
E�cient Algorithms for Counting and Reporting Pairwise

Intersections between Convex Polygons

Prosenjit Gupta�y Ravi Janardanz� Michiel Smidx

April 16, 1996

Abstract

Let S be a set of convex polygons in the plane with a total of n vertices, where

a polygon consists of the boundary as well as the interior. E�cient algorithms

are presented for the problem of reporting output-sensitively (resp. counting)

the I pairs of polygons that intersect. The algorithm for the reporting (resp.

counting) problem runs in time O(n4=3+�+I) (resp. O(n4=3+�)), where � > 0 is an

arbitrarily small constant. This result is based on an interesting characterization

of the intersection of two convex polygons in terms of the intersection of certain

trapezoids from their trapezoidal decomposition. Also given is an alternative

solution to the reporting problem, which runs in O(n4=3 logO(1)
n + I) time,

and is based on characterizing the intersection of two convex polygons via the

intersection of their upper and lower chains and their leftmost vertices. The

problems are interesting and challenging because the output size, I , can be

much smaller than the total number of intersections between the boundaries of

the polygons and because the number of polygons and their sizes can depend on

n.

1 Introduction

Let S be a set of r bounded, convex polygons in the plane with a total of n vertices.

By a polygon, we mean the region consisting of the boundary as well as the interior.
Polygons P andQ are said to intersect if they share a point; in particular, they intersect

if one is completely contained inside the other or if their boundaries intersect.
We consider e�cient algorithms for reporting output-sensitively (resp. counting) all

intersecting pairs of polygons in S. By output size we mean the number of intersecting

�The research of these authors was supported in part by NSF grant CCR-92-00270.
yMax-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germany. E-mail:

pgupta@mpi-sb.mpg.de.
zDepartment of Computer Science, University of Minnesota, Minneapolis, MN 55455, U.S.A.

E-mail: janardan@cs.umn.edu. Also supported in part by a Grant{in{Aid of Research from the

Graduate School of the University of Minnesota.
xDepartment of Computer Science, King's College London, Strand, London WC2R 2LS, United

Kingdom. E-mail: michiel@dcs.kcl.ac.uk. Part of this work was done while the author was at the

Max-Planck-Institut f�ur Informatik, Saarbr�ucken.

1



pairs of polygons in S; we denote this by I. Let K denote the total number of

intersections between the polygons in S. That is, if P is completely contained in Q,

or vice versa, we count this in K as one intersection; otherwise, if the boundaries of P

and Q intersect, then we count all the boundary intersections in K. Note that I is no

larger than K and, in general, it can be much smaller: The boundaries of P and Q can

intersect O(jP j+ jQj) times; however, this is counted in I as just a single intersection

between P and Q.

Output-sensitivity is only one of the reasons why the problem we consider is in-

teresting and non-trivial. A second reason has to do with the number of polygons

and their sizes. We note at the outset that the problem is straightforward if ei-

ther (a) r is a constant, or (b) all the polygons are of constant size. Consider

case (a): Assuming that the polygons P and Q are represented appropriately, we

can use the algorithm of Chazelle and Dobkin [CD87] to decide if they intersect in

time O(log(jP j + jQj)) = O(log n). Considering all pairs of polygons in this way, we

can solve the problem in time O(r2 log n + I) = O(log n). (Here I = O(1), since

r = O(1).) Next, consider case (b): Note that I = �(K) since all the polygons are

of constant size. We can compute the at most K boundary intersections among the
polygons in S by using the algorithm of Chazelle and Edelsbrunner [CE92] in time

O(n log n +K). Moreover, we can determine the at most K complete containments
among the polygons by triangulating them and then stabbing the triangles with a ver-
tex of each polygon. This takes time O(n4=3 logO(1) n +K) using the algorithm given
in [Aga91, Corollary 5.14]. It follows that the total time is O(n4=3 logO(1) n+ I).

