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Abstract 

We present refutationally complete calculi for first-order clauses with equality. 
General paramodulation calculi cannot efficiently deal with equations such as 
associativity and commutativity axioms. Therefore we will separate a set of 
equations (called E-equations) from a specification and give them a special 
treatment, avoiding paramodulations with E-equations but using E-unification 
for the calculi. 

Techniques for handling such E-equations known in the context of purely 
equational specifications (e.g. computing critical pairs with E-equations or in­
troducing extended rules) can be adopted for specifications with full first-order 
clauses. 

Methods for proving completeness results are based on the construction of 
equality Herbrand interpretations for consistent sets of clauses. These inter­
pretations are presented as a set of ground rewrite rules and a set of ground 
instances of E-equations forming a Church-Rosser system. The construction 
of such Church-Rosser systems differs from constructions without considering 
E-equations in a non-trivial way. 

E-equations influence the ordering involved. Methods for defining E-com­
patible orderings are discussed. 

All these aspects are considered especially for the case that E is a set 
of associativity and commutativity axioms for some operator symbols (then 
called AC-operators). Some techniques and notions specific to specifications 
with AC -operators are included. 
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1 Introduction 

When considering theorem proving, we think of situations with a given specification S and 
a hypothesis T. Then we want to answer the question: 

Is T a valid theorem forS (notationS f= T)? 

Such problems are important to many areas of computer science, e.g. logic and equational 
programming, analysis of specifications and verification of software. We will restrict our­
selves to specifications with sets of first-order clauses (even more specific: universally quan­
tified first-order clauses, where the only predicate symbol is "~" (equality); other predicates 
can be coded as boolean functions). Theorem provers based on resolution can efficiently 
work with non-equational predicates ([Stickel 86]). To handle the equality predicate by 
resolution like other predicates (e.g. to resolve with the symmetry and transitivity axiom) 
is far too inefficient. So we will prefer techniques based on paramodulation and use res­
olution only to incorporate the reflexivity of equality (an approach to logic programming 
for non-equality predicates, but modulo an equational theory can be found in [Holldobler 
88]). Transforming specifications into sets of clauses and proving theorems by resolution 
and paramodulation are well established techniques ([Chang/Lee 73], [Loveland 78], [Gallier 
87], [Hofbauer/Kutsche 89]). As usual for paramodulation, we will avoid paramodulation 
into variable positions and with equality axioms (in particular, we will not paramodulate 
with functional reflexive axioms). 

We will prove theorems by refutation, so reducing the problem to the question: 

Is S U { ...... r} inconsistent? 

We will consider only theorems whose negation is again a first-order clause (or a set of 
first-order clauses). Of course, inconsistency is undecidable in general. For saturated sets, 
however, inconsistency is easy to detect: 

A saturated set is inconsistent, if and only if it contains the empty clause. 

The definition of saturation is designed in a way that the above statement holds. We use 
inference systems to characterize saturation: A set N of clauses is saturated, if the inferences 
between clauses in N do not add any 'interesting' new clauses to N, i.e. if all inferences are 
redundant. In the main part of this paper we prove our inference system to have indeed the 
property that for saturated sets we can decide inconsistency by simply searching for the 
empty clause. We call this property of the inference system redundancy-completeness. 

So far saturation is a criterion to decide, whether the search for the empty clause is a 
valid proof method for inconsistency. Compare this sentence with: Saturation of equational 
specifications (in the sense of [Knuth/Bendix 70]) is a criterion to decide, whether rewriting 
is a valid proof method for validity in equational theories. The similar relationship that for 
saturated sets some efficient proof methods can be used is expressed in [Bertling 90]. 

Often sets of clauses are not saturated, but we are able to transform them into equivalent 
saturated sets by a (possibly infinite) process, which computes inferences and adds or deletes 
clauses. We call this transformation completion. 

Completion (together with the trivial search for the empty clause and the negation of 
T) yields a proof method for S f= T (for arbitrary, i.e. not necessary saturated, sets of 
clauses S and clauses ....,T). On the other hand, as for saturated sets efficient proof methods 
may become available, completion can be regarded as a compilation process, transforming 
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a (consistent) specification into an equivalent specification, which allows to prove theorems 
more efficiently. Having this application in mind, we are interested in a finite compilation, 
i.e. a finite completion process yielding a finite saturated set of clauses. 

The main task in designing a theorem prover is to define an appropriate notion of 
saturation (via an inference system) and to present a method (or even procedure) for 
completion w.r.t. the previously defined saturation. A lot of work has been done in the 
area of completion, starting in 1970 with [Knuth/Bendix 70]. Since then, completion has 
been enhanced and improved on many aspects: 

• What specifications are considered? 
(sets of equations, conditional equations (Horn clauses), full first-order clauses): 
[Knuth/Bendix 70] and many, many others consider only equational specifications. 
Connected with conditional rewriting ([Jouannaud/Waldmann 86], [Kaplan 84], [Ka­
plan 87]) methods for completion of conditional equational specifications were devel­
oped ([Kaplan/Remy 87], [Ganzinger 88a], [Ganzinger 88b], [Ganzinger 91]). Com­
pletion was extended to first-order clauses in different ways: using a canonical set of 
rewrite rules for boolean algebra ([Hsiang/Dershowitz 83], [Hsiang 87], [Bachmair/ 
Dershowitz 87b]); extending the notion of critical pairs to further resolution and 
paramodulation inferences ([Rusinowitch 87], [Zhang 88], [Zhang/Kapur 88], [Bach­
mair/Ganzinger 90] , [Bachmair/Ganzinger 91a], [Bachmair/Ganzinger 91c]). 

• How is the completion method presented? 
(as a concrete procedure or abstracting from control by an inference system): 
To make correctness proofs applicable to a wider class of algorithms, completion was 
described as an inference system. The control component is reduced to the notion of 
fairness. 

• How is the correctness of the method proved? 
(by traditional induction, using semantic trees, using proof orderings, constructing a 
Herbrand model for consistent sets): 
Induction leads to complicated and hard to read proofs ([Huet 81]). Elegant proofs, at 
least for standard completion algorithms, use proof orderings ([Bachmair /Dershowitz/ 
Hsiang 86], [Bachmair 87]). Semantic trees can be found in [Rusinowitch 87]. In recent 
papers often a model is constructed for a saturated set to prove (refutational) com­
pleteness of the method ([Zhang 88], [Bachmair/Ganzinger 90], [Bachmair/Ganzinger 
91c]). 

To reduce search spaces, to obtain decision procedures and for correctness proofs, orderings 
oii. terms ([Dershowitz 82], [Dershowitz 87]) were always involved with completion methods. 
Computing with an equation .e ~ r means to replace instances lu of f by ru or vice versa. 
This nondeterministic choice of the direction in which we read and apply the equation 
leads to inefficient and perhaps non-terminating computations with equations. The most 
efficient way to compute and reason with an equation .e ~ r is to orient it, obtaining a 
rewrite rule .e ::} r. Then instances of this equation are applied only in one direction 
(replacing lu by ru) and the above nondeterminism and non-termination are eliminated. 
In this way computing with a set of rules is an appropriate and efficient method to reason 
in equational specifications ([Dershowitz 85], [Dershowitz/ Jounannaud 89), [Drosten 89], 
[Dershowitz 89]). One requirement to obtain a complete reasoning method when orienting 
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equations into rules is the existence of an ordering > over terms such that fu > ru for all 
substitutions u. 

Completion Modulo a Set of Equations 

Motivated by permutative equations as the commutativity axiom, which cannot be oriented 
with well-founded orderings over terms thus cannot be used as rewrite rules, completion 
methods with a special treatment for those equations were invented. We denote the set of 
those equations by E and the related completion method by £-completion. The most pop­
ular and elaborated example for such a set E is the set of associativity and commutativity 
axioms for some operator symbols, then called AC-operators. AC-operators often occur in 
equational (or clausal) specifications, especially for very basic specifications, e.g. in integer 
arithmetic (AC-operators: addition + and multiplication *),in boolean algebras (boolean 
and and or) or in specifications of sets (union U and intersection n). There are already com­
pletion systems implemented which incorporate £-completion techniques for E = AC (e.g. 
[Bertling/ Ganzinger /Schafers 89), [ Ganzinger /Schafers 90], [Anantharaman/Hsiang/Mzali 
89]). First those special equations influenced the ordering and the notion of critical pairs. 
Besides of critical pairs between rules, critical pairs with E-equations became necessary. 
One of the first methods was only able to handle left linear rewrite rules ((Huet 80]). To 
deal with non-left-linear rules, stronger rewrite relations, like rewriting with £-matching or 
even rewriting on £-congruence classes, so-called rewriting modulo E, were introduced (e.g. 
[Peterson/Stickel 81]). Working with stronger rewrite relations, critical pairs were defined 
using E-unification instead of unification for the empty theory. Methods and their presen­
tation were developed and became applicable to a wider class of theories E ([Jouannaud/ 
Kirchner 86], [Bachmair 87), [Bachmair 88), [Bachmair/Dershowitz 87a]). Using a rewrite 
relation with runtime orientation of instances of equations, introduced in combination with 
unfailing completion, completion can handle E-equations without special treatment, e.g. 
without E-unification or E-matching. [Martin/Nipkow 90) presented saturated systems for 
the AC-theory of one AC-operator with three equations only, demonstrating that using 
the rewrite relation of orientable instances of equations, completion can handle the axioms 
of an AC-theory as any other equations. But nevertheless, E-completion techniques are 
preferable. They often improve the efficiency of completion. The need for E-completion 
techniques becomes evident by the fact that in all papers describing harder examples in the­
orem proving with AC -operators (often algebraic ring structures are involved) E-completion 
techniques for E = AC are used ([Anantharaman/Hsiang 89] , [Anantharaman/Mzali 89], 
[Lai 90), [Stickel 84]). At a first glance, £-completion uses more complicated (and more 
inefficient) operations on the base level, e.g. E-unification instead of unification. But seen 
as an alternative to enumerating the E-congruence classes of two terms s and t and then 
trying to unify (w.r.t. the empty theory) one of the terms in the congruence class of sand 
one in the class oft, the £-unification of s and t will often be the better choice, at least from 
an efficiency point of view. For E-completion we need more complex basic operations, but 
apply them less often. Refutational theorem proving and completion are search problems, 
searching for an inconsistency or for a saturated system. The search is pruned by replacing 
reasoning with E-equations in a nondeterministic way and in a try-and-error fashion by 
directing the applications of E-equations to solve a certain goal, e.g. to unify two terms. 
We will show this by an example: 

Given an AC-operator +(hence the equations x+y ~ y+x and (x+y)+z ~ x+(y+z) 
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are part of our specification), a rule 

(X + (-X)) + y :::} y 

and a term 
w+((v+(-w))+v) 

we try to reduce the term with the rule. We cannot match the rule with this term (or a 
subterm of it), but we can apply the commutativity axiom at three occurrences and the 
associativity axiom at two occurrences, leading to the terms 

( (V+ ( -W)) +V)+ W 

w+(((-w)+v)+v) 

W + (V+ (V+ ( -W))) 

(w+(v+(-w)))+v 

w+(v+((-w)+v)). 

Again we cannot apply the rule to one of these terms, so have to further enumerate terms 
AC-equal to one of these five terms. Applying some AC-equations will sometimes yield the 
term we started with. Let us consider only the second term w + ( ( ( -w) + v) + v ). It is one 
step AC -equal to 

(((-w)+v)+v)+w 

w+((v+(-w))+v) 

W + (V+ ( ( -W) +V)) 

(w+((-w)+v))+v 

w+((-w)+(v+v)). 

N ate that the second term is equal to the term we started with and the third one is equal 
to the fifth term above. Applying the associativity axiom at the root of the last term, we 
finally get the term 

(w+(-w))+(v+v), 

which is reducible to v+v by the above rule. Replacing this inefficient search for a reducible 
term by enumerating AC -equal terms involving a lot of matching operations by a single 
AC-match (of the rule and the term using the substitution {x +-- w, y +-- v + v}) will 
improve efficiency although the AC-match is more expensive than a single match w.r.t. the 
empty theory. 

There is another advantage of E-completion: Sometimes using the stronger E-operations 
and E-completion may yield a finite saturated specification, where usual techniques yield 
an infinite one (and so also an infinite completion process): E.g. assuming + to be an 
AC-operator, there is no finite convergent rewrite system to decide the equality w.r.t. 
a + b ;:::::; c (speaking exactly: the specification consists of the AC -axioms for + and the 
equation above, moreover we assume a+ b > c), but using rewriting with AC-matching, 
a set of two rules (a + b :::} c and (a + b) + y :::} c + y) is able to decide equality in 
the specification by rewriting with AC-matching and AC-equality testing (moreover an 
AC-completion system will find this set of rules automatically). E-completion may be 
further improved by efficiently implementing E-specific operations (e.g. E-unification) and 
efficiently representing terms (for E = AC: [Fortenbacher 88]). 
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Outline of the Text 

After presenting some basic notions, in particular about rewrite systems which are Church­
Rosser modulo E, we define two refutationally complete calculi ME and MExt for theorem 
proving modulo E. 

The next two sections prove the refutation completeness of these calculi enhanced by 
refinement's for E = AC (in particular for MExt)· 

Then we present an abstract completion method (as part of a theorem prover) for ME 

and MExt together with general criteria to show the irrelevance of clauses and inferences 
during completion. 

Some variants of our calculi are discussed in section 8. 
After providing methods to define orderings for our proof systems, we conclude our work 

with a comparison to related theorem proving methods. 

2 Basic Definitions and Notations 

An equation is a multiset {s, t}, where s and t are (first-order) terms. We writes ~ t to 
denote the equation {s, t}. 

A clause is a pair (r, ~) of multisets of equations, written as r -+ ~. The multiset r is 
called the antecedent; the multiset ~'the succedent of the clause r -+ ~. We usually write 
T1, T2 instead of r1 U T2; r, A or A, r instead of r U {A}; and A1, ... , Am -+ B1, ... , Bn 
instead of { A1, ... , Am} -+ { Bb ... , Bn}· A clause At, ... , Am -+ Bb ... , Bn may be 
regarded as representing an implication A1 1\ • · ·I\ Am implies B1 V· · ·V Bn or a disjunction 
•A1 V··· V •Am V B1 V··· V Bn of positive (Bi) and negative (negated; Aj) equational 
literals. 

We ambiguously denote some operations on sets and on multisets by the same symbols, 
e.g. U for union and n for intersection. It should be clear from the context, whether we 
operate on sets or multisets. 

A ground term (equation, clause) is a term (equation, clause) without any variables. A 
ground substitution replaces each variable by a ground term. 

We write u[s] to indicate that s is a subterm of u and (ambiguously) denote by u[t] the 
result of replacing s at a particular occurrence in u by t. Sometimes we use a more precise 
notation: If pis an occurrence of a subterm sin t, then tjp denotes s and t[p +- r] denotes 
the result of replacing the sub term at occurrence p of t by r. For theories with associative 
and commutative functions, we will also use the following notion of subterms (assuming 
that f is an AC-operator): 

bt (f h(t t )) _ { U~~i subtermsAc(f, ti) if j = h 
su ermsAc , b· .. , n - {h( )} h · t1, ... , tn ot erw1se 

By 0 ( t) we denote the set of all occurrences (also called positions) in t. Occurrences or 
positions are represented as lists of integers using the dot-notation, e.g. 1.2 denotes the 
occurrence of sin f(g(a, s), b). The root position is denoted by£. The height of a term t is 
the maximal length of an occurrence in O(t), e.g. the height of the previous term is 2. 

A context c is a term containing exactly one position p with c/ p = [], where [] is regarded 
as a placeholder for other terms and c[t] here denotes the replacement of [] by t. 

By ta we denote the result of applying the substitution a to t, and call ta an instance of 
t. If ta is ground, we speak of a ground instance. We also apply substitutions to equations, 
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multisets of equations and clauses. The composition rp of two substitutions r and p is 
defined by: xrp = (xr)p, for all variables x. 

An interpretation I is a congruence on ground terms. An interpretation I is said to 
satisfy a ground clause r ~ ~ if either r ~ I (we say "the antecedent is not satisfied") 
or Ll n I ::f. 0 ("the succedent is satisfied by I"). For a ground clause C we also say C 
is true in I instead of I satisfies C; otherwise C is false in I. A non-ground clause D is 
satisfied by I, if all its ground instances C er are satisfied by I. A clause C is said to be 
unsatisfiable, if there is no interpretation I such that I satisfies C, e.g. the empty clause is 
unsatisfiable. An interpretation I is a model for a set of clauses N, if I satisfies all clauses 
in N. So speaking of a model M, we assume that the equality symbol ::::::: is interpreted by a 
congruence, hence in particular the congruence axioms for::::::: (which are Horn clauses) are 
satisfied by M. N is called consistent, if it has a model, otherwise N is inconsistent. We 
say that N implies C (and write N I= C), if every model of N satisfies also C. 

An equation u ::::::: v is variable preserving, if we have var s( u) = var s( v). 
Let E be a set of (unconditional) and variable preserving equations. We remark already 

here, that most of our results hold only, if E satisfies more requirements (see definitions 4.1, 
5.23 and 6.37). We use the prime to indicate E-equality, e.g. if t is a term, t' is E-equal to 
it (the same for clauses C and C' or substitutions er and er'). We write t =Et' or t ~Et' 
to express E-equality and t ~ E t' if this equality is due to a single application of an 
instance of an E-equation. We use [t]E := {t' I t' =E t} to denote the congruence class of 
all terms E-equal tot. If E is variable preserving and t is a ground term, then [t]E is a set 
of ground terms, too. 

A substitution er with ter =E ser is called an E-unifier oft and s. We assume that (E-) 
unifiers never unnecessarily instantiate variables, i.e. if er is a unifier of s and t we have 
xer = x for all variables x not occurring in t or s. 

There are clauses consisting only of one equation in the succedent and an empty an­
tecedent (e.g. all E-equations/clauses). We sometimes write them simply as equations, i.e. 
e1 ::::::: ez instead of ~ e1 ::::::: e2. 

Definition 2.1 (Compatibility with E) 
Let E be a set of equations. An ordering > on terms is compatible with E (or for short 
E-compatible), if t > s implies t' > s' for all t' E [t]E and s' E [s]E. 

If we have a reduction ordering> which is compatible with E, we can define a reduction 
ordering >o on E-congruence classes: 

[t]E >o [s]E if and only if t > s 

Therefore we may ambiguously write t >E s instead of [t]E >E [s]E and speak of an 
E-compatible reduction ordering >E. 

The non-strict version ?::.E of a binary relation > E on terms is defined by t ?::.E s if and 
only ift >E sort =E s. 

7 



3 Rewrite Systems 

Definition 3.1 (Rewriting with a Set of Rules R) 
Let R be a rewrite system, i.e. a set of equations .e ~ r directed to rules l ::::} r and with 
vars( r) ~ vars( l). 

A term t rewrites to s (we write t ==>R s) if and only if there is a position p E O(t), a 
rule l::::} r and a substitution u with tjp = lu and s = t[u +-- ru]. 

A term t is called reducible (by R, or more exactly by ==> R) if and only if there is an s 
with t ==>R s. Otherwise the term t is called irreducible (by ==>R)· 

If ==> is a binary relation, then ==> + denotes its transitive, ==> * its transitive and 
reflexive and <==> its symmetric closure. 

