2-sum of G; and

Gs. a

Lemma 3.3 Let Gy and Gy be two graphs with thickness 2, say with planar decomposi-
tion graphs Gy, GY and G, GY, respectively. Suppose G’ contains the edge e to be iden-
tified in a 2-sum together with all edges incident with e. Then the 2-sum G3 = G1 @, G
has thickness 2.

Proof. Again, we can assume without loss of generality that edge e is embedded in GY.
Then the 2-sum of G} and G, and the union of G} and G are planar decomposition
graphs of G3. Note that there are no edges between G} and GY. O

Lemma 3.4 Any A-sum Gs = G, @p G2 of a graph G; with thickness at most 2 and
of a planar graph G, has thickness at most 2.

Proof. Let e = (u,v) be one of the edges of the triangle and let w be the vertex of
the triangle that is not an endpoint of e. Since G5 is planar, we can decompose G5 into
a graph G, containing e together with all edges incident to u or v, and a graph G
consisting of all edges incident to w that do not go to any endpoint of e. The remaining
edges can be distributed arbitrarily to G5 or GY.

If G; has thickness 2, we have two planar decomposition graphs for Gy, say G| and
GY. Without loss of generality G| may contain e. Define G§ to be the 2-sum of G} and
G, and G to be the 1-sum of G{ and GY. Due to Lemma 3.1, G5 and Gj are planar
decomposition graphs for Gs. Note that after the sum operations, the remaining edges
of the triangle which connect v with w as well as v with w, are deleted.

If G; is planar, let G| have all edges of G;, and GY consist just of the nodes of G.
Then define the planar decomposition graphs as above. a

We are now prepared to prove the main result of this paper.
Theorem 3.5 If G is a graph without Gis-minors, then §(G) < 2.

Proof. According to Theorem 2.1, every 2-connected graph without Gis-minors can
be obtained by a sequence of 2- resp. A-sums with special building blocks. The above
lemmas show that the thickness stays at 2 under sum operations with these building
blocks. All these graphs can be decomposed in such a way that one of their two planar



decomposition graphs contains the edge to be identified together with all edges incident
with that edge.

In the case of a A-sum with a planar graph, Lemma 3.4 applies directly. In the case
of a A-sum with Ky, we can decompose Kj into a graph G, containing one edge e of
the triangle together with all edges incident to both endpoints of e and a graph G5
consisting of the node w involved in the A-sum, which is not an endpoint of e, together
with the edges incident at w that do not go to any endpoint of e. Clearly, G, and G
are planar and hence we can define the same sum graphs as in Lemma 3.4.

Therefore, the theorem is proved for 2-connected graphs. If G is not 2-connected, the
decomposition theorem applies for every 2-connected block of the graph and hence for
the whole graph. O

As a corollary, we obtain that the thickness problem in the class of graphs without
Gl12-minors 1s solvable in linear time.

Corollary 3.6 The thickness of a graph G without Gys-minors can be determined in
linear time in the number of nodes of G.

Proof. Apply a linear time planarity testing algorithm [HT74] to G. If G is planar,
then 0(G) = 1, otherwise §(G) = 2. O

Since G5 contains a Kjs-minor, the class of graphs without Gj;-minors contains the
class of graphs without Ky-minors and hence we have proved the result for the more
well known class of graphs without Ks-minors as well. Wagner [Wag37] produced for
these graphs a decomposition theorem that has become a prototype for a number of
decomposition results, including Theorem 2.1 used here.

4 Other Invariants

One may think that applying certain sum operations might also be applicable to control
other topological invariants of graphs, such as the crossing number v(G) or the
skewness p(G) of a graph G. The crossing-number v(G) of a given graph G is the
minimum number of pairwise intersections of edges when G is drawn in the plane. The
skewness is the minimum number of edges which have to be deleted from the graph G
to make it planar.

Unfortunately, such a transfer is not possible, since by a 2-sum there is neither addi-
tivity of the crossing number resp. skewness of the building blocks nor a fixed value as
for the thickness. We prove this by giving counterexamples.



Theorem 4.1 For each n € IN there exist graphs G1 and G4 such that, for any graph
G = G, @, G, the following holds:

v(G) > v(G1) + v(Gz) + n.

Proof. For n € IN, denote by M, 4 the planar graph shown in Figure 4 with n + 4
vertices and 2n + 5 edges. Start with the graph K33 and take sucessively 2-sums with
seven edges of the K33 and M, 44 as shown in Figure 5. The resulting graph H has
crossing number one. Take a further 2-sum of H and M, 4 by identifying the edges e
and f.

In every drawing of the graph, the edge f, crosses a complete subgraph M, .4 — e
and therefore at least n + 2 edges. Therefore, we have v(H @, My1a) = n + 2 >
v(H) + v(Mpya) + n. 0

An example of the nonadditivity of the skewness can be obtained by a slight modi-
fication of the proof of Theorem 4.1.

Figure 4: Graph M, 4

Figure 5: Graph H



Theorem 4.2 For each n € IN there exist graphs G1 and Gy such that the following
holds for the graph G = G; @, Gs:

w(G) > u(Gr) + u(G2) + n.

Proof. Take 2-sums of eight edges of K335 with M, ;4. The skewness of the resulting
graph equals one. A further 2-sum of the remaining edge of K33 with M, 4 gives the
graph F' of Figure 6. In order to achieve planarity, a graph M, ;4 — e must be removed,
i.e., the skewness is n + 2. O

Figure 6: Graph F

Since we only used building blocks according to Theorem 2.1, the above theorems
are valid even if we restrict ourselves to graphs without Gj,-minors.

Acknowledgement In an earlier version of this paper we had obtained our main re-
sult for the class of graphs without Kjz-minors. We are grateful to Klaus Truemper
who pointed out the generalization to the class of graphs without Gis-minors and for
valuable suggestions for simplifying the presentation.

References

[BW78] L. Beineke and R. Wilson, Selected topics in graph theory, Academic Press
1978, 15-49.

[DHS91] A.M. Dean, J. P. Hutchinson, and E.R. Scheinerman, On the thickness and
arboricity of a graph, J. Comb. Theory (B) 52 (1991), 147-151.

8



[Hal91] J. Halton, On the thickness of graphs of given degree, Info. Sci. 54 (1991),
219-238.

[HT74] J. Hopcroft and R.E. Tarjan, Efficient planarity testing, J. ACM 21 (1974),
549-568.

[Man83] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc.
Cambridge Philos. Soc. 9 (1983), 9-23.

[Tru92] K. Truemper, Matroid decomposition, Academic Press 1992.

[Wag37] K. Wagner, Uber eine Eigenschaft ebener Kompleze, Math. Ann. 114 (1937),
570-590.