The interesting case is when both r and the polygon sizes depend on n, for then

the two approaches outlined above are not e�cient. For example, assume that each
polygon has size n�, for some �, 0 < � < 2=3; thus r = n1��. Assume further
that the polygons intersect pairwise in the maximum number of edges. Thus there
are �(n�) intersections in each of the �(n2�2�) pairs, so that K = �(n2��). More-
over, I = �(n2�2�) = o(K). The �rst approach above takes time O(r2 log n + I) =

O(n2�2� log n). The second approach takes time O(n4=3 logO(1) n+K), which is �(K)
since K = �(n2��) and � < 2=3. The �rst solution can be made nearly quadratic by
a suitable choice of �, while the second solution is not sensitive to I.

The challenge then is to devise an algorithm for reporting the intersecting pairs of
polygons in output-sensitive fashion, in time O(f(n) + I), where f(n) is subquadratic

and small. For the more di�cult counting problem, we seek an algorithm with run-

ning time O(f(n)). (Note that the counting problem can be solved using a reporting
algorithm, but this is not e�cient.) We remark that we are not aware of any previous
work on this problem.

2 Summary of results

Our �rst result is a data structure of size O(m1+�) (for any m satisfying n � m � n2),

which stores a set S of convex polygons with a total of n vertices, such that given

a query convex polygon, Q, the IQ polygons in S intersecting Q can be counted

(resp. reported) in time O(jQj � n1+�=m1=2) (resp. O(jQj � n1+�=m1=2+ IQ)). Using the

counting (resp. reporting) version of this data structure, we can count the pairs (resp.

2



P1 P2 P3 P4 P5 P6 P7

Figure 1: Trapezoidal decomposition of a convex polygon

report the I pairs) of intersecting polygons in time O(n4=3+�) (resp. O(n4=3+� + I)),
for any constant � > 0. This algorithm is based on an interesting characterization

of the intersection of two convex polygons in terms of intersecting pairs of trapezoids
from their trapezoidal decomposition. We also give an alternative algorithm for the
reporting problem, which runs in time O(n4=3 logO(1) n + I). This algorithm is based
on a di�erent characterization of the intersection of a pair of convex polygons in terms
of their upper and lower chains and their leftmost vertices.

3 The counting problem

In this section, we give an algorithm for counting the pairs of convex polygons that
intersect. The technique works for the reporting problem as well.

3.1 Characterizing the intersection of two polygons

We need the notion of a trapezoidal decomposition. Let P be a convex polygon. Draw

a vertical line through each vertex of P . This partitions P into O(jP j) trapezoids and

triangles P1; P2; : : :, sorted from left to right. We consider a triangle as a degenerate
trapezoid. (See Figure 1.) We de�ne an arti�cial trapezoid P0, which is immediately

to the left of P1, and which \behaves" like an empty trapezoid. By de�nition, P0 does
not intersect anything. (P0 can be represented by four halfplanes whose intersection

is empty.) Note that a trapezoid also consists of a boundary together with its interior.

For each polygon P of S, we de�ne a new set P consisting of all pairs (Pi; Pi+1),
i � 0. We call each pair (Pi; Pi+1) a trapezoidal pair of P .

3



De�nition 1 Let P and Q be two convex polygons. Consider the sets P and Q. We

say that the elements (Pi; Pi+1) 2 P and (Qj; Qj+1) 2 Q have a conict if

1. Pi+1 \Qj+1 6= ;, and

2. Pi \Qj+1 = ;, and

3. Pi+1 \Qj = ;.

Theorem 1 Let P and Q be two convex polygons. Then P and Q intersect if and

only if there are indices i and j such that (Pi; Pi+1) and (Qj; Qj+1) have a conict.

Moreover, if such indices i and j exist, then they are unique.

Proof: Suppose there are indices i and j such that (Pi; Pi+1) and (Qj; Qj+1) have a

conict. Then Pi+1 and Qj+1 have a point in common. Hence, P and Q also have a

point in common, i.e., P and Q intersect.

To prove the converse, assume that P and Q intersect. Let x be the leftmost point

in the intersection of P and Q. (If there is no unique leftmost point of intersection,
then we take for x the leftmost point with minimum y-coordinate.) We distinguish
three cases.