Working with rewrite systems modulo a given theory Ewe often find rewrite relations as 
introduced by the following two definitions (we only give this definition to explain why we 
do not use them in our context, i.e. not in our proofs; but they are useful in implementations 
of E-completion procedures): 

Definition 3.2 (Rewriting with E-Matching) 
Let R be a rewrite system. A term t rewrites with E -matching to s (we write t ==> R·E s) if 
and only if there is a position p E O(t), a rule .e ::::} r and a substitution u with tjp =E lu 
and s = t[u - ru]. 

A term t is called reducible by R using rewriting with E -matching or reducible by ==>R-E 

if and only if there is an s with t =::::}R-E s. 

There is an alternative characterization of ==>R-E: let 

we have ==> R·E = =::::} s. For implementation issues we prefer the former definition, because 
here S is in general infinite (even for finite sets R and theories E with finite congruence 
classes). The relations become different when considering conditional rewriting, because 
for conditional rewriting we have to define how to use £-equations to solve the condition 
(cf. [Wertz 89]). 

Definition 3.3 (Rewriting modulo E) 
Let R be a rewrite system. A term t rewrites modulo E to s (we write t ==> R/ E s) if and 
only if there are terms t' and s' with t' =E t, s' =E s and t' rewrites to s' using a rule of 
R, i.e. t' =::::} R s'. 

ForE= AC a relation that is efficiently to implement and able to simulate ==>RJAC is 
presented in section 6.4.3. For general E it is impractical to work with ==>R/E because of 
the arbitrary location of implicit <==> E-steps involved. 

Definition 3.4 (Church-Rosser Property modulo E) 
Let =:} be a rewrite relation. ==> is (ground) Church-Rosser modulo E for the congruence 
::: if and only if for all (ground) terms t and s such that 

there are (ground) terms v and v' with 

t =::::}* V =E V1 
{::=* S . 
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The word modulo in the above definition does not refer to the rewrite relation ==>. 
Usually ==> is a relation ==> R or ==>R-E (i.e. defined by a set R of rules and a method of 
rewriting, e.g. rewriting with £-matching). The congruence = is in general the congruence 
=.RuE· 

In the following sections we will construct an interpretation as a model for a consistent 
set of clauses. This interpretation is represented by a set Ec of ground instances of £­
equations and a set R of ground rewrite rules. We will need interpretations which are 
Church-Rosser modulo Ec for =RuEc· We want to use rewrite systems which are confluent 
(see definition below) by construction. But we cannot use any of the above rewrite relations: 
even if the left side of a rule is irreducible by all other rules (applied with £-matching or 
modulo E) the corresponding rewrite relation with £-matching or modulo E need not be 
confluent (modulo E), cf. example 3.5. We therefore use the "normal" rewrite relation 
:=:} R in the definition of an interpretation (see definition 5.8). In the rest of this section 
we present some notions used to prove the Church-Rosser property of rewrite systems. We 
outline the more complicated case using the rewrite relation with E-matching and give 
exact proofs for the relation we need in the rest of this paper. 

Example 3.5 (Confluence using rewriting modulo E or with E-matching) 
Let +be an AC-operator. Consider rewriting modulo AC. 

R = {a + b => d, b + c => e} 

We have no overlappings but a divergent situation 

d + c <r= R (a + b) + c = AC a + ( b + c) ==> R a + e 

so 
d + C <r=R/AC a+ b + C ==>RjAC a+ e 

The relation ==>R/AC is not Church-Rosser modulo AC for =RuAC· For rewriting with 
AC-matching consider 

R = {a + b => d, a + ( b + c) => e} 

and 
d + C <r= R (a + b) + C = AC a + ( b + C) ==> R e 

so 
d + C <r=R·AC a+ b + C ==>R-ACe 

The relation ==>R-AC is not Church-Rosser modulo AC for =RuAC· 

The examples show us that we cannot decide Church-Rosser properties for the above 
rewrite relations by simply considering overlaps between left sides of rules (e.g. by confluence 
of critical pairs). So we will not use these relations to construct Church-Rosser rewrite 
systems. 

Definition 3.6 (Coherence modulo E) 
Let ==> be a rewrite relation. ==> is (ground) coherent modulo E if and only if for any 
(ground) terms t, t' and s such that 

t =Et'==>+ S 

there are terms v and v' with 
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In [Jouannaud/Kirchner 86) a slightly different definition is used: the condition t ~* v 
is replaced by t ~ + v, i.e. there is at least one rewrite step required. The definitions 
become equivalent, however, if the relation ~R/E is terminating. 

Definition 3.7 (Confluence modulo E) 
Let ~ be a rewrite relation. ~ is (ground) confluent modulo E if and only if for any 
(ground) terms u, t and s such that 

t~*u~* s 

there are terms v and v' with 

t ~* V =E V
1 ~* S • 

If we restrict the application of rewrite rules and E-equations in the above definitions 
to one step of E-equality and one step of rewriting, we speak of local coherence modulo E 
and local confluence modulo E. Again, the definition for local confluence in [Jouannaud/ 
Kirchner 86) is different to the one above. The weaker definition of Jouannaud and Kirchner 
is only appropriate for rewrite relations included in ~R-E· Jouannaud and Kirchner have 
shown that in case of termination of ~ R/ E the local confluence and coherence proper­
ties are equivalent to the Church-Rosser property. To be more precise: the Church-Rosser 
property holds if global confluence and global coherence are both given; from the local con­
ftuence and the local coherence we can conclude both global properties, but local confluence 
does not imply global confluence and local coherence does not imply global coherence. With 
the same proof we can conclude the equivalence of the ground versions of these properties. 

We will give a short outline of the Church-Rosser theorem in [Jouannaud/Kirchner 
86): As usual E-critical pairs are defined similar to critical pairs, but using E-unification 
instead of unification (p. 1166). Similar to the [Jouannaud/Kirchner 86)-version of local 
conftuence (page 1159), this notion of E-critical pairs is only suited for rewrite relations 
included in ~R-E. The confluence of all critical pairs implies the local confluence modulo 
E (as usual other peaks are either variable overlaps or applications with disjoint redexes ). 
Note that this implication confluence of critical pairs implies local confluence, does only 
hold for ~R-E and the [Jouannaud/Kirchner 86)-definition oflocal confluence: in example 
3.5 we give a local (i.e. both reductions are one step reductions) divergence without E­
critical pairs, [Jouannaud/Kirchner 86) excludes this divergence using a definition of local 
confluence which does not allow the application of the greater rule with E-matching. 

Note also that the relation ~R/E is not confluent, if all the critical pairs are joinable 
(see again example 3.5); but if the set of rules contains all E-extensions (see chapter 6.1 
for the definition of E-extension; for sets R closed under E-extension we have t ~ R/ E s 
implies t ~R-E s' similar to lemma 6.70), we again can conclude the confluence (and 
therefore the Church-Rosser property, because ~ R/ E is trivially coherent) of the relation 
~R/E from the confluence of all critical pairs. 

In the same way the local coherence follows from the confluence of all E-critical pairs 
between rules and E-equations (as E-equations are not directed, we superpose on both 
sides of them). 

Altogether, Jouannaud and Kirchner have given a method to decide the Church-Rosser 
property for relations ~ R·E (or weaker relations) by considering E-critical pairs only. 

We will define rewrite systems R only, where R is a (sometimes infinite) set of ground 
rewrites rules. We will not use rewriting with matching or modulo E but simply ~ R· 
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Moreover the relation :::::} R will be confluent (and therefore also satisfy the weaker prop­
erty of confluence modulo E) by construction. For this case the proof of Church-Rosser 
properties becomes easier (see below, lemma 3.9). 

Definition 3.8 (Joinability modulo E) 
Let t and s be (ground) terms. t and s are joinable modulo E by :::::} if there are (ground) 
terms v and v' with v = E v', t :::::} * v and v' ~· s. An equation t ~ s is joinable, if t and 
s are joinable. 

If E and :::::} are clear from the context, we often simply say "t and s are joinable" and 
write t .!), s in this situation. 

Lemma 3.9 (Sufficient Criterion for Church-Rosser Property) 
Let R be a set of ground rewrite rules such that the left sides of any two different rules do 
not overlap. Let ===}R/E be terminating. Then :::::}R is confluent. If :::::}R is in addition 
locally ground coherent modulo E, then ==>R is ground Church-Rosser modulo E for =RuE· 

Proof: First we prove local confluence: If a ground term u is reducible (in one step) 
by rule1 := £1 => r 1 to s and by rule2 := £2 => r2 to t, then the rules are applied in 
disjoint subterms ujp1 and ujp2 (otherwise the left sides of rule1 and rule2 would overlap, 
contradicting our assumptions). The situation is: 

By application of rule2 to s and rule1 to t we get the desired confluence: 

Now we prove the global confluence. We need the termination of the rewrite relation 
:::::}R which is implied by the termination of ==>RfE· As an induction hypothesis assume 
that the confluence holds for all peaks at terms smaller than u (w.r.t. the ordering induced 
by ==>RfE), i.e. if we have a term t, u ===}k/E t and a divergence 

then we can join s1 and s2: 

s1 :::::} R v ~R s2 

Let us now consider the divergence (peak) 

If there is not at least one rewrite step in each of the reductions, then we have s = u or 
t = u and the confluence is trivial. Otherwise we have 

and by local confluence 
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Now by induction hypothesis (note u ==>~;E s1 and u ==>~;E t1 ) we get a derivation 

Again with induction for the peak at v (note u ==>R s1 ==>R v implies u ==>~;E v) we 
obtain a rewrite proof for s :::::: t: 

This was the proof of the confluence of ==>R· From now on we assume the local 
coherence modulo E of ==>R and conclude the global coherence modulo E. For each E­
equality between ground terms t and t' there is an n E IN, and for 1 ~ i ~ n there are 
terms ti, positions Pi and ground instances e11 :::::: e12 of equations in E such that we have 
an equality proof 

t = tl = E t2 = E ... = E tn = t' 

and each ti (1 ~ i < n) is E-equal to ti+l by application of the equation e11 :::::: ei2 at position 
Pi of ti. We then use two induction hypotheses: 

1. We assume that for all peaks 
u' =E u" ==>~ s 

where the equality proof for u' = E u" consists of less than n steps we have 

, + , * 
U ==>RV =E V *=R S • 

2. Moreover, let us assume that for all equality proofs t ~RuE s containing only terms 
smaller than u (w.r.t. ==>R;E) there exists a rewrite proof t ==>R v' =E v *=R s. 

Now we consider a peak 

, * " * u ~E u <==>E u ==>R S1 ==>R S 

where u" is E-equal to u by one step of E-equality and u' is E-equal to u" by at most n- 1 
steps of E apllications. By local coherence we have 

, *" +t * * U ~E U ==>RV =E V *=R SI ==>R S. 

Using the induction hypothesis 1 at u" we get 

, + , *' * * U ==>R WI =E WI *=RV =E V *=R SI ==>R S . 

The proof for w1 ~RuE s contains only terms smaller than u (note that the termination 
of ==> R is not sufficient to show e.g. that u is greater than v', we therefore need the 
termination of ==>R;E), so with induction hypothesis 2 applied to wi ~RuEs we finally 
obtain the rewrite proof 

, + * - , * U ==>R WI ==>R W2 -E W2 *=R S. 

All together the relation ==> R is terminating, globally confluent and coherent modulo 
E. The same way as done in the Church-Rosser theorem in [Jouannaud/Kirchner 86] we 
can easily prove the Church-Rosser property replacing coherence and confluence peaks of 
equational proofs by rewrite proofs as constructed above. Iterating this process decreases 
the number of peaks in a proof until a rewrite proof is reached. 0 
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4 Inference Systems 

We will present inference systems for theorem proving modulo E, where E is a certain 
equational theory: 

Definition 4.1 E is a set of (unconditional) equations with the following properties: 

• Every equation e1 ~ e2 E E is variable preserving, i.e. vars( e1) = vars( e2). 

• E is finite. 

• For all terms sand t the minimal complete set of E-unifiers J.£CSUE( s, t) is computable 
and finite. 

• There exists a total and E-compatible reduction ordering > E comparing E-congruence 
classes of ground terms. 

We want to present an inference system which can be used in a computer implementation 
of a theorem prover. We therefore require finiteness and computability. But we remark, 
that most of our results do not depend on these facts. 

The existence of minimal sets of unifiers is one severe restriction. An even more restric­
tive requirement may be the existence of a total and E-compatible reduction ordering (see 
section 9). For nearly all theories E the existence of such an ordering is an open question. 

Example 4.2 (The Theory E = AC) 
The theory of commutative and associative function symbols, AC-theory for short, where 
a finite set of operator symbols f are AC -operators, i.e. the following equations hold for 
every such operator f 

f(f(x, y), z) = f(x, f(y, z)) 
f(x,y) = f(y,x) 

( associativity) 
( commutativity) 

is an appropriate candidate for E. It is obviously finite and variable preserving. For AC­
unification see [Stickel81) and [Fages 87). For an appropriate reduction ordering see section 
9.2. 

We define our inference systems based on the following ordering: 

Definition 4.3 (Ordering over Equations) 
The E -multiset expression of an (occurrence of an) equation t1 ~ t2 in a clause r --l- .6. is 
defined as 

(i) 
(ii) 

{ {[tl)E, l.E}, {[t2)E, l.E}} 
{ {(tl]E}, {[t2)E}} 

if tl ~ t2 belongs to r. 
if t1 ~ t2 belongs to .6.. 

The ordering >eq over (occurrences of) ground equations is defined as the multiset extension 
of (the multiset extension of) >E on their E-multiset expressions. We assume l.E to be 
smaller (w.r.t. >E) than any congruence class of ground terms. 

If the occurrences and the clauses of two equations are clear from the context, we often 
omit these informations and simply say that one equation is greater than the other. If we 
compare an equation t ~ s not occurring in a clause, we identify it with its occurrence in 
-t ~ s. 
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Definition 4.4 (Maximality) 
Let t be a term (equation, clause) and M be a multiset of terms (equations, clauses) 
containing t. Let > denote an ordering on terms (equations, clauses). We say that t is 
maximal (w.r.t. >)in M, if there is no s E M such that s > t. We say that t is strictly 
maximal (w.r.t. >)in M, iffor all sE M\ {t} we neither haves> t nor s = t. Considering 
E-compatible orderings we also requires #Et for strict maximality. Note that with M\ {t} 
we here denote the multiset difference: deleting exactly one occurrence of t from M we get 
the above multiset difference. 

When considering total orderings we may define strict maximality oft (w.r.t. >)in M 
by for all sE M\ {t}, we have t > s. 

4.1 Inference Rules 

Now we present our inference system. It is an extension of the system presented by 
Nieuwenhuis ([Nieuwenhuis 91]), which itself is a modification of the system of Bach­
mair and Ganzinger ([Bachmair/Ganzinger 90], [Bachmair/Ganzinger 91a], [Bachmair/ 
Ganzinger 91c]). 

Definition 4.5 (Inference Rules) 
We always assume that the premises of the following inferences have disjoint sets of variables 
(otherwise rename the variables of one clause). We consider the following inference rules: 

1. strict superposition right 

r1-+ ~1,81 ~ 82 r2-+ ~2,t1 ~ t2 

(r1, r2 -+ ~b ~2, t1[u ~ s2] ~ t2)<T 

where u E JLCSUE(tifu,s1), tifu is not a variable and there exists a ground substi­
tution <11 such that 

a) t1<1<11 >E t2<T<T1, 81<1<11 >E 82<1<11, and t1<1<11 ~ t2<1<11 >eq 81<1<11 ~ 82<1<11 

b) s1uu1 ~ s2uu1 is strictly maximal (w.r.t. >eq) in (f1 -+ ~1,s1 ~ s2)uu1 

c) t1uu1 ~ t2<T<T1 is strictly maximal (w.r.t. >eq) in (f2-+ ~2,t1 ~ t2)uu1 

2. strict superposition left 

r1-+ ~1,81 ~ 82 r2,tl ~ t2-+ ~2 

(rb r2, t1[u ~ s2] ~ t2 -+ ~1, ~2)<1 

where <T E JLC SUE(tifu, s1), t1/u is not a variable and there exists a ground substi­
tution u1 such that 

a) ti<T<TI >E t2<T<TI and 810"0"1 >E S2<T<TI 

b) s1<T<T1 ~ s2uu1 is strictly maximal (w.r.t. >eq) in (f1 -+ ~1,s1 ~ s2)uu1 

c) t1<T<TI ~ t2<T<T1 is maximal (w.r.t. >eq) in (f2, t1 ~ t2-+ ~2)uu1 

3. equality resolution 
r, t1 ~ t2-+ ~ 

(r-+ ~)u 

where u E 11-C SUE(tb t2) and there exists a ground substitution u1 such that 
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a) ttCTCTt ~ t2crcr1 is maximal (w.r.t. >eq) in (r, t 1 ~ t2--+ .6.)crcr1 

4. equality factoring 
r --+ .6., t1 ~ 81, t2 ~ 82 

(r, 81 ~ 82 --+ .6., t2 ~ 82)cr 

where er E pC SUE(tt, t2) and there exists a ground substitution CTt such that 

a) ttCTCTt >E 8tCTCTt and t2CTCT1 >E 820"0"1 

b) ttCTCTt ~ 8tCTCTt is maximal (w.r.t. >eq) in (r--+ .6.,t1 ~ 81,t2 ~ 82)crcr1 

5. E-closure 
f --+ .6., 81 ~ 82 --+ e1 ~ e2 

(r--+ .6., e1[u +-- 82] ~ e2)cr 

where erE pCSUE(ei/u,8t), edu is not a variable, u # £, e1 ~ e2 E E and there 
exists a ground substitution cr1 such that 

a) 81 CTCTt > E 820"0"1 

b) 8tCTCT1 ~ 82crcr1 is strictly maximal (w.r.t. >eq) in (f--+ .6.,81 ~ 82)crcr1 

C) e1 0"0"1 > E 81 CTCTt (therefore e1 CTCTt '/; E 81 CTCTt) 

This is a version of superpo8ition right on E-equations. 

The clauses on the top of the horizontal bars are called premises, and those below conclu­
sions. 

Definition 4.6 (Inference Systems MExt and ME) 
The inference systems MExt consists of the following inference rules: 

1. superposition right 

2. superposition left 

3. equality resolution 

4. equality factoring 

The inference system ME consists of the inference rules in MExt and the E-closure infer­
ence. 

Note that due to ordering constraints the premise of an MExt-inference can never be an 
instance of an E-equation. E-equations are only used as premises of E-closure inferences. 
Note also that we do not superpose into variable positions nor require explicit equality 
axioms as premises (such as symmetry x ~ y --+ y ~ x or functional reflexive axioms). And 
we will not require such equality axioms to be contained in our specifications. 

Note that the existence of a ground substitution cr1 in the above inference rules is 
undecidable in general. But we can approximate the above inference rules by decidable ones, 
if we admit some more inferences. Let > be an E-compatible, partial and stable reduction 
ordering over terms with variables which is completable to > E, i.e. for any ground terms 
t and 8 we have t > 8 implies t >E 8. Note that the empty relation is an example for >, 
but a stronger relation will result in less inferences. Similar to >eq we can define a partial 
ordering over occurrences of equations based on >. Replacing the maximality of a term 
tcrcr1 or an equation ecrcr1 based on > E by the maximality of tcr or ecr (without applying cr1) 
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based on >, we get decidable inference rules (if> is decidable). As tuu1 > E suu1 implies 
t 1:. s, we have an inference 1r with maximality w.r.t. >, whenever we have an inference 
1r with the above inference rules based on >E. The opposite does not hold: for some 
inferences we have to require more than one comparison, e.g. tu 1:. su and tu 1:. ru. Even if 
we have ground substitutions u2 and u3 with tuu2 > E suu2 and tuu3 > E ruu3, we do not 
have (in general) a ground substitution u1 achieving the maximality in both comparisons 
simultaneously. See example 8.2 and the discussion in section 8.1. 

Lemma 4. 7 (Soundness of Inference Rules) 
Let 

C D 
B 

or 
D 

B 

be an inference of ME. We have 

Eu {C,D} I= B or E U {D} I= B, 

respectively 

As E-unification is involved in inferences, we cannot omit the E from the above lemma. 
Let N be a set of clauses. Regarding N U E as our specification, by the above lemma we do 
not change our specification, if we consider inferences (e.g. add conclusions of inferences to 
N). So what is the use of inferences? On the one hand, inferences will help us in defining 
properties of sets of clauses (e.g. saturation, see below), on the other hand we can regard it 
as a method to detect a new presentation of our specification (e.g. by adding conclusions 
of inferences), such that the new presentation is more appropriate for theorem proving 
purposes (saturated sets are appropriate for theorem proving). This way the conclusions of 
inferences show us interesting statements about our specification. 

Example 4.8 (Superposition Right) 
For equational specifications this inference is often referred to as critical pair construction. 
Let* be an AC-operator. Using the AC-unifier {x- inv(O),y- 0} of the terms O*x and 
inv(y) * y we could get a superposition right inference 

- 0 * x ~ 0 - inv(y) * y ~ 1 
-o~1 

So it is not appropriate to specify a multiplication operation with zero 0 and inverse op­
eration inv (e.g. for natural numbers) by the above two clauses (unless we want to imply 
0 ~ 1, which is in general not intended, e.g. not for natural numbers). We could use 

- y ~ 0, inv(y) * y ~ 1 

instead of 

- inv(y) * y ~ 1 

yielding the unproblematic (because of a trivial conclusion) inference 

- 0 * x ~ 0 - y ~ 0, inv(y) * y ~ 1 

- o ~ o,o~ 1 
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Example 4.9 (Superposition Left and Equality Resolution) 
These inferences decrease the antecedent (often called condition part) of a clause and enu­
merate solutions for the antecedent. Let U be an AC-operator (the union operation on 
sets) . Assume the clause 

-+xU0~x 

belongs to our specification. We may define an (non-AC) operator ~by 

x U y ~ z -+ x ~ z ~ true, 

and get the following superposition left inference between these clauses: 

-+ X U 0 ~ X X U y ~ Z -+ X ~ Z ~ true 

x ~ z -+ x ~ z ~ true 

The conclusion can be the premise of a equality resolution inference: 

x ~ z -+ x ~ z ~ true 

-+ x ~ x ~true 

This conclusion is an unconditional equation, so we have inferred the reflexivity of ~. 

Example 4.10 (Equality Factoring) 
This inference is defined for non-Horn clauses only, so not implemented in most of the rewrite 
based completion programs around. As an example consider the totality of a relation ::;: 

-+ x ::; y ~ true, y ::; x ~ true 

is a premise of an equality factoring inference: 

-+ x $ y ~true , y $ x ~true 

true ~ true -+ x $ x ~ true 

Together with a trivial equality resolution inference (with the conclusion of the previous 
inference as premise) we again (as in the previous example) have detected the reflexivity of 
::;. 

So far we have defined an inference system adequate to reason with clauses. In the 
following sections we will use inferences in proofs. We will consider ground inferences 
only, i.e. inferences in which the premises are ground instances of clauses in a set N. 
Theorem provers cannot deal with the set of all ground instances of clauses in N, this set 
is (in general) infinite, so reason with the non-ground clauses themselves (and the inference 
rules are defined using non-ground clauses). But we will need a correspondence between 
inferences on the ground level and non-ground inferences. This correspondence is stated 
in the following lemmata. Note that there are ground inferences with no corresponding 
non-ground inference. These inferences will be redundant and (by considering reduced 
ground instances only, see lemma 5.24 and 6.30) we will not encounter non-liftable ground 
inferences in our proofs. 
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Lemma 4.11 (Lifting Lemma 1) 
Let C be a clause and u a ground substitution. For any inference 

Cu 

F' 

there exist substitutions r and p such that (the unsubstituted clause) C is the premise of 
an inference 

c 
B, 

with 

(i) Bp =E F, where all E-equalities apply within subterms SB of Bp, such that there 
exists a variable x in C with xu =E SB, 

(ii) and rp =E u (hence Crp =E Cu). 

Proof: We prove this lemma for the inference equality resolution, for equality factoring the 
proof is similar. Suppose Cu = ru, ttU ~ t2u- !::::.u with a maximal equation ttU ~ t2u, 
the terms of this equation are E-equal (ttU =E t2u) and c = r, tl ~ t2 - !::::... Then there 
are substitutions r and p with r E J.LC SUE(tt, t 2) and rp =E u. pis the desired ground 
substitution that satisfies the requirements for u1 in definition 4.6 (because all comparisons 
are E-compatible). Therefore, 

c 
rr-t:::.r 

is an inference by equality resolution and (rr-+ !::::.r)p =E ru-+ !::::.u = F. So the lemma 
is proved for B = rr-+ !::::.r. o 

Lemma 4.12 (Lifting Lemma 2) 
Let C and D be clauses and u a ground substitution (in particular, we include the case 
where D = t1 ~ t 2 is an equation of E). For any inference 

Cu Du 

F 

in which we superpose an equation s1u ~ s2u of Cu on an equation t 1u ~ t 2u of Du at 
position p of t1 u, where pis not at or below a variable position of t1, there exist substitutions 
r and p such that there is an inference 

from C and D, and 

• T E j.tCSUE(St,ttfP) 

C D 
B 

• rp =E u, hence Crp =E Cu and Drp =E Du 
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• Bp =E F and all E-steps apply within subterms SB of Bp, such that there exists 
a variable x in C or D with Xi # x and X(J" =E SB· In other words, the applied 
instances E-equations contain only terms e with y(J" ?.E e (where y(J" is a maximum 
(w.r.t. >E) of {x(j I x E vars(C) U vars(D), Xi# x}). 
If D is an E-equation (in an E-closure inference) and if we additionally assume that 
no side of an E-equation is simply a variable, then the (terms of the) E-equalities are 
even smaller (w.r.t. >E) than t2(j· 

Proof: The proof is similar to the previous lemma. The additional difficulty here is to find 
a position in the unsubstituted term of the right premise D, when we are given a position 
p in the substituted D(j. As p is not at or below a variable in D we obtain an inference 

from C and D. 

C D 
B 

F consists of the terms of C(j and D(j with the exception of s1(j and s2(J". Moreover 
(t1[s1])(J" is replaced by (t1[s2])(J". Similarly B consists of the terms of Ci and Di except 
s1 i and s2 i, and with ( t1 [ s1])i replaced by ( t1 [ s2])i. The terms in F or B also inherit their 
'positions' (in a certain equation in the succedent or antecedent) from the corresponding 
positions in Ci or Di. So the" E-difference" between Bp and F stems from theE-difference 
of (j and ip. Variables x which do not occur in t1 fp or in SI, are not substituted by i. Now 
we define p for these x as xp = X(J". Hence all E-steps apply within subterms yi of B with 
yi # y. B inherits its variables from C and D, therefore the above bound on the size of 
used instances of E-equations is verified. 

For the case where D is an E-equation, we even have a tighter bound for the terms of the 
instances of E-equations that are used to show Bp =E F, Ci(J" =E c(j and Dip =E D(J": 
All variables y with Yi # y are involved in the unification and occur as a subterm of s1 or 
tifp. If we instantiate them by ip, they are E-equalto (not necessarily proper) subterms 
of (tifp)ip (=E s1ip). We have t1(J" >E (ti/P)(J" from condition c) in definition 4.6, part 5. 
Because tifp is not below a variable position of tb we get (ti/P)ip =E (ti/P)(J" (and 
obviously t1iP =E t1(J"), so t1iP >E (tifp)ip. Subterms of (tifp)ip can not be greater than 
(tifp)ip. So for the variables y instantiated by the unifier i we have t1ip >E (tifp)ip ?.E 
yip. The instances of E-equations used for yip =E y(j are not greater than the terms they 
prove to be E-equal. Hence they are smaller than t1 ip (or smaller than the E-equal terms 
t2ip, t1(j and t2(J"). 

We need this bound for the proof oflemma 5.30. 0 
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5 The System ME 

The inference system ME has already been defined (see definition 4.6). Here we will define 
an interpretation for sets of ground clauses and use this interpretation to prove that ME 
is indeed an inference system for refutation theorem proving. 

5.1 Interpretations for ME 

Definition 5.1 (Ordering over Clauses) 
The ordering >c is the multiset extension of >eq comparing the E-multiset expression of 
the clauses, where the E-multiset expression of a clause is the multiset of the E-multiset 
expressions of each occurrence of an equation in that clause. 

Lemma 5.2 The following properties hold for >c and >eq· 

1) Let C and D be ground clauses with E-equal maximal (w.r.t. to the compatible 
ordering >E) terms to and tn and D >c C. If a term E-equal to to occurs in the 
antecedent of C, then a term E-equal to tn (and therefore also E-equal to to) occurs 
in the antecedent of D. 

2) Let C be a clause with maximal (w.r.t. >E) term t. If t occurs in the antecedent, no 
equation in the succedent can be maximal in C (w.r.t. >eq)· 

3) The ordering >c is E-compatible, i.e. C >c D implies C' >c D'. 

4) The ordering >c is well-founded. 

5) The ordering >c is total onE-congruence classes of clauses, i.e. C #E D implies either 
C > c D or D > c C. 

Proof: Part 1) and 2) hold because of the additional element .LE in the E-multiset expres­
sion for equations in the antecedent. 

3) The E-multiset expressions are identical if and only if the considered clauses are 
E-equal. From C >c D we know that the corresponding E-multisets are not equal. But 
the E-multiset expression of C' is equal to that of C and the same holds for D' and D, 
hence C' >c D'. 

4) The ordering is based on multiset extensions of well-founded orderings. 
5) The ordering is based on comparisons of congruence classes of terms. These com­

parisons are done by a total ordering > E, so > c is also total ( multiset extensions of total 
orderings are total over finite multisets: Let C and D be multisets and M denote the mul­
tiset intersection of C and D; now consider C \M and D \M: at least one of them is not 
empty, if C and D are not equal; if exactly one of them is empty, the corresponding set is 
smaller; otherwise compare a maximal element of C \ M and D \ M: they cannot be equal 
(then they would be eliminated by M) so one of them is greater, because of the totality of 
the underlying ordering, and the multiset with the greater maximal element is the greater 
one). 0 

Lemma 5.3 Let 
c 

B 

D 
resp. 

D 

B 

be a ground inference of ME. Then we have D >c Band D #E B. 
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Proof: The lemma is trivial for equality resolution inferences, because an occurrence of an 
equation in D is eliminated (yielding B). For other inferences observe that one occurrence 
of an equation is replaced by a finite multiset of smaller (and not E-equal) occurrences of 
equations (smaller w.r.t. >eq)· Hence by definition of >c (based on >eq), we have D >c B. 
0 

An equality Herbrand interpretation is a congruence on ground terms. We now define 
such an interpretation for sets NG of ground instances of clauses in N. 

We assume the reader familiar with construction of interpretation for sets of clauses, 
in particular the constructions in [Bachmair/Ganzinger 91a], [Bachmair/Ganzinger 90] and 
[Nieuwenhuis 91]. Our construction will share an important property with the interpretation 
technique in these papers: 

The interpretations are represented by ground rewrite systems which are Church­
Rosser by construction. 

The rewrite system consists of rules produced by maximal equations of ground instances of 
clauses. The definition of the interpretation uses induction over the size of ground instances 
of clauses. This way the rule with the smallest left side is produced first, then rules are 
produced with increasing left sides. To each ground instance C (J' of a clause a rewrite system 
Rcu is assigned consisting of all rules produced by smaller instances of clauses. Different to 
the case for E = 0, we construct interpretations which have to satisfy not only the clauses 
in a given set N, but also the equations of E. Therefore our interpretation consists of a 
set of ground rules and a set of ground instances of E-equations, so to each clause C (J' a 
rule system Rcu and a set Eau of ground instances of E-equations are assigned. Our aim 
is to choose the set of rules Rcu and the set of equations Eau such that ~Re" is Church­
Rosser modulo Eau for =Rca-uEca-· The confluence is achieved by producing ground rules 
with irreducible left sides. For coherence we distinguish two cases: 

• Coherence with Eau-equations applied at or below the left side of a rule: A rewrite 
relation with E-matching solves this problem. We approximate such a relation by a 
set of rules with E-equalleft side (see definition 5.5). For more details see the proof 
of lemma 5.16. 

• Coherence with Eau-equations applied above of the left side of a rule: We exclude 
such instances of E-equations from Eau (see definition 5.8). 

With this construction the proof methods of [Bachmair/Ganzinger 91a] and [Nieuwenhuis 
91] can be adopted. The main difference to their proof is stated by lemma 5.30: we have 
to show that an interpretation satisfies sufficiently many ground instances of E-equations. 

We might think of another method for defining interpretations which by construction 
satisfy the E-equations: we can define an interpretation such that each clause produces at 
most one rule and the rule is applied in a rewrite relation modulo E. Then the rule systems 
are not Church-Rosser in general (even if left sides of rules do not overlap, see example 
3.5). Because Re is infinite in general, it is not known if for any Re there is a canonical 
system, even if we have E = AC (for finite system this question was solved by [Narendran/ 
Rusinowitch 91] and [Marche 91]). But even if there is a Church-Rosser system for those 
Re, we have to add equalities between terms arbitrarily smaller than the maximal term of 
the clause C. So properties similar to properties in the lemmata following the definition of 
interpretations cannot be proved for such a construction. 
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Definition 5.4 Let C be a ground clause. Let E(jl be the set 

E(jl = { e1 u :=:::: e2u I u ground substitution, e1 :=:::: e2 E E, C > c ---t e1 u :=:::: e2u } . 

In the following definition we use an ordering >t over terms which is total on ground 
terms. Such an ordering >t always exists. 

Definition 5.5 (Irreducible Sets of Rules) 
Let R be a rewrite system and £ :=:::: r be a ground equation with £ > E r. Let >t be a total 
and well-founded ordering on ground terms. Let rmin denote the minimal (w.r.t. the total 
ordering >t) term E-equal to r, i.e. 

First we define a set of rules, where the left sides are E-equal to £ and irreducible by R: 

rules(£:=:::: r, R) := {£'::? rmin I£' =E £,£'irreducible by =>R} 

Then we exclude rules (whose left side is E-equal to £) which are reducible (on their left 
side) by other rules with an E-equalleft side: 

irred_rules(£ :=:::: r, R) := { £'::? r I £'::? rmin E rules(£:=:::: r, R), 

l' irreducible by =>(ru/es(l~r,R)\{i'=>r}) } 

In the following definition of an interpretation we want to define sets of rules which are 
confluent by construction, therefore we only use irreducible rules. Because we add more 
than one rule at a time, a rule must not reduce any of the other rules introduced at the 
same time (and so in general we need the second of the above sets of rules). For certain 
theories E (where no term is E-equal to a proper subterm of itself, e.g. E = AC) the two 
sets of rules are identical. 

Due to the definition of rmin, E-equal clauses will produce the same set of rules (above 
the set of rules does not depend on the E-representative of£ or r ). We will need this only 
in lemma 5.16, therefore we will drop the index min in other parts of this paper (if we 
consider saturated sets, then the interpretation will always satisfy r:::::: rmin, hence it is of 
no interest for saturated sets which right side is used). 

Definition 5.6 {Closure) 
Let R be a ground rewrite system and Eq be a set of ground equations. 

closure(R,Eq) := (=>R U <==?Eq)*, 

i.e. by closure(R, Eq) we mean the reflexive, transitive and symmetric closure of ==>R U 

<==?Eq· 

Definition 5.7 Let N be a set of (not necessarily ground) clauses. We define: 

NG := { C u I C E N, u ground substitution} u EG u TG u {TOP} 

NGc := {D ID E NG, C >c D} 
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where 

and 

EG := {(e1 ~ e2)cr I e1 ~ e2 E E,cr ground substitution}, 

TG := {t ~ t ~ t ~tIt ground term} 

TOP:=~ T ~ T, 

where T is a new symbol with T > E t for all ground terms t. 

Note that the clause TOP is the strictly maximal clause of NG and satisfied in any inter­
pretation. The £-equations and TG-clauses do not contribute to the interpretation of NG. 
Nevertheless we include them here as additional clauses, so we can speak of an interpreta­
tion lEE, for EE E EG or lTT, for TT E TG. Note that a clause t ~ t ~ t ~ t of TG is 
greater than any clause which contains a term E-equal to t and which can possibly intro­
duce new rules into the interpretation defined below. Such a clause of TG is also greater 
than (and not £-equal to) all £-equations containing terms E-equal to t. 

Definition 5.8 (Interpretation) 
Let N be a set of clauses and NG be the set of ground instances of clauses as defined above. 
Let Ccr be a ground instance of a clause C in N, i.e. Ccr E NG. We assume that Rulesn, 
Rn, En and In have been defined for all ground instances Din NG with Ccr >c D. We 
define 

and 

Rcu = ( U Rulesn) 
Cu>cn 

Eau= {e1 ~ e2 EEC}~ I e1 and e2 are both irreducible w.r.t. ===>Rc,J 

Icu = closure( Rcu, Eau) 

Rulescu = irred_rules(tcr ~ scr, Rcu) 

if all of the following conditions hold, otherwise Rulescu = 0. 

1. Ccr =fer~ b..cr, tcr ~ scr 

2. Icu ~ fer~ b..cr' for all er' with er' =E er 

3. tcr ~ scr is strictly maximal ( w .r. t. > eq) in C er, tcr > E scr 

4. tcr' is not reducible by Rcu for all er' =E er (we do not require that each term (tcr)' is 
irreducible). 

For other ground clauses Bin NG we define the sets RB and EB as above and RulesB := 0. 

Note that C >c D implies Re 2 Rn and RToP is the limit of all rewrite systems (note 
that TOP itself does not produce a rule): 

RToP = U Rulescu = U Rcu 
CueNG CueNG 

As we have E!J.1bp = EG, we can define: 

£Top= {e1 ~ e2 EEG I e1 and e2 are both irreducible w.r.t. ===>RToP} 

Therefore we regard lTOP as an interpretation for the whole specification NU E and each 
le (for C #TOP) as a partial interpretation. 
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Example 5.9 Let+ be an AC-operator. Assume an AC-compatible ordering based on a 
recursive path ordering with decreasing precedence for a, b, c, d and +. We first consider 
the interpretation of a set of clauses consisting of a single ground clause 

C = --t (a + b) + c ~ b + c. 

The set Eo consists of some AC -equalities containing only terms smaller than (a + b) + c, 
i.e. 

Eo = {b + c ~ c + b, (b +c)+ d ~ b + (c +d), 

c + d ~ d + c, b + (b +b) ~ (b +b)+ b, ... }. 

As C is the smallest clause, we have Re = 0. We have 

rules( (a + b) + c ~ b + c, Re) = irred_rules( (a + b) + c ~ b + c, Re) = 
{(a+ b)+ c:::? b + c, a+ (b +c):::? b + c, (b +a)+ c:::? b + c, b +(a+ c):::? b + c, ... }. 