Case 1: x is in the interior of Q.
In this case, x must be the leftmost point of P . In particular, x is a point of the

trapezoid P1. Let j � 0 be the index such that x 2 Qj+1. (If x is on the boundaries
of two trapezoids of Q, then we choose j such that x is on the right boundary|
which is vertical|of Qj+1.) Note that x does not belong to Qj. We claim that the

elements (P0; P1) and (Qj; Qj+1) have a conict. Indeed, since x 2 P1 \Qj+1, we have
P1\Qj+1 6= ;. Also, by de�nition of the arti�cial trapezoid P0, we have P0\Qj+1 = ;.
Finally, we have P1 \ Qj = ;: This follows from the facts that (i) x is the leftmost
common point of P and Q, (ii) x does not belong to Qj and (iii) Qj is to the left of
Qj+1.
Case 2: x is in the interior of P . This case is symmetric to Case 1.

Case 3: x is on the boundaries of both P and Q.
Let i (resp. j) be the index such that x 2 Pi+1 (resp. x 2 Qj+1). (If x is on the

boundaries of two trapezoids of P (resp. Q), then we choose i (resp. j) such that x is

on the right boundary of Pi+1 (resp. Qj+1).) We claim that the pairs (Pi; Pi+1) and
(Qj; Qj+1) have a conict. The case Pi+1\Qj+1 6= ; is obvious. If we had Pi\Qj+1 6= ;,

then x could not be the leftmost intersection since Pi is to the left of Pi+1. The case
involving Pi+1 and Qj is similar.

This proves the �rst part of the theorem. Now assume there are indices i and j

such that (Pi; Pi+1) and (Qj; Qj+1) have a conict. We will prove that i and j are

unique.

Among all indices i � 0 and j � 0 such that (Pi; Pi+1) and (Qj; Qj+1) have a

conict, choose those for which the pair (i; j) is lexicographicallymaximal. We consider

four cases.
Case A: i = j = 0.

The way we chose the pair (i; j) immediately implies that i and j are unique.

Case B: i = 0 and j 6= 0.

4



We claim that there is no k such that k < j and (P0; P1) and (Qk; Qk+1) have a

conict. Clearly, this claim will prove that i and j are unique.

To prove the claim, assume there is a k < j such that (P0; P1) and (Qk; Qk+1)

have a conict. We know that P1 \ Qk+1 6= ; and P1 \ Qj+1 6= ;. Let a and b be

points of P1 \ Qk+1 and P1 \ Qj+1, respectively. Then, by convexity, the segment ab

is completely contained inside

P1 \ (Qk+1 [Qk+2 [ : : : [Qj+1) :

Moreover, this segment passes through the trapezoid Qj. Hence, P1 \ Qj 6= ; which

contradicts the fact that (P0; P1) and (Qj; Qj+1) have a conict.

Case C: i 6= 0 and j = 0.

We claim that there are no k and ` such that k < i, ` � 0, and (Pk; Pk+1) and

(Q`; Q`+1) have a conict. Clearly, this claim will prove that i and j are unique.

To prove the claim, assume there are k < i and ` � 0 such that (Pk; Pk+1) and

(Q`; Q`+1) have a conict. We know that Pk+1 \ Q`+1 6= ; and Pi+1 \ Q1 6= ;. Since

k < i, the trapezoid Pk+1 is to the left of Pi+1. But then ` must be equal to zero. As

in Case B, let a and b be points of Pk+1 \ Q1 and Pi+1 \ Q1, respectively. Then the
segment ab is completely contained inside

(Pk+1 [ Pk+2 [ : : : [ Pi+1) \Q1:

Since this segment passes through the trapezoid Pi, it follows that Pi \Q1 6= ;, which
is a contradiction.
Case D: i 6= 0 and j 6= 0.