Note that all terms AC -equal to (a + b) + c occur as left sides of rules, but the right side 
of all rules is b + c (e.g. there is no rule with right side c + b; more precisely: due to the 
definition of Tmin in 5.5, we will get always the same right side; it does not matter, whether 
it is b + c or c +b). There is no other clause, so RToP = Re. The set EToP contains 
instances of AC -equation between terms not containing a sub term which is AC -equal to 
(a+ b)+ c, e.g. ErroP contains (a+ b)+ (d +c)~ a+ (b + (d +c)) (an instance of the 
associativity law), but not ( (a + b) + c) + d ~ (a + b) + ( c + d), because the left side of 
this equation is reducible. There are instances of AC-equations which are not contained in 
ErroP, but satisfied in frop, e.g. (a+ b)+ c ~ a+ (b +c) is satisfied by reducing both sides 
to b +c. But the (above mentioned) equation ((a+ b)+ c)+ d ~ (a+ b)+ ( c +d) is neither 
contained in ErroP nor in frop. This is a disadvantage for sets of clauses which are not 
saturated. 

Now consider a superset of {C} which is ME-saturated. The missing clauses are con­
clusions of E-closure inferences, e.g 

--t (a+b)+c~ b+c --t ((a+b)+c)+x ~ (a+b)+(c+x) 

--t (a+ b)+ ( C +X) ~ (b +C)+ X 

Let us denote the conclusion of the above inference by C AC (that only finitely many such 
clauses are sufficient to saturate a set (for E = AC) is explained in section 5.3). Ground 
instances of such clauses C AC produce rules such that all equations in EG \ Eo become 
reducible, i.e. EToP = Eo. But nevertheless, all equations in EG are satisfied in frop. As 
an example we again consider ( (a+ b)+ c)+ d ~ (a+ b) + ( c +d). Let D denote the clause 

--t (a + b) + ( c + d) ~ (b + c) + d 

which is an instance of CAC· D produces the following set of rules: 

{ (a + b) + ( c + d) :::? ( b + c) + d, (a+ d) + (b + c) :::? (b + c) + d, . .. } 

Note that D does not produce rules which contain subterms AC-equal to (a+ b)+ c. 
Now by the first rule in this set and a rule produced by C we can reduce both sides of 
((a+ b)+ c)+ d ~ (a+ b)+ (c +d) to (b +c)+ d. In general the situation is more 
complicated: the two sides of the equation may be reducible to AC-equal terms (which 
are not equal without AC) and there may be another clause which is smaller than D and 
producing a rule (a+ b) + ( c + d) :::? r. For details see lemma 5.30. 
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Lemma 5.10 (Independence from E-Representatives) 
For all clauses C and ground substitutions u and u' (with u' =E u), we have lea =lea'· If 
there exists another ground clause DE NG with D =E Cu, then we also have In= lea · 

Proof: Follows from the E-compatibility of >c used in definition 5.8. 0 

We will use the previous lemma in 5.29. If a ground inference with premise Cu is lifted 
and then instantiated to an E-equal inference, we might get an inference with premise Cu'. 
We do not want that the change from u to u' influences the redundancy of such an inference 
(at least not for the inferences considered in lemma 5.29). So we require lea =lea'· 

Lemma 5.11 (Termination of ===}Re) 

The rewrite relations ===}Re and ===}Re/E are terminating for all C E NG, in particular for 
C =TOP. 

Proof: Every rule produced by a clause of NG is contained in > E· 0 

Definition 5.12 (Productive Clause) 
If for a clause C we have Rulese -:/; 0, then we call C a productive clause. 

Lemma 5.13 Let C be a ground clause in NG with maximal term t. Every rule produced 
by a clause G greater than C has a left side i with i ?::.E t. If C is productive or greater 
than -+ t ~ t and G is greater than C, we even have i > E t . 

Proof: The left side of a rule produced by a clause D is a maximal (w.r.t. >E) term of D. 
So if D produces a rule with left side i and t >E i we have C >c D. Hence greater clauses 
can only produce rules i => r with i ?::.E t. 

If C is productive, then all terms E-equal to t are reducible in any interpretation of 
a clause greater than C and no greater clause with maximal term E-equal to t fulfills 
condition 4 of definition 5.8. If C is greater than -+ t ~ t , no productive clause greater 
than C can have a maximal equation i ~ r in the succedent with i > E r and t ?::.E i. So in 
both cases all rules produced later have left sides greater than t. 0 

Note that for the above lemma C is greater than -+ t ~ t, if a term E-equal to t occurs 
in the antecedent of C. 

Lemma 5.14 Let C be a ground clause of NG with maximal (w.r.t. >E) term t. Let D 
be a ground clause in NG such that D > c C. 

A term u with t >E u is reducible w.r.t. ===}RD if and only if u is already reducible 
w.r.t. ===}Re. 

An equation e1 ~ e2 in Ef}1 is contained in En if and only if it is already contained in 
Ee. 

Proof: The first part follows from lemma 5.13 and the trivial fact that the left side of the 
rule which reduces u cannot be greater than u. 

If an equation e1 ~ e2 of E(}l is not contained in Ee, e1 or e2 is reducible by ::::::} Re 

and it will remain reducible in Rn as Re~ Rn, and hence it is not in En. 
If an equation e1 ~ e2 of E(}l is contained in Ee , e1 and e2 are irreducible w.r .t . ===}Re 

and they will remain irreducible in Rn. If t > E e1 this follows from the first part of this 
lemma. If t =E e1 then C is greater than -+ t ~ t (see definition 5.4) so that C and any 
clause greater than C cannot produce a rule reducing a term E-equal tot (see lemma 5.13). 
0 
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Lemma 5.15 (Monotonicity of Interpretations) 
Let C and D be ground clauses with C >c D. Then we have le 2 In. 

Proof: By construction we have Re 2 Rn, and by the previous lemma all equations in 
En are also contained in Ea. o 

Lemma 5.16 (Church-Rosser Property of ::=}Re) 
For every ground clause C E NG we have: 

1. A term t is reducible by ::=}Re if and only if it is reducible by ::=}Re·E (but not 
necessarily to the same term). 

2. There are no overlaps between rules in Re, so ::=::}Re is confluent (hence confluent 
modulo E and modulo Ec ). 

3. The relation ::=}Re is Church-Rosser modulo Ec for the congruence =ReuEe· (But 
note that for sets N of clauses which are not ME-saturated we have Ec ::f E(}l in 
general). 

Proof: The first and second property follows from the construction of Re (in particular 
from definition 5.5). With the second property and the termination (lemma 5.11) we can 
apply lemma 3.9 so that it remains to show the local ground coherence modulo Ec to prove 
the third part. We first consider a peak 

where the rewrite step is an application of a rule l :::? Tmin and the applied Ea-equation 
is e1 ~ e2 • It is sufficient to consider such peaks, where the application of the equation is 
strictly below the application of the rule, other peaks are not possible because Ea-equations 
are irreducible by Re. £[e1] cannot be irreducible (by construction of the interpretation; 
note that £[e2] is reduced at the root and use part 1 of this lemma). If it is reducible at the 
root, then only by a rule £[e1] :::? Tmin produced together with l :::? Tmin or by an E-equal 
clause, hence the right side of the rule is always Tmin and we are done, because also £[e1] is 
reducible to Tmin· Otherwise it is reducible strictly below the root and strictly above the 
application position of e1 ~ e2 (because the equation is irreducible). We denote the rule 
reducing l strictly below the root by t:::? s. But if t[e1] is reducible (at the root) then also 
t[e2] is reducible (see part 1 above). But t[e1] is a subterm of £[e1] and so t[e2] a subterm 
of £[e2] =land lis reducible, which is a contradiction. 

For peaks which differ from the previous one only by an additional context u, i.e. u[l[e2]] 
is reducible to u[rmin], we use the same arguments as above. 

As E-equations are irreducible it remains to consider a peak where the Ea-equation is 
applied at a subterm disjoint to the application position of the rule: 

But here we have 
u[e2][l] ::=}Re u[e2][rmin] =Ee u[el][Tmin]· 

So all peaks for local coherence are joinable. Note that for general E instead of Ec there are 
more peaks to consider. Peaks with an application of a rule below an equation are excluded 
here by the irreducibility of the equations. Because of the greater number of different peaks 
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for the general case we have formulated lemma 3.9 assuming local coherence instead of the 
joinability of peaks between rules and equations (in this situation often called coherence 

~~- 0 

Lemma 5.17 An equation u ~ vis satisfied in an interpretation le if and only if the terms 
u and v are joinable modulo Ee using the rewrite relation ::::::} Re: 

le I= u ~ v if and only if u.IJ.Rc v 

Proof: Follows from the Church-Rosser property stated in the previous lemma. 0 

Lemma 5.18 Let C be a clause of NG with maximal term t and D a ground clause greater 
than C. 

An equation u ~ v with t > E u and t > E v is true in In if and only if it is true in le. 
If a term E-equal to t occurs in the antecedent of C, then an equation u ~ v with 

t ?.E u and t ?.E vis true in In if and only if it is true in le. 

Proof: Follows from Church-Rosser property (lemma 5.16) and lemmata 5.13 and 5.14. 
For the second part we notice that clauses greater than C cannot produce a rule which 
reduces u or v or an instance of an E-equation applicable at u or v. 0 

We use this lemma to show that increasing interpretations preserve the truth of ground 
instances of clauses: 

Lemma 5.19 Let B, C and D be ground clauses with D >cC and C >c B or C =E B. 
If B is true in le then it is true in In. 

Proof: If an equation in the succedent is satisfied apply lemma 5.15. Otherwise an equation 
in the antecedent is not satisfied and remains so by the previous lemma. 0 

We have Ee ~ E(jl, in particular EToP ~ EG (where EG is the set of all ground 
instances of equations in E), and the inclusion is (in general) proper. Because we do not 
have E~jl ~ le, the following is not true in general: 

le I= u ~ v if and only if le I= u1 ~ v1 

But in the next section (with one more restriction on E) we prove that for interpretations 
of ME-saturated sets we have Er}1 ~le, in particular EG ~ frop and (for ME-saturated 
sets) 

le I= u ~ v if and only if l I= 1,_ I I I e U "' V , U = E"ll u, V = E"ll V c c 

hoP I= u ~ v if and only if [. I= 1,_ I I I TOP U "'V, U =E u, V =E V. 
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5.2 Redundancy-Completeness of ME 

The following notions are defined for the system ME. But they can be applied to systems 
similar to ME, too (cf. system MME, section 8.1). The definitions will be modified in 
section 6.3 for MExt· The notation follows [Nieuwenhuis 91] and [Bachmair/Ganzinger 91c] 
but we extend the notions by the use of the equational theory E. 

Definition 5.20 (Redundancy of Clauses) 
A ground clause C is E-redundant (or for short redundant) in a set of clauses N, if it is 
satisfied in its partial interpretation, i.e le I= C. 

A non-ground clause C is E-redundant (in a set N) if every ground instance Cu of it is 
E-redundant (in N), i.e. Icu I= Cu for all ground substitutions u. 

Definition 5.21 (Redundancy of Inferences) 
An inference 1r from ground instances C1 , ... , Cn of clauses in N u E and conclusion D 
is E-redundant (or for short: redundant) in N, if one of its premises is redundant or if the 
conclusion is satisfied in Ici, i.e. Ici I= D, where Cj is the maximal premise ofthe inference 
7r. 

A (non-ground) inference 1r from N is redundant (more precisely E-redundant in N) if 
all its ground instances 1ru are redundant. 

Definition 5.22 (Saturation and Completeness) 

1. Let 1r be an inference of ME with premises Ct, ... , Cn and conclusion D. Every 
inference of ME with premises C1 u, ... , Gnu and conclusion Du for a ground substi­
tution u is called a ground instance 1ru of 1r. Note that there are ground substitutions 
u such that there is no inference with premises Ciu and conclusion Du. 

2. Let MG be a set of ground clauses. The set N of clauses is ME-saturated on MG, if 
every ground inference 1r with premises in MG is E-redundant in N. 

3. A set N of clauses is ME-saturated, if every inference (of ME) with premises in NU E 
is E-redundant in N. 

4. An inference system ME is redundancy-complete, if for every ME-saturated set N, 
N contains the empty clause, if NU E is inconsistent. 

We will now start to prove the redundancy-completeness of ME. Hence the inference · 
system ME will be refutation complete, even with the above redundancy built in. Note 
that the above redundancy for clauses and inferences is adequate for the completeness proof 
only. But the redundancy will lead to a general method of describing clauses and inferences 
irrelevant during theorem proving (see section 7). For the completeness proof we need one 
assumption about E: 

Definition 5.23 (Restrictions on E) 
In this section we consider only equational theories E, where no term is E-equal to a strict 
subterm of itself. 

We will need the restriction in lemmata 5.25, 5.29 (part iv) and 5.30 (case B2.2.2). This 
restriction together with the preservation of variables (see definition 4.1) ensures that no 

28 



side of an equation is simply a variable (w.o.l.o.g. we assume x ~ x (j. E). We use this in 
lemma 4.12, which is needed to prove lemma 5.30. The most popular example which meets 
this restriction is E = AC. 

Lemma 5.24 Let N be a set of clauses. Let D be a clause, u a ground substitution and 
C a ground clause in NG. If there exists a variable x E vars(D) such that xu is reducible 
by Re, then there exists a ground substitution u1 such that Du >c Du1 and le I= Du1 if 
and only if le I= Du. 

Proof: If xu =>Re t, we define u1 to be the substitution for which xu1 = t and yu1 = yu, 
for all y =f. x. We have le I= xu ~ t, and so Du1 is true in le if and only if Du is true in 
k. 0 

With restrictions 5.23 we can prove the following lemma: 

Lemma 5.25 (Properties of Productive Clauses 1) 
Let G := r ~ ~' t ~ s be a clause of NG with strictly maximal equation t ~ s, t >E s 
and let G be productive. Let C be a clause greater than G. If le satisfies all instances of 
£-equations between terms smaller than t, then le I= t ~ s, i.e. the productive equation 
will be satisfied in interpretations of greater clauses. 

Proof: t is irreducible by Ra (required for productive clauses by part 4 of definition 5.8). 
Every t' E-equal tot is reducible in Ra enhanced with the produced rules in irred_rules(t ~ 
s, Ra) (note: these rules are contained in le). Hence there is a rule t" ~ Smin with t = u[t"] 
and t is reduced to u[smin]· If u is the empty context we have t = t", u[smin] = Smin and 
are done, because by our assumption le satisfies s ~ Smin· Otherwise t = u[t"] =E u[t], 
hence t is E-equal to a proper subterm of itself. This contradicts definition 5.23, so we have 
u = [] and a rule t ~ Smin is produced. 0 

Similarly to the previous lemma we can prove rules(t ~ s, Ra) = irred_rules(t ~ s, Ra) 
using definition 5.23. But we cannot guarantee that le I= t' ~ s (for all t'=E t), because t' 
may be reducible by a rule in Ra to a term different from Smin (this is a difference to the 
next section, cf. lemma 6.39): 

Example 5.26 Let +be an AC-operator. The clause 

~a+ (b+ c)~ d 

may produce a rule a+ (b +c)~ d, even if the AC-equalleft side (a+ b)+ c is reducible 
(e.g. by a rule a + b ~ e). Then the equation (a + b) + c ~ d might not be satsified. In 
lemma 6.39 we know that (a + b) + c is irreducible and can conclude that a rule to satisfy 
(a+ b)+ c ~ d is produced. 

Lemma 5.27 (Properties of Productive Clauses 2) 
Let G := r ~ ~,£ ~ r be a ground clause in NG. If G is a productive clause, it is not 
satisfied in its interpretation, i.e. la ~ G (which means that G is non-redundant). 

Proof: If G is productive, we have la ~ r ~ ~- So G is only true in la if f ~ r is satisfied. 
If G is productive, we have f >Er and so (because the interpretation is a Church-Rosser 
rewrite system, cf. lemma 5.16) l has to be reducible, which contradicts part 4 in definition 
5.8 for productive clauses. 0 
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Lemma 5.28 Let C := f--+ Ll, t ~ s be a ground clause and t ~sa maximal equation of 
C with t >E s. Let D be another clause containing a term t'. If C >c D and t is irreducible 
by ==?Re, then Re= Rv and le= lv. 

Proof: Clauses G with C >c G 2::c D can only produce rules in a way such that all terms 
E-equal tot become reducible (all these clauses contain a maximal term E-equal tot). As 
t is irreducible by ===?Re, no rule is produced and so we have Re = Rv. All £-equations 
smaller than C are also smaller than D, so E~:F = EI:Jl. As these clauses define the same 
rewrite system, we have also Ee = Ev and so le= Iv. D 

Lemma 5.29 (Properties of Non-Redundant Clauses) 
Let F(f := r(f --+ Ll(f, t(f ~ S(f be a non-redundant ground instance of a clause in N and 
and assume that for all substitutions (!

1 with (!
1 =E (f we have lFu p6: r(f --+ Ll(f'. Let the 

equation t(f ~ S(f be maximal (w.r.t. >eq) in F(f with t(f >E S(f, and let t(f1 be irreducible 
by ==?RFrr (for all (!

1 =E (f). If N is ME-saturated on NGFu U {F(f' I (!1 =E (f} and if lFu 
satisfies all ground instances of £-equations between terms smaller than t(f, the following 
holds: 

(i) (f is irreducible (w.r.t. ==?RFrr), i.e. X(f is irreducible for all x E vars(F) 

(ii) F(f is productive. 

(ill) For all (f(f)' with (f(f)' =E f(f and all ground clauses C >c F(f or C =E F(f, 

(f(f)' ~le . 

(iv) For all Ll(f1 with (!1 =E (f and all ground clauses C >c F(f or C =E F(f, 

Ll(f' n le = 0 . 

Proof: The proof is by induction on the ordering >c, so let us assume that (i)-(iv) hold . 
for every suitable instance F1 of N with F(f >c F1 . Since F(f is non-redundant we have 
f(f ~ lFu and Ll(f n lFu = 0. 

(iii) f(f ~ lFu and every term in f(f is smaller than t(f (otherwise the equation t(f ~ S(f 
is not maximal). So the instances of E-equations needed to show r(f =E (f(f') are satisfied 
by lFu (by our assumptions) and we have (f(f)' ~ lFu· We have le 2 lFu (lemmata 5.15 
and 5.10), hence le, too, satisfies every equation in (f(f)'. 

(i) Suppose there is a variable x E vars(F) such that X(f is reducible by ==?RFrr to a 
term r (note that x cannot occur in t, as t(f is irreducible by our assumptions). We define 
a substitution T by yr = y(f for all y -::} x and xr = r. F1 := Fr is false in lFu· We 
also have F(f >c F1. By lemma 5.28 we have lF1 p6: F~, hence F1 is non-redundant, and 
the maximal term of the maximal equation of F1 is irreducible (under all substitutions r'). 
Also 1F1 n Llr' = 0 (for all r' =Er), for otherwise it would contradict lFu n Ll(f' = 0, and 
fr' ~ 1F1 , for otherwise it would contradict f(f' ~ lFu (by (iii)). Now we use our induction 
hypothesis and infer that F1 produces a rule to reduce t(f (induction hypothesis part (ii)). 
But this rule is contained in RFu contradicting the irreducibility of t(f. So F(f is an instance 
of N with a reduced substitution (and we assume this fact in the remaining parts of the 
proof). 

(ii) If F(f is not productive, then an equation t2(f ~ s2(f E-equal to (but different from) 
the maximal equation t(f ~ S(f of F(f occurs in the succedent of F(f. In other words, the 
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equation tCT :::::: 8(1 is not strictly maximal and the clause is not productive for this reason. 
Moreover lFu f= 8CT :::::: 82CT and lFu f= 8CT

1 
:::::: 82CT'. tCT > E 8CT and the needed E-equalities 

are by assumption contained in lFu· A clause Ft = fCT1 ,8CT1
:::::: 82CT1 ~ b..CT' smaller than FCT 

can be obtained as conclusion of an instance of an equality factoring inference with premise 
r ~ b.., t :::::: 8. This clause is false in lFu = IFu'· This contradicts the required saturation. 
So from now on we may assume that no other equation E-equal to tCT :::::: 8CT occurs in the 
succedent of FCT and hence that FCT is productive. 

(iv) lFu ~ fCT ~ b..CT, so lFu n b..CT = 0. By our assumptions we also have lFu n b..CT' = 0 
and so by lemma 6.18 also I(Fu)' n b..CT' = 0. 

Suppose an b..CT' contains an equation uCT' :::::: vCT' which is satisfied by an le (with 
C >c FCT). We may assume that UCT >E VCT, for otherwise, if UCT =E VCT, then tCT >E uCT (if 
tCT = E uCT the equation tCT :::::: 8CT were not maximal in FCT) and uCT' :::::: vCT' is also satisfied 
by lFu (by the assumption the needed E-equalities are available). By construction all 
interpretations are Church-Rosser systems, so uCT' and VCT1 are reducible by Re to Epu­
equal terms (the terms cannot grow by reduction, so the needed instances of E-equations 
from Ee are also satisfied in lFu ). The equation is not satisfied by lpu, so uCT1 is reduced 
with a rule of Re\ RFu, hence the left side of the reducing rule is E-equal to tCT or even 
greater. As b..CT' does not contain a term greater (w.r.t. >E) than tCT, we have uCT' =E tCT. 

With (ii) we already know that FCT is productive and other clauses cannot produce rules 
whose left side is E-equal to tCT and which are not contained in irred_rule8(tCT :::::: 8CT, RFu) 
(this is the set of rules produced by FCT). All rules produced by FCT have the same right side 
( 8CT )min. The equation UCT

1 
:::::: vCT' (remember that UCT = E tCT) is rewritten to ( 8CT )m in :::::: vCT' 

(note that with restrictions 5.23 we know that uCT
1 is reduced at the root, hence to (8CT)min)· 

So the equation ( 8CT )m in :::::: VCT, hence also 8CT :::::: VCT is satisfied. So 8CT and VCT' are reducible 
to Epu-equal terms. Because tCT > E 8CT we can only use the rules of RFu to reduce SCT 

or VCT
1

, so lFu f= SCT :::::: VCT
1 (and lFu f= 8CT

11 
:::::: VCT

11
). We have 8CT ?::.E VCT (maximality of 

the equation) and by part (ii) (see proof above) even SCT >E VCT. We consider the equality 

factoring inference 
fCT ~ f:l.CT, tCT:::::: SCT 

tr= ' fCT, SCT ::::;: VCT ~ f:l.CT 

which can be lifted (and then instantiated) to an E-equal inference with premise FCT11 = 
fCT" ~ b..CT", tCT11

:::::: 8CT11
• Let us denote the conclusion fCT", 8CT11

:::::: VCT11 ~ b..CT11 of the lifted 
and then instantiated inference by FtCT". We have lFu" = lFu f= 8CT

11
:::::: VCT

11
, fCT

11 ~ lFu" 
and IFu" n b..CT" = 0. We conclude IFu" ~ F 1CT". This contradicts the saturation (the 
conclusion F1 CT

11 of the inference has to be satisfied by the interpretation of its maximal 
premise FCT11

), so there cannot be an equation in b..CT' which is satisfied in le. 0 

Lemma 5.30 (Interpretations are E-Models) 
Let C be a ground clause in NG and N be ME-saturated on NGe. Then E(}l ~le. 

Proof: We use induction on the size of clauses. For all clauses CC which are smaller 
than C we use the induction hypothesis that E(}b ~ Ice. Let C be a ground clause with 
maximal term tma.x. The proof consists of two main cases: 

Case A: 
All instances e1 CT :::::: e2CT of E-equations with tma.x > E e1 CT are contained in le: 
With the clause TT := etCT:::::: etCT ~ e1CT:::::: etCT (note C >c TT, C ::/:E TT) we conclude 
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e1 r7 ~ e2r7 E EJ}l.j. ~ lTT ~ le (definition of EJ}1}; above induction hypothesis for TT; 
monotonicity of interpretations, lemma 5.15). 

Case B: 
All instances e1 r7 ~ e2r7 of E-equations with tmax = E e1 r7 are contained in le, if C is greater 
than this instance of an E-equation (i.e. if e1 r7 ~ e2 r7 is contained in E~jl): 

Case B1: etr7 and e2r7 are both irreducible (w.r.t. ==>Re): 
We have etr7 ~ e2r7 E Ee ~le. 

Case B2: e1 r7 or e2r7 is reducible: 
W .o.l.o.g. we assume e1 r7 to be reducible. 

Case B2.1: for a variable x in e1 the instance Xr7 is reducible: 
By lemma 5.24 we conclude e1 r7 ~ e2 r7 E le (otherwise the lemma provides a smaller 
instance of an E-equation that is false in le, this contradicts case A). 

Case B2.2: no reducible variable in e1 r7: 

There exists a rule (ir7)' => (rr7)min ERe produced by an instance Dr7 := fr7 ~ !l.r7,ir7 ~ Tr7 
of a clause D with C >c Dr7, and the rule reduces e1 r7 (we here use the same substitution 
for both instances, such a substitution can always be constructed by proper renaming). 

Let EE denote the above instance of theE-equation, i.e. EE := e1r7[(£r7)1 ~ e2r7, and 
the subterm (ir7)' is not at or below a variable of e1 ~ e2 E E. 

Case B2.2.1: Reductions at the root: 
If e1 r7 is reduced at the root, exchange the roles of e1 r7 and e2r7. If e1 r7 is reducible at the 
root, then by construction of our interpretation also all terms E-equal to e1 r7 are reducible, 
in particular e2r7 is reducible. If both sides are reducible at the root, then the rules used 
in both reductions have simultaneously been produced and have identical right sides. This 
means that e1 r7 and e2r7 are reducible to the same term and therefore e1 r7 ~ e2r7 E le. 

Case B2.2.2: Reductions below the root: 
Let one of the terms, e1r7 say, be reducible below the head. Consider an E-closure inference 

fr7 ~ !:ir7,£r7 ~ Tr7 ~ €tr7[(£r7)1 ~ e2r7 

r(7 ~ !l.r7, e2(7 ~ eir7[rr7] 

and let DD denote its conclusion. Condition c) for the application of E-closure inferences 
holds for this inference, because > E is total on ground E-congruence classes, therefore a 
proper subterm of e1 r7 cannot be greater than e1 r7 and with restriction 5.23 we exclude 
e1 r7 = E ir7. This inference can be lifted by lemma 4.12 to an inference between clauses in 
NU E, which can be instantiated to an inference 

Dr71 EE' 

DD' 

with the conclusion DD' = r u' ~ !:ir71
, e2 r71 ~ ( e1 [ r ])r7', which is E-equal to DD and the 

E-steps apply equalities with terms e, where e2r7 >E e (see lemma 4.12, note that no side 
of an E-equation is simply a variable, see restriction 5.23). The same bound on the size of 
E-equalities applies to EE =E EE' = (e1 ~ e2)r71

• 

We have EE' >c DD', EE' >c DD, EE' >c D, C >c EE, C >c EE' and C :fE EE. 
NG is saturated on NGe, so the (instance of the lifted) inference is redundant. Produc­

tive clauses are non-redundant (lemma 5.27), so Dr7 is non-redundant and by lemma 5.29 
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Dr:;' is also non-redundant (note that £r:;' is not reducible by ==!?RDu' if Dr:; is productive, and 
I nu = I nu'). If EE' = ~ ( e1 ~ e2)r:;' is redundant, then we have le 2 lEE' f= EE' and 
are done because also le f= EE (for the size of E-equalities needed to prove EE =E EE' 
see above; the needed instances of £-equations are satisfied by case A). 

Therefore, the inference is redundant because of lEE' f= DD'. 
D is productive, so In f= fO' and In I= fO''. Because In ~ lEE' we have lEE' I= fr:;'. 

Again, D is productive, so Inn !::..r:;' = 0, and with lemma 5.29 we conclude lEE' n !:::..0'1 = 0. 
So there is only one equation in the succedent of DD' which can be satisfied, namely 

Also, the corresponding and E-equal equation in DD is satisfied (for the size of the £­
equations used for DD =E DD', i.e. for 0' =Er:;', see lemma 4.12): 

lEE' contains also the rule (£0')'::} (rr:;)min and satisfies (rr:;)min ~ rr:;, so lEE' I= e10'[rr:;] ~ 
e1 r:;[(£0')1 and by transitivity lEE' I= e20' ~ e1 r:;[(£r:;)1- This was the equation we were 
looking for and with lEE' ~le we finish case B. 

As there are no equations e1 r:; ~ e20' in E(Jl with e1 0' > E tmax (definition of E(jl), and not 
even equations with e1 r:; = E tmax, if C is smaller or E-equal to an instance of an £-equation 
with terms E-equal to tmax, cases A and B imply E(jl ~le. 0 

Lemma 5.31 Let N be set of clauses and C be a ground clause in NG. ITN is ME­
saturated on NGe and does not contain the empty clause, then for all clauses Dr:; E NG 
which are smaller than C there exists a substitution r:;' such that le I= Dr:;' and r:; =Er:;'. 

Proof: Let C be a ground clause with maximal term tmax· In the following proof we 
consider an instance Hr:; of a clause H inN such that C >c H 0' (hence C #E 1I r:;). Due to 
the definition of our ordering (which implies £-compatibility, cf. lemma 5.2) we also have 
C > c H 0'1 for all r:;' with 0' = E r:;'. As N is saturated on NGe, all inferences with such 
premises Hr:;' have to be redundant. 

We derive a contradiction from the fact that there exists a minimal (w.r.t. >c) non­
empty ground clause Dfalse := Dr:;, D E N, C >c Dfalse (hence C #E DO') and for 
all 0'1 =E r:; the clause Dfalse := Dr:;' is not satisfied by le. By lemma 5.10 we have 
In z =In' . fa •e fa.l•e 

If Dfalse is false in le, it is also false in Infa.l•e = Infa.l•e. In fact, as C >c Dfalse (from 
C >c Dfalse and C =lE Dfalse), we obtain In' $; le by appling lemma 5.19. So Dfalse Jai•e 
and every Dfalse is non-redundant. 

If D false (or any Dfalse) is productive, then due to restrictions 5.23 it is satisfied by le 
(cf. lemma 5.25). So we may assume that Dfalse is non-redundant and not productive. 

If for a variable x of D the term xr:;' is reducible by Re we can construct a smaller false 
clause using lemma 5.24. This contradicts the minimality of D false· So we also assume 
Dtalse and all Dfalse to be reduced ground instances. 

It follows a case analysis depending on the maximal equation in Dfalse· 

a) If there is a trivial (maximal) equation t ~ t' in the succedent, Dfalse is satisfied 
because the needed £-equality is satisfied by le (see definition 5.4 and lemma 5.30). 
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b) Let Dfalse = fCT---+ L).CT,ttO' ~ tzO' be an instance of D = r 4 L).,tl ~ tz EN with 
maximal equation t1e1 ~ t2e1, t1e1 >E t2e1. 

bl) The equation t1e1 ~ tzCT is strictly maximal in Dfalse= 
Since le ~ D false, the clause D false has not produced the rule t1 0' => ( t20' )min· This 
can only be the case if t10'1 is reducible by Rvfahe (see lemma 5.29; note that Dfalse 
and any D/alse is non-redundant and not productive, the only requirement D false 
does not fulfill is the irreducibility). Let t10'1 be reducible by Rvfa.l•e at position u1, 
Ut a non-variable position (we consider reduced ground instances). By construction 
of our interpretations, also (tt/u1 )CT =E (ttfu1)CT1 is reducible, hence reducible at a 
non-variable position u2 of ttf Ut, so also tt e1 is reducible at a non-variable position u 
of t1. We reduce with a rule (stCTt)' => (szCTI)min produced by a clause CtCTl E NGe 
smaller than Dfalse, cl= rl---+ fj.t,St ~ Sz EN and ttCT/u =E StO'l· If the maximal 
equation of CtCTt is E-equal to the maximal equation of Dfalm then t1e1 is reduced to 
( t2e1 )' and le satisfies tzu ~ ( tzCT )', so would satisfy D false· So the clauses Ct Ut and 
Dfalse are not E-~qual, the maximal equation of C1u1 is smaller than the maximal 
equation of D false and we can consider the strict superposition right inference between 
Dfalse and CtCTt: 

We denote the conclusion by D1r. The inference 1r can be lifted (cf. lemma 4.12), and 
we can instantiate the lifted inference to an inference 1r' E-equal to 1r. We show that 
there is exactly one equation in the succedent of D1r' of 1r

1 which can be satisfied by 
lv' (we here denote the second premise of 7r

1 by D'false := De1'): fal•e 
- f 0'1 is satisfied: 

fe1' is satisfied by Ivf he= lv' (otherwise D'false is true); " fo.he 
- r 1 u~ is satisfied: 

see lemma 5.29 (note that productive clauses are non-redundant; note also 
CtO'l =JE Dfalse, SO Dfalse >c CtCTt) . 

- no equation in L).u' is satisfied: 
[D' n L).CT' = 0 because DJ' alse is false in le and lD' ~ le; false fal•e 

- L). 1 u~ is not satisfied because oflemma 5.29 for the productive (hence non-redun­
dant) clause CtCTt 

So the only equation which can possibly be satisfied by lv' is the reduced equation 
false 

t1u'[u +- S:iO't] ~ tzCT' in the succedent of the conclusion. As Iv' = lv
1 1 satisfies fo.l•e a se 

( s1 ut)' ~ s2e11, it would also satisfy the unreduced equation t1 e1'[ u +- ( s1 ut)'] ~ t2u' 
of the succedent of Dfalse' which is impossible therefore. 
CtCTt is productive (hence non-redundant) and Ctu~ is non-redundant (/e1 cr1 = le

1
crf, 

StO'~ is irreducible, lemma 5.29). Dfalse is non-redundant by our assumptions. As 
1r' is redundant (because of saturation), lv' satisfies the conclusion D1r'· By the 

false 

above considerations, this is a contradiction to the statement that Df' 1 is false in a se 
le. So the clause Dfalse cannot be false in le and we have found an instance Du' 
which is satisfied by le. 
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b2) There exists an equation t3CT ~ t4CT in /)..q which is E-equal to t1CT ~ t2CT: 
We consider the equality factoring inference 

7C'= 
fCT, t2e1 ~ t4CT ~ /),.q 

We lift 1r and instantiate it to an inference 7r
1 with premise D1' a/se· Because In' I= 

fo.Z.e 

t2e1 ~ t4CT (lemma 5.30; note t2e1 =E t4e1), the inference 7r
1 is only redundant if Dfalse 

is redundant. Using lemma 5.19 this contradicts le~ Dfalse· 

c) Let now Dtalse be a clause fCT, t1e1 ~ (t1e1)' ~ /)..q with maximal equation t1e1 ~ (ttCT)'. 
In this case the lemma follows in a similar way using the equality resolution inference 

fCT, t1CT ~ (ttCT)' ~ /),.q 

fq ~ACT 

The lifted (and then instantiated) inference (with premise Dfalse) is redundant (be­
cause of saturation). As the premise Dfalse is non-redundant, the conclusion of the 
above inference is true in In' = In1 1 e ~ le. So either the antecedent is not 

/o.l•e "'• 

satisfied or an equation in the succedent is satisfied, both contradicts the fact that 
Dfalse is false, so the instance Dfalse = De11 is true in le. 

d) It remains to consider Dtalse = fCT, t1CT ~ t2e1 ~ /)..q with maximal equation t1CT ~ 
t2e1, t1CT >E t2e1. In this case ln1a.l•e I= t1CT ~ t2CT (because Dtalse is not satisfied) and 
t1e1 is reducible by :::::::?RD with a rule (stCTt)' ~ (s2CTt)min produced by a clause 

fo.he 

CtCTt, Ct = ft ~ /)..t,St ~ s2 EN and ttCT/u = (s1CT1)'. Djalse is a reduced ground 
instance, sou is a non-variable occurrence of t1 . We consider the strict superposition 
left inference 

C1 e11 D false 
7C'= . • 

fq, f 1e11, ttCT[U +- s 2e11] ~ t2e1 ~ /)..q, /),.1e11 

Similar to case bl) we get a contradiction: the premises of the inference are non­
redundant, so the conclusion has to be satisfied in In' , but then D'false cannot be 

false 

false in le. 

Theorem 5.32 (Redundancy-Completeness of ME) 
The inference system ME is redundancy-complete. 

0 

Proof: Let N be an ME-saturated set of clauses. Assume NU E is inconsistent and N 
does not contain the empty clause. There are no inferences with premise TOP, so N is 
ME-saturated on NGTOP· We show that hoP is a model for NU E: 

By lemma 5.30 we know that EG is satisfied by hoP· Assume there exists a clause 
Fin N and a ground substitution CT such that lToP ~ FCT. By EG ~ !ToP we conclude 
hoP ~ Fe11 for all CT1 with CT1 =E CT. But this contradicts lemma 5.31. Hence FCT is satisfied 
and lToP is indeed a model for NU E. 

This is a contradiction to the inconsistency. So N U E cannot be inconsistent or N 
contains the empty clause. 0 
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5.3 System ME for E = AC 

The main difference to inference systems for E = 0 is the additional E-closure inference (in 
addition to being restricted toE-compatible orderings and E-unification). 

Now consider the case E = AC. As there are no non-variable subterms for any side 
of a commutativity axiom, the only AC-closure inferences occur with associativity axioms. 
Consider AC -closure inferences with a clause 

and the associativity axiom ~ (x + y) + z:::::: x + (y + z) (assume a+b > AC c). We list the 
conclusions of AC -closure inferences for which the left premise is either the above clause or 
a clause produced from an AC-closure: 

~a+(b+x):=:::c+x 

~ (z +a)+ b:::::: z + c 

~ (z +a)+ (b + x):::::: z + (c + x) 

~ (z +a)+ (b + x):::::: (z +c)+ x 

~a+ ((b + x1) + x2):::::: (c + xl) + x2 

~ ( Z2 + ( Z1 + a)) + b :::::: Z2 + ( Z1 + C) 

We observe that the 4th, 5th, 6th clause and every further clause follows from an instance 
of one of the first three clauses and some AC -equalities applied at terms smaller than the 
left side (of the equation in the succedent) of the considered clause. As an example we take 
the 5th clause: substitute x by x1 + x 2 in the first clause: 

Now we use the AC-equalities b+(x1+x2) =Ac (b+x1)+x2 and c+(xt +x2) =Ac (c+xt)+x2 
to get the 5th clause (note: (a+ b + x1 + x2)CT > AC (b + x1 + x2)0' because the ordering is 
total and hence a simplification ordering; (a+ b + x1 + x2)0' > AC ( c + x1 + x2)0' because 
a + b > AC c and the ordering is stable under contexts). 