Let L and L0 denote the left vertical sides of Pi+1 and Qj+1, respectively. Note that
L and L0 exist and that they are also the right vertical sides of Pi and Qj, respectively.
Since Pi \Qj+1 = ;, L lies completely outside Qj+1. Similarly, since Pi+1 \Qj = ;, L0

lies completely outside Pi+1. These two facts, together with the fact that Pi+1\Qj+1 6=
;, imply that the boundaries of Pi+1 and Qj+1 intersect. In particular, the top side,
t, of Qj+1 intersects the bottom side, b, of Pi+1 or, symmetrically, the bottom side of
Qj+1 intersects the top side of Pi+1. Assume without loss of generality that t intersects
b. Then the slope of t is larger than that of b. (Otherwise, L would intersect Qj+1 or

L0 would intersect Pi+1.) By convexity, the polygon Q lies below the supporting line
of t, and the polygon P lies above the supporting line of b. Hence, the polygon P \Q

does not contain any point to the left of the intersection of t and b. In particular,

there are no indices k and ` such that (k; `) is lexicographically smaller than (i; j), and
(Pk; Pk+1) and (Q`; Q`+1) have a conict. This proves that i and j are unique.

This completes the proof of the theorem.
In Section 3.2 below we review a useful query composition technique. Combining

this with the characterization given in Theorem 1 leads to the counting algorithm we

present in Section 3.3.

3.2 Review of a query composition technique

In Section 3.3 below, we will express intersection conditions as the conjunction of h > 1
halfplane range queries, where h = O(1). Towards this end, we review a useful query

5



composition result due to van Kreveld [vK92], which we will use. (This result is based

on multi-level range searching structures [DE87, Mat92, CSW92].)

Let S be a set of n geometric objects. Let D be a data structure for some query

problem on S, with building time, space and query time bounds of p(n), f(n) and

g(n), respectively. Suppose that we now wish to answer queries not on the entire set S

but on a subset S0 of S, where S0 is speci�ed by putting S in 1{1 correspondence with

a set P of points in IRd and letting S0 correspond to the subset P 0 of P lying in a query

simplex. (In [vK92], this technique is called simplex composition on P to D.) The

following theorem from [vK92] states how fast the query problem on S 0 can be solved.

(We state only the part of the theorem relevant to us. Moreover, the building time is

not explicitly mentioned in [vK92], but follows easily from the discussions there.)

Theorem 2 [vK92] Let S, D, P and n be as above. For an arbitrarily small constant

� > 0, simplex composition on P to D yields a data structure with building time

O(m�(m + p(n))), size O(m�(m + f(n))), and query time O(n�(g(n) + n=m1=d)), for

any n � m � nd, assuming f(n)=n is nondecreasing and g(n)=n is nonincreasing. For

the reporting problem, the output size, denoted by k, must be included in the query

time as an additive term.

In our application, the simplex will always be a halfplane. Given the h = O(1)
halfplanes, we proceed as follows: We design an initial data structure D. Then we

apply Theorem 2, with one of the h halfplanes. This gives a new structure D0 to which
we apply Theorem 2 using a second halfplane and so on. Since h = O(1), the space
and query time bounds of the resulting structure are asymptotically the same as the
ones given in Theorem 2.

We illustrate the above idea with the following simple example: Let S be a set of n

vertical line segments in IR2. We wish to construct a data structure for the following
query problem on S: \Given a query line `, count or report the k segments of S that
are intersected by `." We take D to be a linked list of the objects of S and store
its size at its head. Clearly, D solves the trivial \query" problem, \count or report
the segments of S", in f(n) = O(n) space and g(n) = O(1) query time. Since a

segment s 2 S intersects ` i� its upper endpoint is in `+ and its lower endpoint is
in `�, we can cast the intersection condition as two halfplane compositions: In the
�rst, we associate S with the set P of upper endpoints and use `+; in the second, we

associate S with the set P of lower endpoints and use `�. We then apply these two
compositions successively using Theorem 2. This gives a data structure of size and

building time O(m1+�) and a query time of O(n1+�=m1=2) for the counting problem
and O(n1+�=m1=2 + k) for the reporting problem.

3.3 The algorithm for the counting problem

Consider two trapezoids P and Q. The following lemma is easy to show.

Lemma 1 P and Q intersect i�

(i) P has a vertex inside Q, or

(ii) Q has a vertex inside P , or

(iii) an edge of P intersects an edge of Q.