Let us assume we use an ordering on clauses with Cr = D implies CrCT >c DCT (i.e. the 
proper subsumption ordering is included). Then above we have shown the compositeness 
(cf. section 7; roughly speaking: compositeness implies redundancy) of the 5th clause. 
Similarly every clause above (except the first three clauses) is composite (hence redundant 
in an ME-saturated set). The above clause in merely an example: for every clause C (and 
every equation£:::::: r in its succedent, with (£:::::: r )CT strictly maximal in CCT, £q > AC rCT (for 
an appropriate ground substitution CT) and the root of £q is marked with an AC-operator) 
we need at most three additional clauses to make all AC-closure inferences redundant. 

If we can guarantee that the first of the above clauses is contained in N, we need only 
this clause (and not three clauses). We do this in the next section for the system MExt· We 
conjecture that often also for ME we need at most one additional clause. But we were not 
able to show this for arbitrary specifications and arbitrary methods of eliminating clauses. 
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6 The System MExt 

Excluding the E-closure inference rule from ME we get the calculus MExt (see definition 
4.6). 

Example 6.1 (Incompleteness of MExt) 

Let E := {a+(b+c) ~ (a+b)+c} and N :={a+ (b+ c)~ d+ c-, -a+ b ~ d}. The 
set N is MExt-saturated, but NU E is inconsistent. Note that N is not ME-saturated. 

Example 6.2 (Incompleteness even for Superposition Modulo E) 
Assume we extend the superposition definition in the following way: 

A term s can be superposed modulo E on a term t, if there exists a term t', a 
position p E 0( t') and a substitution q such that t' = E t and q E ~-tC SUE( t' / p, s) 
(i.e. ( t' I p )q = E sq; note that this is different from ( tq )'I p = sq: for the former 
we apply E-equalities before substituting, in the latter we first substitute and 
then apply E-equalities). 

Even with this notion of superposition applied in superposition left and superposition right 
inferences, the system MExt remains incomplete. We present an example: Let + be an 
AC-operator. We consider a set N of the following clauses: 

c+x+x~d+b+e+e-

-c+a+a+b~d 

We assume c + a + a + b > AC d. Writing c + x + x instead of ( c + x) + x or c + ( x + x) 
we will indicate that it has no influence on our example, which of these concrete AC­
representatives of c + x + x we use. This applies similarly to the other terms. N is 
MExt-saturated, particularly, because there is no non-variable subterm of the first clause 
which is AC-unifiable with c +a+ a+ b. But the set is inconsistent: with the substitution 
x +- a+ b + e the antecedent of the first clause, which is a goal clause, is satisfied. But we 
cannot find this substitution by AC-unification, we have to guess it. 

In the following section we will add a clause 

- c +a+ a+ b + y ~ d + y. 

There is a minimal AC-unifier for c + x + x and c +a+ a+ b + y, i.e. {x +-a+ b+ z, y +­

b + z + z}. So we get a superposition left inference (in the sense of 4.5, we do not need 
superposition modulo AC as defined in this example) of the new clause and the above goal 
clause. This inference has the conclusion 

d+b+z+z~d+b+e+e-. 

With an equality resolution inference of the clause we obtain the empty clause and prove 
the set of clauses to be inconsistent. Note that to saturate the set of clauses, we only need 
substitutions which are computed for unification (no substitution is guessed). 

We consider the above example again, but under a different light: We explain the 
situation in terms of usual rewriting with unconditional equations (which is included in our 
inference system as a special case). Narrowing is the goal solving variant of rewriting, the 
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goal verifying operation. In the case where E is not empty, we know that there are more 
than one rewrite relations. The well known are rewriting modulo E ( ==? R/ E) and rewriting 
with E-matching ( ==?R·E)· We rewrite a term t using rewriting modulo E, if we can match 
a subterm of an E-variant oft with the left side of a rewrite rule. What is the goal solving 
operation for that? We have the possibility to substitute variables oft. In the case of 
narrowing we find this substitution goal directed using unification. But here we have to 
substitute first , then looking for an E-variant of tu and for a rule to apply. This means we 
have to guess a substitution! Now the replay of the above example: 

Let + be an AC-operator. We search a solution for 

c+x+x~d+b+e+e 

using the rewrite system 
R={c+a+a+b=>d} 

The relation ==?RfAC is Church-Rosser modulo AC for =RuAC· There is no subterm 
(including the term itself) of the left side c + x + x of the goal which is AC-unifiable with 
the left side of our (ground) rule. This even holds for all terms AC-equal to c + x + x. We 
can apply it, if we substitute x by a+ b and then take the E-variant ( c + a + a+ b) + b. 
This leads to a goal d + b = d + b + e + e, which is a dead end street for the proof. We 
have to use a substitution x f- a+ b + e to prove our goal. But it cannot be constructed 
by unification. 

We can construct a proof ofthe above goal using an additional rule c+a+a+b+y => d+y, 
which is known for rewriting as the AC-extended rule of c +a+ a+ b => d and is only used 
in connection with rewriting using E-matching (here AC-matching). We find the solution 
by AC-unification (see above). Therefore usually the narrowing modulo E (which uses such 
rules) is essentially a narrowing based on a rewrite relation with E-matching ([Bockmayr 
90], chapter "Conditional Rewriting and Narrowing Modulo an Equational Theory"), not 
using rewriting modulo E. 

Such simple examples show that we have to require additional properties for N (beside 
of MExt-saturation) to get redundancy-completeness. We will formulate this requirements 
with the help of extended clauses (see next section). 

Let us remark here that for E = AC it is possible to extend the notion of superposition 
(often also called paramodulation) to get a complete inference system without the use 
of AC-extended clauses (which are very similar to extended rules, cf. next section). In 
[Rusinowitch/Vigneron 91] a calculus is presented introducing the notion of ordered AC­
paramodulation and ordered extended AC-paramodulation. This paper is discussed in 
section 10.1. 

6.1 Extended Clauses 

In the rewriting area extended rules are well known ([Peterson/Stickel 81], (Jouannaud/ 
Kirchner 86], (Bachmair 87], (Bachmair 88]). They are used as an alternative to clauses 
introduced by E-closure inferences. We generalize the notion of extension from rules to 
clauses. 

Definition 6.3 (E-Extended Clause) 
Let C be a clause r -+ L\, l ~ r and e1 ~ e2 be an E-equation. The clause 

CE = r- L\, el(p f- l] ~ el(p f- r] 
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is an E -extended clause of C (for the equation f ::::: r) if 

• p E O(ei) is a non-variable position, 

• p ::j:. £, 

• eifp and fare E-unifiable. 

In that case we call the equation e1 (p ~ £] ::::: e1 (p ~ r] the extended equation of CE for 
f ::::: r in C and f ::::: r an equation of C which has to be extended. 

Note that in the above definition we do not need to compute the E-unifier of eifp and 
f. That is one of the advantages of extended clauses (compared with the construction of 
E-closure inferences, where we compute the unifier). In the AC-case the unifier is trivial 
and if f is not simply a variable, there can only be an AC -extended clause, if the root 
symbol off is an AC -operator. 

N ate that the relation "is an E -extended clause of" is a partial and terminating relation 
in a set of clauses. Considering a pair (CE , C) of clauses such that CE is an extended clause 
of C, then there is a unique equation in CE which we can call the extended equation of CE 
for C. 

Definition 6.4 (U nextended Clause in N) 
Let N be a set of clauses and C be a clause in N. If there is no other clause D in N such 
that C is an E-extended clause of D, then C is called an unextended clause in N . 

Definition 6.5 (Extended Clause in N) 
Let N be a set of clauses. Let CE := r --t ~' t::::: s be a clause in N. If there exists another 
clause C := r --t ~,£::::: r inN such that CE is an E-extended clause of C for f::::: r, t::::: s 
is the extended equation of C E for f ::::: r in C and 

• either C is an unextended clause in N 

• or else there exists a third clause D in N such that C is an E-extended clause in N 
(this is the recursion in this definition) of D and f::::: r is the extended equation of C 
forD, 

then C E is called an E-extended clause in N of C. 

Example 6.6 There may exist a (non-Horn) clause CE which is an E-extended clause for 
two different clauses C1 and C2 • If we write an equation as eqi and its extended equation 
as c[eqi] for a context c, we may use the following clauses as an example for the previous 
statement: 

cl = --t u[eql] , eq2 

c2 = --t eqb v[eq2] 

CE = --t u[eq1] , v[eq2] 

Example 6.7 There exists a set N of clauses such that there exists a clause CE EN which 
is an E-extended clause for C1 E N , but CE is not an extended clause inN (because C1 is 
already an extended clause, but CE does not extend an extended equation of C1): 
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cl = ~ u[eql], eq2 

CE = ~ u[eq1], v[eq2] 

There may be other E-extended clauses in N of C (see C2 in the previous example 6.6), 
and further extended clauses, e.g. 

but for each equation in the succedent of C, there is at most one line of extended clauses 
(we have to extend only extended equations of extended clauses). 

Definition 6.8 (Sets Closed under E-Extension) 
A set N of clauses is closed under E -extension if for every clause C E N 

• which contains (an occurrence of) an equation £ ~ r in the succedent, 

• has a ground instance C u such that the u-instance of the above (occurrence of the) 
equation £ ~ r is strictly maximal in C u, 

• lu >E ru, and 

• either C is an unextended clause in N, or else 

• C is an extended clause in N of a clause D E N and £ ~ r is the extended equation 
of C forD, 

each extended clause CE of C (if any) for the equation£~ r is also contained in N. 

Definition 6.9 (Partitions of N) 
Let N be a set of clauses. We define subsets Ext, SExt and NE of N. A clause C E N 
belongs to NE, if C is an unextended clause in N. A clause CE EN belongs to Ext ifthere 
is a clause C E N such that C E is an extended clause in N for C. All other (extended) 
clauses belong to the set SExt (superfluous extended clauses). We can write N as the 
disjoint union of NE, SExt and Ext. 

There may be useless extended clauses in N (cf. clause CE of example 6.7 in a set 
N which does not contain the clause C2 of example 6.6). This kind of useless clauses is 
excluded from Ext by the previous definition (they are contained in SExt). There are other 
useless extended clauses, i.e. clauses, where there is no substitution u making the equation 
£ ~ r maximal (after instantiating the equation with a unifier of £ and a subterm of an 
E-equation). But to exclude them, we need to compute the unifier. To avoid some of them 
we may restrict the introduction of extended clauses to equations £ ~ r, where there is at 
least one ground substitution u with ( £ ~ r )u is strictly maximal in C u and lu > E ru (cf. 
definition of closed sets, 6.8), but the substituted£ may not be E-unifiable with a position 
in an E-equation, so again the extended clause may be useless. In the AC-case the unifier 
is trivial and we often have no problems to exclude such useless AC -extended clauses. 

Definition 6.10 (Redundancy of E-Extended Clauses) 
Let CE E Ext be an E-extended clause in a set N = NE U Ext U SExt of clauses. By 
definition C E and every ground instance of it is non-redundant. 
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£-extended clauses are (nearly) always redundant by the former definition of redun­
dancy (definition 5.20). They are nevertheless needed. To incorporate the new redundancy 
definition into theorem provers working with definition 5.20, we have not simply to add £­
extended clauses to our set of clauses, but also to protect them from being erased because 
of redundancy (in the sense of 5.20). When using inference systems which need £-extended 
clauses, we therefore consider sets N of clauses which are partitioned into the set NEUS Ext 
and the set Ext of £-extended clauses in N (see definition 6.9). 

Definition 6.11 Let D := r __...D.., f.~ r be a clause in N. We define the set Exi*(D,f ~ r) 
of clauses by 

1. DE Ext*(D,.e~ r) 

2. DE E Ext*(D,R. ~ r) if DE EN, DE= r __... D..,t ~ s, there exists a clause D1 = 
r __...D.., t1 ~ s1 inN such that D1 E Ext*(D,R. ~ r) and DE is an extended clause of 
D1 for t1 ~ s1 

3. no other clauses are in Ext*(D,R. ~ r). 

In the above situation we call the equation t ~ s of DE the extended equation of DE forD 
(for the equation f.~ r ). 

Ext*(D) := Ext*(D,R. ~ r) u U Ext*(D, t ~ s) 
t:::=se~ 

We then define Ext+(D) by 

Ext+(D) := Ext*(D) \ {D} 

and 
Ext+(D,R. ~ r) := Ext*(D,f ~ r) \ {D}. 

Lemma 6.12 (Properties of Extended Clauses) 
Let N :=NE U Ext U SExt be a set of clauses. Let DE be a clause of Ext. Then there 
exists an (unextended) clause Din NE and a position p with 

• D = r __... D.., f. ~ r and f. ~ r is an equation of D which has to be extended 

• DE= r __....D.., t ~ s 

• DE E Ext+(D,f ~ r) 

• p E O(t), p E O(s), p tf c 

• tjp = .e, sfp = r 

• and if u is a substitution such that DEu is a ground clause, then also Du is a ground 
clause. 

Proof: We use induction on the height of terms. Assume the lemma holds for all clauses 
D1 E Ext with heights(DE) >> heights(D1), where heights(C) is the multiset of the 
heights of each term occurring in C, e.g. heights(a(x) ~ b __... f(g(x)) ~b)= {1,0,2,0}. 

DE is in Ext, so there exists a clause D1 E N, D1 = f __... .6., t1 ~ s1, and t1 ~ s1 is 
an equation of D1 which has to be extended. Moreover there exists a position p1 E O(t) 
such that p ¥= £, tjp1 = t1 and sfpl = s1. DE is an E-extended clause in N of D1. If 
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D1 is a clause of NE we are done with p := p1 and D := D1 . Otherwise we may use our 
induction hypothesis for D1 (w.o.l.o.g. we assume D1 to be in Ext: if all clauses that DE 
extends were contained in S Ext, then DE itself would not belong to Ext), which gives us 
the existence of a clause D E NE, D = T-? A,l::::::: r, the equation l::::::: ran the equation 
in D which has to be extended, td p2 = l and si/ p2 = r for an appropriate p2 =J c. The 
lemma holds with this clause D and p := PI·P2· D 

For extended clauses in S Ext, the previous lemma does not hold. The clauses CE, C1 

and C of example 6.6 form an example, where C E NE, C1 E Ext and for CE there exists 
no clause in NE such that CE is an E-extended clause of it. 

Definition 6.13 (Ordering >~:t over Equations in Clauses) 
Let N := NE U Ext U S Ext be a set of clauses. The E-multiset expression for MExt of an 
(occurrence of an) equation t1 ::::::: t2 in a ground clause Cu = T-? A is defined as: 

(i) {((ti]E, 3), ([t2]E, 3)} if t1 ::::::: t2 belongs to T 
(ii) {([ti]E, 0), ([t2]E, 0)} if t1 ::::::: t2 belongs to A, C E Ext, 

C E Ext+(D) and t1 ::::::: t2 is an instance of the 
extended equation of C forD (for a clause DEN), 
Cu #E Du, t1 #E t2 and t1 or t2 
is a strictly maximal (w.r.t. >E) term of Cu 

(iii) {([ti]E, 1), ([t2]E, 1)} if t1 ::::::: t2 belongs to A, A= t1 ::::::: t2 and t1 =E t2 
(iv) {([ti]E, 2), ([t2]E, 2)} if none of the above cases apply 

The ordering >~:t over (occurrences of) ground equations is defined as the multiset exten­
sion of the lexicographic combination of > E and > (the ordering on natural numbers) on 
their E-multiset expressions for MExt· 

The complexity of an equation in the succedent is "normally" defined by point (iv) above 
(e.g. for nearly all equations in the succedent of Cu if C is not an extended clause). Only 
the extended equation in the succedent of an extended clause is a little bit smaller, if the 
extended clause is possibly useful. E-equations get a special complexity: they are greater 
than (useful) extended equations, but smaller than non-extended equations between terms 
which are not E-equal. 

Working with this ordering has the advantage that sometimes more (instances of) E­
equations are available to show a clause or inference to be useless (cf. "composite" in section 
7). If C is not an extended clause, then every equation EE applicable at terms in C is 
contained in Elf', so EE can be used to show C to be useless (we will prove this later: 
lemma 7.21 ). E.g. if we use rewriting with a set of rules R to simplify or eliminate clauses, 
we may use the relations ~R-E and ~RfE· This is an advantage over ME (where we in 
general even cannot use ~R·E ). But the price we pay is the special treatment of extended 
clauses (e.g. we cannot eliminate clauses in Ext). 

The same way as in 5.1 we define a total ordering over clauses: 

Definition 6.14 {Ordering over Clauses) 
The ordering >~xt is the multiset extension of >~:t comparing the E-multiset expression for 
MExt of the clauses. Here the E-multiset expression for MExt of a clause is the multiset 
of the E-multiset expressions for MExt of each occurrence of an equation in that clause. 
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The ordering >~xt is similar to >c (see lemma 5.2), except that it is E-compatible only 
for clauses of the same partition, i.e. Cu >~xt Dr implies C1u1 >c D1Tt, if Cu =E C1ull 

Dr =E D1rt, C and C1 belongs to the same partition and the same holds forD and D1 . 

6.2 Interpretations for MExt 

An equality Herbrand interpretation is a congruence on ground terms. We now define such 
an interpretation for sets NG of ground clauses. We will follow the construction in section 
5.1. The main differences are: 

• We use the ordering >~xt instead of >c· 

• We separate N into non-extended clauses NE and extended clauses Ext U S Ext: the 
interpretation of a ground clause will be defined differently, depending on whether 
it is an instance of an extended clause; certain lemmata will only hold for extended 
clauses (of Ext), others only for non-extended clauses. 

Definition 6.15 Let C be a ground clause with maximal (w.r.t. >E) term tmax· 

E(jl := { e 1 u ~ e2u I u ground substitution, e1 ~ e2 E E, 

C >~xt _,. e1u ~ e2u or 

C =E _,. e1u ~ e2u } 

Definition 6.16 Let N := NE U Ext US Ext be a set of (not necessarily ground) clauses 
such that N is partioned into NE U Ext U S Ext as defined by 6.9. We define: 

where 

and 

NEG :={Cui C E NE, u ground substitution}, 

ExtG :={Cui C E Ext,u ground substitution}, 

SExtG :={Cui C E SExt,u ground substitution}, 

NG := NEG u ExtG u SExtG u TG u {TOP}, and 

NGc :={DID E NG,C >~xt D}, 

TG := {t ~ t _,. t ~tIt ground term} 

TOP := _,. T ~ T, 

with T > E t for all ground terms t :f T. 

Note that the clause TOP is the strictly maximal clause of NG and satisfied in any 
interpretation. The TO-equations will not contribute to the interpretation of NG. Never­
theless we include them here, so we can speak of an interpretation Irr, for TT E TG. Note 
that a clause t ~ t _,. t ~ t of TG is greater than any clause which contains a term E-equal 
tot and which can possibly introduce new rules into the interpretation 6.17. 
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Definition 6.17 (Interpretation) 
Let N and NG be sets of clauses as in the previous definition. Let C denote a clause of 
NG. We assume that RulesD, RD, ED and ID have been defined for all clauses D of NG 
for which C >~xt D. For a clause C with C E NEG or C E ExtG we define 

and 

Re= ( U RulesD) 
e>~~'D 

Ee = {ei ~ e2 E E(}l I e1 and e2 are both irreducible w.r.t. ==>Re} 

le = closure( Re, Ee) 

Rulese = irred_rules( t ~ s, Re) 

if all of the following conditions hold, otherwise Rulese = 0. 

1. c = r -t t::., t ~ s 

2. le V= r - t::. 

3. t ~ s is strictly maximal (w;r.t. >eq) in C, t >E s 

4. either C E NEG and t' is not reducible by Re (for all t' =Et) or 
C is the extension of a productive clause, more precisely: 
C is in ExtG, there exists a clause Gu in NG, Gu = f 1 -t t::.1,£u ~ ru such that C is 
an instance of an extended clause of G for the equation .e ~ r, C >~xt Gu, C "#E Gu, 
t ~ s is the extended equation in C for Gu, lu ~ ru is the strictly maximal occurrence 
of an equation in Gu and RulesGu "# 0. 

For any other clause C E NG (e.g. C E S ExtG) we define the above sets as we have done 
it for clauses in NEG and ExtG, except that C never produces any rule, i.e. Rulese = 0. 

Lemma 6.18 (Independence from £-Representatives) 
For all ground clauses C and C' with C =E C' and either both clauses are in NEG or both 
clauses are in ExtG or both clauses are in SExtG, we have le= le'· 

Proof: The ordering >~xt has the property that C >~xt D implies C' >~xt D, if C' belongs 
to the same partition as C or C >~xt D', if D' belongs to the same partition as D. The 
lemma follows from this fact and the definition of interpretations. 0 

Lemma 6.19 (Productive £-Extended Clauses) 
If a clause CEu E ExtG with maximal equation t ~ s (t >E s) is productive, then it is 
an extension of a productive clause G1. If G1 produces a rule £1 ::::} r 1, then there exists a 
context u1 such that t' =E u1[£1] and s' =E ui(ri]· 

There exists also a clause GENE (not in Ext or SExt) such that CE E Ext+(G), and 
Gu is productive. If Gu produces a rule .e ::::} r, then there exists a context u such that 
t' =E u[l] and s' =E u[r]. 

Proof: The first part follows from part 4 in definition 6.17 and the definition of extended 
clauses (definition 6.3). The second part follows from induction (similar to the induction 
in lemma 6.12) using the first part. 0 
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Lemma 6.20 (Termination of ~Re) 
The rewrite relati<;ms ~Re and ~Re/E are terminating. 

Proof: Every rule produced by a clause of NG is contained in >E· 0 

Lemma 6.21 Let C be a ground clause in NG with maximal term t. Every rule produced 
by a clause G greater than C has a left side f with f ~E t. If C is productive or a term 
E-equal to t occurs in the antecedent and G is greater than C, we even have f > E t. 

Proof: The left side of a rule produced by a clause D is not smaller than a maximal (w.r.t. 
>E) term of D. So if D produces a rule with left side f and t >E f we have C >~xt D. 
Hence greater clauses can only produce rules f => r with f ?.E t. 

If C is productive, then all terms E-equal to t are reducible in any interpretation of a 
clause greater than C and for every greater clause G with maximal equation t' ~ s we have 
irred_rules( t' ~ s, Ra) = 0. If a term E-equal to t occurs in the antecedent of C, no clause 
greater than C can have a maximal equation f ~ r in the succedent with t ~E f. So in 
both cases all rules produced later have left sides greater than t. 0 

Lemma 6.22 Let C be a ground clause of NG with maximal (w.r.t. >E) term t. Let D 
be a ground clause in NG greater than C, i.e. D >~xt C. 

A term u with t >E u is reducible w.r.t. ~RD if and only if u is reducible w.r.t. 

~Re· 
An equation e1 ~ e2 with t > E e1 is contained in En if and only if it is already contained 

in Ea. 

Proof: The first part follows from lemma 6.21 and the trivial fact that the left side of the 
rule which reduces u cannot be greater than u. 

If such an equation e1 ~ e2 is not contained in Ec, e1 or e2 is reducible by ==>Re and 
it will remain reducible in Rn as Re ~ Rn, and hence it is not in En. 

If an equation e1 ~ e2 is contained in Ec, e1 and e2 are irreducible w.r.t. ~Re and 
they will remain irreducible in Rn because of the first part of this lemma. 0 

A lemma similar to 5.15 (monotonicity of interpretations) or 5.19 (increasing chains of 
interpretations preserve the truth of ground clauses) does not hold. There may be instances 
of E-equations which disappear in the interpretations of greater clauses. But this problem 
is solved when considering saturated sets (see lemmata 6.45 and 6.46). We have such kind 
of monotonicity for the sets of rules: 

Lemma 6.23 (Monotonicity of Rewrite Systems) 
Let C and D be ground clauses with C >~xt D. Then we have Re 2 Rn. 

Proof: Follows from definition 5.8. 

Lemma 6.24 (Church-Rosser Property of ==>Re) 

For every ground clause C we have: 

0 

1. A term t is reducible by ==>Re if and only if it is reducible by ==>Re ·E (but not 
necessarily to the same term). 

2. There are no overlaps between rules in Re, so ==>Re is confluent (hence confluent 
modulo E and modulo Ea). 
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3. The relation ===>Re is Church-Rosser modulo Ee for the congruence =ReuEe· (But 
note that we have Ee =/= E~jl in general). 

Proof: The first and second property follows from the construction of Re (in particular 
from definition 5.5). With the second property and the termination (lemma 6.20) we can 
apply lemma 3.9 so that it remains to show the local ground coherence modulo Ee to prove 
the third part. 

We can use the same arguments as in the proof of lemma 5.16 considering the same 
peaks. So we do not repeat the proof here. IJ 

Lemma 6.25 An equation u ~ v is satisfied in an interpretation le if and only if the terms 
u and v are joinable modulo Ee using the rewrite relation ===>Re: 

le p u ~ v if and only if u.U.Re v 

Proof: Follows from the Church-Rosser property stated in the previous lemma. 0 

Lemma 6.26 Let C be a clause of NG with maximal term t and D a ground clause greater 
than C. 

An equation u ~ v with t >E u and t >E vis true in lv if and only if it is true in le. 
If a term £-equal to t occurs in the antecedent of C, then an equation u ~ v with 

t ?::E u and t ?::E vis true in lv if and only if it is true in le. 

Proof: Follows from Church-Rosser property (lemma 6.24) and lemmata 6.21 and 6.22. 
For the second part we notice that clauses greater than C cannot produce a rule which 
reduces u or v or an intance of an £-equation applicable at u or v. 0 

We have Ee s;; E~jl, in particular EToP s;; EG, and the inclusion is (in general) proper. 
Because we do not have E'{jl s;; le, the following is not true in general: 

le p u ~ v if and only if le p u1 ~ v1 

But in the next section (with one more restriction onE, but a weaker restriction than 5.23) 
we prove that for interpretations of ME:,;t-saturated sets we have EY1 s;; le, in particular 
EG s;; frop and (for ME:,;t-saturated sets) 

le p u ~ v if and only if l L- I"' I I I e r- U """ V , U = Eo.ZI U, V = Eo.ll V e e 

lToP p u ~ v if and only if I I- I"' I I I TOP r- U """V, U =E u, V =E V. 

6.3 Redundancy-Completeness of ME:~;t 

We first define redundancy (of clauses and inferences), saturation (of sets) and completeness 
(of inference systems) similarly to the corresponding definitions at the beginning of section 
5.2. 
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Definition 6.27 (Redundancy of Clauses) 
Let N be a set of clauses. Let D be a clause in N\Ext and let C be a ground instance of D. 
C is E-redundant (or for short redundant) in N, if it is satisfied in its partial interpretation, 
i.e le I= C. 

A non-ground clause C of N \ Ext is £-redundant (in a set N) if every ground instance 
C tJ of it is £-redundant in N, i.e. feu I= C tJ for all ground substitutions tJ. 

Note that we do not apply this redundancy definition to clauses of Ext (cf. 6.10). 

Definition 6.28 (Redundancy of Inferences) 
An inference 1r from ground instances C1 , ... , Cn of clauses in Nu E and conclusion D 
is E-redundant (or for short: redundant) in N, if one of its premises is redundant or if the 
conclusion is satisfied in Iei' i.e. Iei I= D, where Cj is the maximal premise of the inference 
7r. 

A (non-ground) inference 1r from N is redundant (more precisely £-redundant in N) if 
all its ground instances 7rtJ are redundant. 

Definition 6.29 (Saturation and Completeness) 

1. Let 1r be an inference of MExt with premises Cb ... , Cn and conclusion D. Every 
inference of MExt with premises C1 tJ, ... , CntJ and conclusion DtJ for a ground substi­
tution tJ is called a ground instance TrtJ of 1r. Note that there are ground substitutions 
tJ such that there is no inference with premises Cw and conclusion DtJ. 

2. Let MG be a set of ground clauses. The set N of clauses is MExt-saturated on MG, 
if every ground inference 1r with premises in MG is £-redundant in N. 

3. A set N of clauses is MExt-saturated, if every inference (of MExt) with premises in 
N U E is E-redundant in N. 

4. An inference system MExt is redundancy-complete, if for every MExt-saturated set 
N which is closed under £-extension, N contains the empty clause, if N U E is 
inconsistent. 

Now we prove that MExt is redundancy complete. We often reduce our consideration to 
the ground case. With the help of the next lemma we even further restrict our considerations 
to reduced ground instances of clauses in N. 

Lemma 6.30 Let N be a set of clauses. Let D be a clause, tJ a ground substitution and 
C a ground clause in NG. If there exists a variable x E vars(D) such that xtJ is reducible 
by Re, then there exists a ground substitution tJ1 such that DtJ >~xt DtJ1 and le I= DtJ if 
and only if le I= DtJ1. 

Proof: If xtJ ==>Re t, we define tJ1 to be the substitution for which xtJ1 = t and ytJ1 = ytJ, 
for all y :f x. We have le f= XtJ ~ t and so DtJ1 is true in le if and only if DtJ is true in 
k. D 

Now we present a technical lemma concerning extended clauses. Assume the clause DtJ in 
the following lemma is productive (we will particularly need the lemma in that case). If a 
term t' (E-equal to t) is reducible by rules produced by DtJ or DEtJ (for an £-extension 
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DE E Ext+(D)), the lemma (part 2) proves the existence of a clause we can superpose 
on t (we will need this in lemma 6.48). In lemma 6.44 we consider instances e1 ~ e2 of 
E-equations which are reducible. So by the lemma we can superpose a clause on the E­
equation, say on a subterm of e1 . The following lemma ensures that in some situations (see 
part 3), we can even superpose on e1 at the root (and therefore also on e2 ; we will need 
this in lemma 6.44). 

Let us with some pictures motivate the following lemma. First consider unconditional 
rewriting. For the convergence of coherence pairs we sometimes replace reductions with a 
rule£=> r by reduction with a corresponding extended rule ext(l => r). ForE = AC we 
get the following diagram: 

t =Ac 

! xt( l => r) with 
substitution O'Ac 

t' 

\ l => r with 
\ubstitution o 

s' 

For non-linaer E we sometimes need equations E-equal to the instance lo ~ ro to prove 
the equation at the bottom (see example 6.33): 

t 

! xt( l => r) with 
substitution OE 

u = Eu{(lu)'~rui(.tu )'= Elu} 

t' 

\ l => r with 
\ubstitution o 

s' 

At the right reduction we might also use an extension ext1 of£ => r. Then we possibly 
need another extension extE on the left (see example 6.32): 

t 

! XtE(l => r) with 
substitution OE 

U =Eu{(.tu)'~rui(.tu)'=E.tu} 

t' 

\ ext1(l => r) with 
\ubstitution o1 

s' 

Now assume the rule lo => ro corresponds to the maximal equation in the succedent of 
a clause Do and Do is smaller than a clause C. If le contains the equality at the bottom 
of the previous picture, then we get: 
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t =E t' 

/

xtE(D) with 
substitution aE 

\

xt1 (D) with 
substitution a1 

u s' 

If t is a term contained in a clause F with C >~xt F, and t' is reduced to s' by a rule 
produced by a clause ext1(D), then we have a superposition from a clause extE(D) into 
F replacing t by u. Moreover the term u is le-equal to s'. We need the lemma below to 
obtain such an inference at some places in the following completeness proof. 

Lemma 6.31 (Use of Extended Clauses) 
Let NE U Ext U S Ext be a set closed under E-extension. Let D = r ---+ ~' £ ~ r be a 
clause in NE U Ext, c a ground context, t a ground term and a a ground substitution 
such that la ~ ra is the strictly maximal equation in Da, la > E ra and t = ( c[( la )1)', 
i.e. t =E c[(£a)1 and (la)' =E la. Let C be a clause with C >c Da, C :lE Da and the 
maximal term tmax of C is not smaller than t, i.e. tmax ?:.E t. Assume le satisfies all ground 
instances of E-equations between terms smaller than t. 

1. There exists a clause DE = r---+ ~' UE[i] ~ UE[r] in NE u Ext (sometimes D itself), 
a substitution aE (sometimes a itself) with fa = faE, ~a = ~aE, (fa)' = (iaE)', 
ra = raE, and a position PE and a context CE which is a prefix oft up to PE (i.e. 
CE = t[pE ~ []]) such that ( uE[i])aE =E t/PE· DE is obtained by a finite number 
(sometimes 0) of E-extensions starting with D, i.e. DE E Ext*(D,£ ~ r). If le 
satisfies (la)" ~ ra (for all (£a)" =E la), then le I= cE[uE[r]aE] ~ c[ra] (note 
UE[r)aE = UEaE[ra]). 

2. If t' is reducible at position p1 by a rule ( u1[£]a )' => u1[r]a produced by D1a and D1 E 
Ext*( D, £ ~ r ), then there exists a clause DE (as above), a substitution aE (as above), 
a context CE and a position PE in t such that CE = t(pE ~DJ and tfpE =E UE[f]aE. If 
le satisfies (£a)"~ ra (for all (la)" =E la), then le I= cE[uE[r]aE] ~ t'[p1 ~ ui[r]a] 
(note CE[UE[r)a) = t[pE ~ UE(r)aE]). 

3. If t is a ground instance of a side of an E-equation e ~ ee E E, i.e. t = eae and pis 
a non-variable position of e such that t (resp. eae) is reducible at position p to s by 
application of a rule (la)'=> ra produced by Da, then there exists a clause DE (as 
above), a substitution aE (as above) such that ( uE[i])aE = E t (i.e. uE[i] matches t 
at the root position) and UEaE[ra] = uE[r]aE = s. 

Proof of part 1 

t =E c[(£a)1, so there is a finite chain c[(£a)1 = t1 =E t2 =E ... =E tn-1 =E tn = t, each ti 
(1 $ i < n) is E-equal to ti+l by a single application of an instance of an E-equation. The 
chain consists of ( n - 1) applications of instances of E-equations. We proof this lemma by 
induction on n (i.e. the length of this chain). 

• n = 1: ( c[ (la )1 )' = t = c[ (la )1 
Take DE:= D, aE :=a, CE := c and PE is the position of (la)' in t. 
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• n ~ n + 1: We consider t1 =E t2. The E-equation (for t1 =E t2) is applied at 
position q of t1 and is a r-instance of an E-equation e1 ~ e2, i.e. t1 = c1[elr], 
t2 = c1[e2r] and c1 = t 1[q ~ []]. t1 and t 2 are the same terms outside of q, i.e. 
t1[q ~ []] = t2[q ~ []]=Cl. 
It takes only (n- 2) applications of (instances of) E-equations to show t 2 =Et. 

- Case A: The equation e1 r ~ e2 r is applied below ( fu )'. t1 and t 2 are the same 
terms above of (fu)' (because they are equal above of q, which is below (£u)'). 
t2 = c[ ( fu )'1 and the E-equality of t to t2 is shown by ( n - 2) £-steps. So by 
induction there exists a substitution O'ind, a context Cind, a position Pind and a 
clause Dind containing the term Uind[£] with (uind[f])CTind =E tiPind, Cind is a 
prefix oft up to Pind and le I= Cind[(uind[r])CTind] ~ c[ru]. Take DE := Dind, 

O'E := O'ind, PE := Pind and CE := Cind· 

- Case B: The equation is not applied below (£u)', but at a subterm (of t2 and 
t1) disjoint to it. Then t2 = c'[(£u)1 for a context c' = c[q ~ e1r] and we 
need only ( n - 2) E-steps to show t2 E-equal to t. By induction there exists a 
substitution O'ind, a context Cind, a position Pind and a clause Dind containing 
the term Uind[£] with ( Uind[i])CTind =E tiPind, Cind is a prefix oft up to Pind and 
le f= Cind[( Uind[r])CTind] ~ c'[ru]. If we prove le f= c'[ru] ~ c[ru], then we are 
done with DE := Dind, O'E := O'ind, PE := Pind and CE := Cind· But as the 
E-equation is applied at a sub term disjoint to ( fu )', we have c = E c' and so 
c[ru] =E c'[ru] and the applied E-equations to show the last E-equality apply 
at terms E-equal to c[ru] and t =E c[fu] >E c[ru], so le f= c'[ru] ~ c[ru] follows 
from our assumption (all instances of E-equation with terms smaller than t are 
satisfied by le). 

- Case C: The equation is not applied below (£u)' (otherwise see case A) nor at a 
subterm disjoint to it (see case B), so applied at a position above of (lu)'. So 
there exists a position p in e1 r with e1 rIp = ( fu )'. We have p f. £ (otherwise 
the application is below (£u)', see case A). 

* Case C.l: p is a non-variable position of e1. The E-equation e1 ~ e2 has 
a non-variable position p in e1 E-unifiable with £u. We consider the ex­
tended clause Dl = r- Ll, el[p ~ £] ~ el[p ~ r] of D. With V:= {xI X E 
vars(e1[p ~[]])}we define u1 to be the substitution with yu1 := yr for all 
y E V and zu1 := zu for all z rt V. We assume the variables in e1 ~ e2 and 
D to be disjoint' so we 0 bviously have r 0' = r O'I, Llu = ilCTI, ( fu )' = ( £0'1 )'' 
TO'= TO'}· 

We now use the induction hypothesis for D1 instead of D (particularly 
e1 [ £] ~ e1 [ r] instead of £ ~ r), 0'1, e2 0'1 = t2 I q instead of ( lu )' and 
c1 := t2[q ~[]]instead of c. Sot =E c1[e2u1] using (n- 2) E-steps. We get 
a substitution O'ind, a context Cind, a position Pind and a clause Dind contain­
ing the term Uind[el[£]] with (uind[ei[f]])CTind =E tiPind, Cind is a prefix oft 

up to Pind and le f= Cind[(uind[ei[r]])CTind] ~ ci[(ei[r])ul]· We need to show 
le f= ci[(ei[r])ul] ~ c[ru]. We have c[q ~ []] = t1[q ~ []] = t2[q ~ []] = cb 
clq = e1CT1[[]] and cl/q = 0, hence c[ru] = cl[elul[ru]]. With e1u1[ru] = 
(e1[r])u1 (because ru =rut) and le f= Cind[(uind[ei[r]])CTind] ~ ci[(e1[r])u1] 
we conclude le I= Cind[( Uind[ei[r]])CTind] ~ c[ru]. So we again set DE := 
Dind, O'E := O'ind, PE := Pind and CE := Cind· 
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* Case C.2: p is a variable position of e1 • Let x denote this variable and 
(fa)' is a subterm below this variable, i.e. XT = cx[(£a)1 for an appropriate 
context ex. The E-equations are variable preserving so there exists at least 
one occurrence of (.f. a)' in t 2 below q (say at e2 T / p'), i.e. there exists a 
context CJ, ci[(£a)1 = t2 and c1[q f- [)] = t2[q f- []] = t1[q f- []] =: v. 
We define a substitution Tx by XTx := cx[ra] and YTx := YT for all y # x. 
For all terms a and b, at least one of them has an occurrence of x, we get 
aT ~ bT >eq aTx ~ bTx and le f= aT ~ bT if and only if le f= aTx ~ bTx 
(because le f= (fa)'~ ra). 
We need only (n - 2) £-steps to get t2 = c1[(£a)1 =E t, so by induc­
tion there exists a substitution O'ind, a context Cind , a position Pind and a 
clause Dind containing the term 'Uind[.f.] with ( Uind[f])O'ind =E t/Pind, Cind 
is a prefix oft up to Pind and le f= Cind[(uind[r])O'ind] ~ ci[ra]. We need 
le f= Cind[(uind[r])O'ind] ~ c[ra] and this will follow from the previous equa­
tion and le f= c[r<i] ~ c1[ra]. We have c[ra] = v[e1T[p f- cx[r<T]]], replace 
T by Tx (remember le f= (fa)' ~ ra) yielding le f= v[eiT[q f- cx[ra]] ~ 
v[eJTx[q f- cx[r<i]]. v[eJTx[q f- cx[ra]] = v[eiTx], so le f= c[ra] ~ v[eiTx]· 
Analogously (with ell e2 andp' instead of c, e1 and p) le f= c1[ra] ~ v[e2Tx]· 
By our assumptions le f= e1 Tx ~ e2Tx (hence le f= v[eiTx] ~ v[e2Tx]). This 
completes le f= c1[ra) ~ c[ra]. 