6



First let us consider the following problem: Preprocess a set S of trapezoids in

the plane, such that given a query trapezoid Q, the trapezoids in S that intersect Q

can be counted e�ciently. We can de�ne a boolean formula B(P;Q) in disjunctive

normal form (DNF) such that B(P;Q) is true i� P intersects Q. Each minterm in

B(P;Q) is the conjunction of literals of the form p 2 H, where p is a point and H is

a halfplane (either open or closed). The point p is either a vertex of P or the dual of

a line supporting an edge of P , while H is a halfplane whose bounding line is either

a supporting line of an edge of Q or is the dual of a vertex of Q. For example, the

condition that a vertex p 2 P is in Q in Lemma 1 can be written as the conjunction

of four closed halfplane membership conditions, where each halfplane is bounded by a

supporting line of an edge of Q and contains Q. The condition that a vertex of Q is

in P can be expressed similarly using duality. The intersection of an edge of P and an

edge of Q can also be written similarly. (Note that the condition p 62 H|which arises

when we want to express the non-intersection of two trapezoids, as in De�nition 1|

can also be expressed in a similar form as p 2 Hc, where Hc is the open halfplane that

is complementary to H.) Let Mi, i = 1; 2; : : : ; k, be the minterms of B(P;Q). We

may assume that B(P;Q) is written in a form such that it is true i� exactly one of
the Mi's is true. We can ensure this easily: we create the truth table for B(P;Q) and,

for each instance of a 1 as the truth value, we write out the corresponding minterm.
Since P and Q are of constant size, B(P;Q) has a constant number of minterms, each
of constant size.

A trapezoid is composed of (at most) four vertices pi; i = 1; : : : ; 4 and at most four
edges ei; i = 1; : : : ; 4. Let p�i denote the point that is dual to the line supporting ei.

Any of the minterms M can be written as

M = G1 ^G2 ^G3 ^G4 ^ G�

1 ^G�

2 ^ G�

3 ^G�

4

where Gi (resp. G�

i ) is the AND of literals of the form pi 2 H (resp. p�i 2 H). We
build a data structure corresponding to each minterm. Each such data structure is
built on all the trapezoids P that we have. Each data structure is built on eight levels,
corresponding to the pi's and p�i 's. Given a query trapezoid Q, we query each data
structure. If level j is built on pi, then we look at the literals in Gi = (pi 2 H1 ^ pi 2

H2 ^ : : : ^ pi 2 Hs). Each Hk; k = 1; : : : ; s (where s � 16) is a halfplane bounded by
one of the edges of Q or is dual to one of the vertices of Q. We query the data structure

at level j by �rst searching using H1, then searching with H2 below nodes selected by

H1 and so on. Once we are done at level j, we explore the level j + 1 structures at
nodes selected at level j. For a given Q, a particular trapezoid P intersecting Q will

be included in the count for the query on the data structure corresponding to only one
of the minterms (because B(P;Q) is written such that it is true i� exactly one of its

minterms is true). Hence the counts from the queries of the di�erent data structures
can be simply added up. We apply Theorem 2 with d = 2 to get:

Lemma 2 For any m satisfying n � m � n2, and any constant � > 0, a set S of n

trapezoids in the plane can be preprocessed in time O(m1+�) into a data structure of

size O(m1+�) such that the trapezoids that intersect a query trapezoid Q can be counted

in time O(n1+�=m1=2).

7



Now we turn to another problem. Let PS denote the union of the sets P of

trapezoidal pairs corresponding to all polygons P 2 S. We wish to preprocess PS

into a data structure such that given a query trapezoidal pair TQ, the trapezoidal

pairs in PS that have a conict with TQ can be counted e�ciently. We consider

two trapezoidal pairs TP = (P 0; P 00) and TQ = (Q0; Q00) and the three conditions

enumerated in De�nition 1. From the previous discussions, we know how to construct

the boolean formula for the �rst condition of De�nition 1. For the second and the

third conditions of De�nition 1, we construct the boolean formula for the corresponding

intersection condition, negate it and again write it in DNF. From the AND of the three

formulas thus constructed, we can construct a boolean formula BT (TP ; TQ) which is

true i� TP and TQ have a conict. Moreover, we can write BT (TP ; TQ) in DNF such

that it is true i� exactly one of its minterms is true. We conclude:

Lemma 3 Let PS be a set of O(n) trapezoidal pairs in the plane. For any m satisfying

n � m � n2, and any constant � > 0, we can preprocess PS in time O(m1+�) into a

data structure of size O(m1+�), such that the trapezoidal pairs in PS that conict with

a query trapezoidal pair TQ can be counted in time O(n1+�=m1=2).

Finally we would like to preprocess a set S of r convex polygons with a total of
n vertices (where r and the polygon sizes can depend on n), into a data structure

such that given a query convex polygon Q, the polygons in S intersected by Q can be
reported e�ciently.

Theorem 3 Let S be a set of convex polygons in the plane with a total of n vertices.

For any m such that n � m � n2, and any constant � > 0, S can be preprocessed in

time O(m1+�) into a data structure of size O(m1+�) such that the polygons in S that

intersect a query polygon Q can be counted in time O(jQj � n1+�=m1=2).

Proof: We store all the trapezoidal pairs from all the polygons in S into an instance
D of the data structure of Lemma 3. Given a query polygon Q, we decompose it into
trapezoidal pairs and query D with each such pair. From Theorem 1, it follows that if
Q intersects any P 2 S there are unique trapezoidal pairs TP of P and TQ of Q such
that TP and TQ are in conict. This pair is detected while querying D with TQ. The

space and time bounds follow from Lemma 3.

To count pairwise intersections of the polygons, we simply build an instance of the
data structure of Theorem 3 and query with each polygon in turn.

Theorem 4 Given a set S of convex polygons in the plane with a total of n vertices,

the number of intersecting pairs of polygons in S can be counted in time O(n4=3+�), for

any constant � > 0.

Proof: From Theorem 3, the building time is O(m1+�). Adding the query time

O(jQj � n1+�=m1=2), over all polygons Q, we get a total query time of O(n2+�=m1=2).

Choosing m = n4=3, we get an overall running time of O(n4=3+�).

8



4 The reporting problem: an alternative algorithm

The technique presented in the previous section can also be used to report the I

intersecting pairs of polygons in time O(n4=3+�+ I). In this section, we use a di�erent

approach to obtain a slightly faster algorithm.

We preprocess each polygon to remove any vertex between two adjacent edges

supported by the same line. This can be achieved in O(n) time. We also assume that

no polygon has a vertical side, which can be achieved by appropriate rotation.

Now each polygon P has a leftmost vertex `(P ), a rightmost vertex r(P ) and

can be uniquely decomposed into an upper chain U(P ) and a lower chain L(P ) at

these vertices. We give a di�erent characterization for the intersection of two convex

polygons P and Q, which forms the basis of the reporting algorithm.

Observation 1 For convex polygons P and Q, if L(P ) intersects U(Q), then at most

a total of eight edges of L(P ) and U(Q) are involved in the intersection.

The worst case of eight edges in Observation 1 occurs when L(P ) and U(Q) in-
tersect at exactly two points, each of which coincides with a vertex from L(P ) and a
vertex from U(Q).

Theorem 5 Two convex polygons P and Q intersect i�

(i) `(P ) 2 Q or `(Q) 2 P , or

(ii) L(P ) intersects U(Q) or U(P ) intersects L(Q).

Proof: If (i) or (ii) is satis�ed, then P and Q intersect. To prove the converse, assume
that P and Q intersect. Without loss of generality, assume that `(P ) is not to the right

of `(Q). Draw a vertical line L through `(Q) and mark the two points, s and t, where
L intersects the boundary of P (it is possible that s = t.) Note that s and t must
exist since (i) the x-spans of P and Q must overlap if they intersect and (ii) `(P ) is
not to the right of `(Q). With a slight abuse of notation, we denote the y-coordinates
of s, t and `(Q) by the points themselves. Assume without loss of generality that

s � t. Three cases can arise. (See Figure 2.) (i) If s � `(Q) � t, then `(Q) 2 P ;
(ii) If s � t � `(Q), then for P and Q to intersect, L(P ) must intersect U(Q); (iii) if
`(Q) � s � t, then for P and Q to intersect, U(P ) must intersect L(Q).

Given r convex polygons with a total of n vertices, we break them up into upper and

lower chains. We color the segments from the upper chains red and those from the lower
chains blue. Then we run the red-blue segment intersection algorithm given in [Aga91,

Theorem 5.10] to compute all intersections involving a red segment and a blue segment.
This takes time O(n4=3 logO(1) n+ k), where k is the number of red-blue intersections.

This time bound is also O(n4=3 logO(1) n+ I), since k = O(I) by Observation 1. (Note

that there can be intersections between red segments and, similarly, between blue
segments; therefore we cannot use the algorithms given in [MS88, PS93].)

Next we take the r leftmost points of the polygons, triangulate the polygons into
O(n) triangles and solve the following problem: Given r points and O(n) triangles,

report all k0 pairs (p; t) such that point p lies in triangle t. Using an algorithm given

in [Aga91, Corollary 5.14], this problem can be solved in time O(n4=3 logO(1) n + k0),
which is O(n4=3 logO(1) n+ I), since k0 = O(I). We conclude:

9



(i) (ii) (iii)

P

Q

P

P

Q

Q

`(P )

`(P )

s

s

s

t

t

t

`(Q)

`(Q)

`(Q)

`(P )

Figure 2: Illustrating the proof of Theorem 5

Theorem 6 Given a set S of convex polygons in the plane, with a total of n vertices,

the I pairs of polygons that intersect can be reported in time O(n4=3 logO(1) n + I).

Remark 1 Let A and B be sets of convex polygons, with a total of n vertices, where
no two polygons in the same set intersect. Using the above approach, we can report
in time O(n log n+ I) the I pairwise intersections between polygons in A and B.

Note that Observation 1 and Theorem 5 still hold for P 2 A and Q 2 B. We color
red (resp. blue) the segments belonging to the upper (resp. lower) chains of polygons

in A (resp. B). Then we compute all k red-blue intersections using the algorithm of
[MS88] or [PS93]. These algorithms are applicable since no two red segments and no
two blue segments intersect. This takes time O(n log n + k) = O(n log n + I), since
k = O(I) by Observation 1. We then repeat the above step with the lower chains in
A and the upper chains in B.

Next, we take the leftmost vertex of each polygon in B and determinewhich polygon

(if any) in A contains it. Since the polygons in A are non-intersecting, this step can
be done by building, in O(n log n) time, a point-location structure for the subdivision
induced by the polygons in A and querying with the leftmost vertex of each polygon

in B. The total time for the queries is O(jBj log n) = O(n log n) time. It follows that

the overall time for the algorithm is O(n log n + I).

5 Conclusions and open problems

In this paper, we have shown how to count and report e�ciently the pairwise intersec-

tions between convex polygons in the plane, where the number of polygons and their

10



sizes both depend on n|the total number of vertices. An interesting open problem is

to design algorithms for the case when the polygons are arbitrary simple polygons.

References

[Aga91] P.K. Agarwal. Intersection and decomposition algorithms for planar arrange-

ments. Cambridge University Press, New York, 1991.

[CD87] B. Chazelle and D.P. Dobkin. Intersection of convex objects in two and three

dimensions. Journal of the ACM, 34(1):1{27, 1987.

[CE92] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line

segments in the plane. Journal of the ACM, 39(1):1{54, 1992.

[CSW92] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for sim-

plex range searching and new zone theorems. Algorithmica, 8:407{429, 1992.

[DE87] D.P. Dobkin and H. Edelsbrunner. Space searching for intersecting objects.
Journal of Algorithms, 8:348{361, 1987.

[Mat92] J. Matou�sek. E�cient partition trees. Discrete & Computational Geometry,
8:315{334, 1992.

[MS88] H.G. Mairson and J. Stol�. Reporting and counting intersections between
two sets of line segments. Theoretical Foundations of Computer Graphics

and CAD, NATO{ASI Series (R.A. Earnshaw, ed.) 307{325, 1988.

[PS93] L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment in-
tersections. Proceedings of the Third Workshop on Algorithms and Data

Structures, Lecture Notes in Computer Science, Vol. 709, Springer-Verlag,
Berlin, 530{540, 1993.

[vK92] M. van Kreveld. New results on data structures in computational geome-

try. PhD thesis, Department of Computer Science, University of Utrecht,
Utrecht, the Netherlands, 1992.

11