Proof of part 2 

We have t =E t' = c1[(u1[£)a)') =E c1[u1a[£a]] (for context c1 := t'[p1 f- []]). With 
c = c1 [ u1 a] (note t = ( c[fa ])') we apply part 1. 

If le satisfies (f<T)" ~ ra (for all (£a)" =E fa), then by part 1 we know le f= 
cE[uE[r]aE] ~ c[r<i]. The last term is equal to c1[u1a][ra] = c1[u1[r]]a = t'[p1 f- u1[r]a]. 
So we already have le f= cE[uE[r]aE] ~ t'[p1 f- u1[r]a]. 

Proof of part 3 

t = eO'e is reducible at a non-variable position p by a rule produced by Da, so with the 
context c1 := t[p f- []]we have eae/P = c1[(£a)1 and t is reduced to s := t[p f- ra] = c1[ra]. 
There exists an extended clause DE:= r ~A, UE[£] ~ UE[r] of D with U£ = e[p f- []]. By 
combination of 0' and O'e we construct a substitution O'E such that U£0'E = c1 and faE =fa 
(and similar for r, A and r). We get UE[f]O'E =Et, UE[r]O'E = CJ[ra] = s. D 

With the following three examples, we will motivate that three non-obvious technical details 
of the previous lemma are really needed. 

Example 6.32 (Extensions of Extensions) 
For general E we really need the induction, so sometimes have to use an extension for a 
clause Dind which is already an E-extended clause of D. ForE= AC we will later prove 
(similar to the lemma above, but without induction) that we do not need extensions of 
AC -extensions. Let E consist of 

(x + y) + z ~ x + (y + z) 
U*(v+w)~ (u*v)+(u*w) 
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Consider the clause 
D := -+ a+ b ~ c. 

It has an extension with the associativity: 

Dind := -+ (a + b) + z ~ c + z 

And Dind itself has again an extension with the distributivity: 

DE:= -+u*((a+b)+z)~u*(c+z) 

There are further extensions (e.g. of D with distributivity or of Dind with associativity) but 
we do not need them in this example. We consider the following three terms (they are not 
ground, but we could use an arbitrary ground instance of them) 

t' u*((a+b)+z) 

t2 : = u * (a + ( b + z)) 
t := (u*a)+(u*(b+z)), 

which are all E-equal. t' has a subterm which can be matched with the term a+b of D, but 
neither t2 nor t contain such a subterm. The term (a+ b) + z of Dind can match subterms 
oft' and t2, but not oft. And finally for the left side of DE we notice that in all of the 
three terms there is a subterm we can match (always the trivial subterm at p = £ ). So to 
superpose upon t, we need DE, which is an extension of an extension. 

Example 6.33 The assumptions le I= (lu)' ~ ru and le satisfies all ground instances 
of E-equations between terms smaller than t are both needed. But the first one only for 
non-linear equations in E. Let E consist of the associativity and commutativity axioms for 
the operator+ and the idempotence (the non-linear equation x + x ~ x) for+. We again 
consider 

Du := -+ a+ b ~ c, 

so speaking in terms oflemma 6.31 we.have lu := a+b and ru := c. Let us identify Du with 
the rule a+ b => c and speak of reductions of terms. Let C be a clause such that le contains 
the above rule, which we assume to be produced by Du. The term t' := (a+ b)+ (b +a) 
can be reduced to c + (b +a). Here we have no problems to reduce also t :=a+ b. t is not 
reduced to c + (b +a), but to c. To get le I= c + (b+ a)~ c we need le I= b +a~ c and 
le I= c + c ~ c. Both equations are valid in le by the assumptions of lemma 6.31 repeated 
at the beginning of this example. 

Example 6.34 The' in t =E c[(£u)1 is needed in lemma 6.31 (for induction in part 1). 
Let + be an AC -operator and 

Du:= -+(a+b)+c~d 

(hence lu := (a + b) + c). We consider the following three terms 

lu .- (a+b)+c 

t2 := (b+a)+c 

t := c + (b +a). 

lu and t are AC -equal by a two step equational proof lu = Ae t2 = Ae t. To use induction 
in the proof of lemma 6.31, we have to apply the lemma to ( iu )' = t2 =j:. lu. So it has to be 
formulated for (lu)' and not simply for (lu). 
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Lemma 6.35 Let D1 = r -t ~, t ::::: s be a clause in NE u Ext. If D1 u produces a rule 
(tu)' ~ su, then there exists a clause Din NE and a position p such that D = r -t ~' l ::::: r, 
D1 is in Ext*(D,l::::: r), tjp =land sjp = r. 

Proof: If D1 E NE useD:= D1 and p := £. Otherwise use lemmata 6.19 and 6.12. 0 

When we apply part 2 of lemma 6.31 to a productive clause D1 u, then by the previous 
lemma we can always assume that D is a clause in NE, i.e. D is not an extended clause. 
In part 2 of lemma 6.31 we sometimes need le F (lu)"::::: r (cf. example 6.33). For some 
theories E this is not a trivial assumption: 

Example 6.36 E = {f(f(x)) :=::: f(x)}. The clause -t f(f(a))::::: b (of NE) will produce 
only one rule f(a) ~ b and the equation in the clause will (in general) not be satisfied 
in interpretations of greater clauses. We assume that with the help of extended clauses 
such situations do not occur for saturated sets of clauses. But to show this will complicate 
the following proofs, and to show the property for all theories E will even be harder. As 
very little is known about general E (existence of total and compatible reduction orderings, 
existence of usable unification algorithms), we will restrict the methods such that the well 
known and promising cases E = AC and E = ACU are included. 

Definition 6.37 (Restrictions on E) 
In the remaining parts of this section we consider only equational theories E with the 
following property: If a ground term u[t] is £-equal to a strict subterm t of itself, then we 
have u[s] =E s for all ground terms s. 

We will need the above restriction in lemmata 6.39, 6.43 and 6.47. 

Example 6.38 The theory ACU := {x + y::::: y + x, (x + y) + z::::: x + (y + z),x + 0::::: x}, 
i.e. + is an AC-operator with unit 0, fulfills the above restrictions. 

With the help of the following lemma we conclude that the assumption about le stated 
in part 2 of lemma 6.31 (we mean le F (leT)"::::: ru) is always met. Note that we need the 
above restriction for the following proof. 

Lemma 6.39 {Properties of Productive Clauses 1) 
Let G := r -t ~' t ::::: s be a clause of NEG with strictly maximal equation t ::::: s, t > E s 
and let G be productive. Let C be a clause such that le contains the rules produced by G 
(e.g. if C >~xt G). If le satisfies all instances of £-equations between terms smaller than t, 
then le F t'::::: s for all terms t' with t' =Et, i.e. the productive equation and all equations 
with E-equal left side will be satisfied in interpretations containing the produced rules. 

Proof: t and every term t' E-equal to it is irreducible by Ra (required for productive 
clauses by part 4 of definition 6.17). Every t' E-equal to t is reducible with the produced 
rules in irred_rules(t::::: s,Ra) (note: these rules are contained in le). Hence there exists 
a rule t" ~ s with t' = u[t"] and t' is reduced to u[s]. If u is the empty context we have 
t' = t", u[s] = s and are done. Otherwise t' = u[t"] =E u[t'], hence t' is E-equal to a 
proper subterm of itself and by definition 6.37 we have also u[s] =E s. We reduce t' to u[s] 
and because this term is smaller than t the instances of £-equations to show u[s] ::::: s are 
satisfied by le. Together with the reduction step we have le F t'::::: s. 0 
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With the same assumptions as in the previous lemma, le even satisfies all equations 
t' ~ s'. The lemma proves it fors= s' but requires also le I= s' ~ s, hence le I= t' ~ s'. 

Lemma 6.40 (Properties of Productive Clauses 2) 
Let G := r--+ t::..,i ~ r be a ground clause in NG. If G is productive, it is non-redundant. 

Proof: If G is of ExtG, it is non-redundant by definition. Otherwise G E NEG. G is 
redundant, only if it is satisfied in its own interpretation. G is productive and we have 
la ~ r --+ !::... So G is only true in la if i ~ r is satisfied. If G is productive we have i > E r 
and so (because the interpretation is a Church-Rosser rewrite system, cf. lemma 6.24) i has 
to be reducible (if i ~ r should be satisfied), which contradicts part 4 in definition 6.17, 
hence G is non-redundant. 0 

Lemma 6.41 Let C and D be ground clauses in NEG with maximal (w.r.t. >E) term 
E-equal tot. If C >~t D and t is irreducible by =}Re, then Re= Rv and le= Iv. 

Proof: If a clause G with C >~xt G ~~xt D produces rules contained in Re, all terms 
E-equal tot become reducible. As t is irreducible by =}Re, no rule is produced and so we 
have Re= Rv. Because the maximal terms of C and Dare E-equal and both clauses are 
in NEG we have E~jl = ErJl. As these clauses define the same rewrite system, Ee = Ev 
and so le= Iv. o 

Lemma 6.42 (Properties of Non-Redundant Clauses) 
Let F := Du := r --+ !::.., t ~ s be a non-redundant ground instance of a clause D in NE. 
Let the equation t ~ s be maximal (w.r.t. >eq) in F with t >E s, and let t' be irreducible by 
:=}RF (for all t' with t' =Et). If N is MExt-saturated on NGF U {F' I F' = Du', u' =E u} 
and if IF satisfies all ground instances of E-equations between terms smaller than t, the 
following holds: 

(i) u is irreducible (w.r.t. :=}RF), i.e. xu is irreducible for all x E vars(D) 

(ii) F is productive. 

(iii) For all f' with f' =E f and all ground clauses C >~xt For C =E F, 

r' ~le. 

(iv) For all 6.' with 6.' =E!::.. and all ground clauses C >~xt For C =E F, 

!::..' n le= 0. 

Proof: The proof is by induction on the ordering >~xt, so let us assume that (i)-(iv) hold 
for every suitable instance F1 of NE with F >~xt F1 . Since F is non-redundant we have 
f ~ IF and !::.. n IF = 0. 

(iii) IF ~ f --+ !::.., so f is satisfied in IF. By our assumptions all instances of E­
equations applicable at terms in the antecedent (which are all smaller (w.r.t. >E) than t) 
are contained in IF, hence r' ~ IF. All rules and equations in the difference between Re 
and RF and between Ee and EF contain a maximal term i with i ~Et (from C >~xt For 
C =E F). These rules and equations cannot be used to join an equation in r', hence le, 
too, satisfies every equation in r'. 
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(i) Suppose there exists a variable x E var s( D) such that xu is reducible by =:::;.. RF (note 
that xu cannot occur in t, as t is irreducible by our assumptions). By lemma 6.30 there 
exists a ground instance Fl = Dr = rl ~ .6.t, t ~ St such that F >~xt Fl and lp ~ Fl. 
By lemma 6.41 we have lp = lp1 , which implies that F1 is false in its interpretation and 
hence non-redundant. We use our induction hypothesis and infer that F1 produces rules to 
reduce t and all terms E-equal to it (induction hypothesis part (ii)). But these rules are 
contained in Rp contradicting the irreducibility of t. So F is an instance with a reduced 
substitution (and we assume this fact in the remaining parts of the proof). 

(ii) If F is not productive because an equation t" ~ s' E-equal to (but different from) 
the maximal equation t ~ s of F occurs in the succedent of F . Then the equation is not 
strictly maximal and so the clause is not productive for this reason. Moreover lp I= s ~ s'. 
t > E s and so the needed E-equalities are by assumption contained in lp. A clause 
F1 = r', s' ~ s" ~ .6.1 smaller than F can be obtained by equality factoring: as conclusion 
of the instance of an equality factoring inference with premise F' = Du'. We have lp = Jp, 
(lemma 6.18). By saturation F1 has to be satisfied by lp =IF'· This yields a contradiction: 
r' is satisfied, see above; if an equation u' ~ v' with t > E u and t > E v is satisfied, then 
also u ~ v is satisfied and F redundant; all equations t" ~ r in .6.' with terms E-equal to 
t are not satisfied because t and all terms E-equal to it are irreducible. So from now on 
we may assume that no other equation E-equal to t ~ s occurs in the succedent of F and 
hence that F is productive. 

(iv) lp ~ r ~ .6. , in particular lp n .6. = 0. Suppose an .6.' contains an equation u ~ V 

which is satisfied by lp. We may assume that u >E v, for otherwise, if u =E v then either 
t > E u and u' ~ v' is also satisfied by lp (by the assumption the needed instances of 
£-equations are contained in lp ), which contradicts F to be non-redundant, or we have 
u =E v =Et and the equation t ~ s with t >E s is not a maximal equation ofF, which 
also contradicts our assumptions. By construction lp is a Church-Rosser system, sou and 
v are reducible (by Rp) to Bp-equal terms. If we have t > E u and lp I= u ~ v, then 
lp also satisfies u' ~ v' E .6. (the needed instances of £-equations are again available by 
our assumptions), which contradicts F to be non-redundant. If we have t =E u, then u is 
irreducible (by our assumptions) and lp V= u ~ v. So no equation in .6.' can be satisfied by 
lp. 

Suppose an .6.' contains an equation u ~ v which is satisfied by an le (with C >~xt F 
or C =E F). 

We have t =E u >E v: fort =E v >E u rename u and v; if we have t >E u and t >E v 
then also lp will satisfy u ~ v contradicting the result above (note that all rules of Re\ Rp 
and all equations of Ee \ Ep contain a maximal term not smaller than t, so cannot be used 
to join u and v); t =E u =E v contradicts the maximality oft~ sin F. 

By construction all interpretations are Church-Rosser systems, sou and v are reducible 
with Re to Ep-equal terms (the terms cannot grow by reduction, so the needed instances 
of £-equations are also satisfied in lp ). 

A rule in Rp cannot reduce u = E t, because every term E-equal to t is irreducible (our 
assumption). All rules in Re\ Rp (if any) have left sides not smaller than t. Rules with 
left side greater (w.r.t. >E) than t cannot reduce u, so a rule with left side £-equal tot 
reduces u. With (ii) we already know that F is productive and no other clause can produce 
a rule whose left side is E-equal tot and which is not contained in irred_rules(t ~ s, Rp) 
(this is the set of rules produced by F). So the rules produced by Fare contained in Re. 
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The equation u ~ v (remember that u =Et) is rewritten tor~ v and the sides rand v 
are reducible to EF-equal terms. Because t > E r we can only use the rules of RF to reduce 
r or v, so IF I= r ~ v. We haves ~E v (maximality of the equation) and by part (ii) (see 
proof above) even s > E v. 

Above we have supposed le I= u ~ v. With le I= u' ~ s (by lemma 6.39, note u' =Et" 
and the rules produced by F are contained in le, see above) and the reduction from u' to 
r we have le I= s ~ r. As the rules needed to joins and rare already contained in IF we 
combine this with IF I= r ~ v and IF I= v ~ v' to IF I= s ~ v' (and by our assumptions 
also IF I= s" ~ v"). We consider the equality jactoring inference 1r 

r-+ ~,t ~ s 
' r,s~V1 -+~ 

which can be lifted (and then instantiated) to an E-equal inference with premise F': Let 
us denote the conclusion r"' s" ~ v" -+ ~11 of the lifted and then instantiated inference by 
Ft. With IF I= s" ~ v" and IF ~ F we conclude IF ~ Ft. Lemma 6.18 implies lp ~ Ft. 
This contradicts the saturation, so there cannot be an equation in ~' which is satisfied in 
!0 . o 

Lemma 6.43 (Complexity of Extended Clauses) 
Let DE E Ext be an extended clause in Ext*(D,l ~ r). Let D = r-+ ~,l ~ r and 
DE = r-+ ~' u[l] ~ u[r]. Let u be a ground substitution such that DEu #E Du, the 
equation lu ~ ru is strictly maximal (w.r.t. >eq) in D and lu >E ru. Then DEu is smaller 
than -+ ( u[l])u ~ ( u[l])u (i.e. the case (ii) of definition 6.13 of >~t applies to the maximal 
equation of DEu ). 

Proof: We have to show that case (ii) of definition 6.13 applies to ( u[l] ~ u[r])u. Only 
one requirement is not obviously satisfied: the term ( u[l])u has to be strictly maximal in 
DEu. If (u[l])u =E lu, then with our restrictions 6.37 we also have (u[r))u =E ru and 
both clauses are E-equal. We exclude this by our assumption Du # E D EU. So we have 
(u[l])u >E lu. From lu >E ru we conclude (u[l])u >E (u[r])u. As all terms in ru and 
~u are not greater than lu (because lu ~ ru is strictly maximal in Du), we conclude that 
( u[l])u is indeed the maximal term of D EU. 0 

Lemma 6.44 (Interpretations are E-Models) 
Let N := NE U Ext U SExt be a set of clauses. Let C be a ground clause in NG. If N is 
MExt-saturated on NGc and closed under extension, then: 

E(jl ~le. 

Proof: We use induction on the size of clauses. For all clauses CC which are smaller than 
C we use E(}b ~Ice as an induction hypothesis. Let C be a ground clause with maximal 
term tmax· The proof consists of two main cases: 

Case A: 
All instances e1u ~ e2u of E-equations with tmax >E e1u are contained in le: 
With the clause TT:= e1u ~ e1u-+ e1u ~ e1u (note C >~xt TT) we conclude e1u ~ e2u E 
Ef~ ~ lTT ~ le (definition of Ef~; induction hypothesis for TT; rules which reduce such 
instances of £-equations cannot be produced by TT or any greater clause). 
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Case B: 
All instances e10' ~ e20' of E-equations with tmax =E e10' are contained in le, if C is greater 
than -t tmax ~ tmax (orE-equal to it), i.e. if the equation is contained in Er}1: 

Case Bl: e10' and e20' are both irreducible (w.r.t. ==>Re): 
We have e1 0' ~ e20' E Ee s; le (if the equation is contained in Ef)1). 

Case B2: e1 0' or e20' is reducible: 

Case B2.1: a variable x in e1 or e2 and XO' is reducible: 
By lemma 6.30 we conclude e1 0' ~ e20' E le (otherwise the lemma provides a smaller 
instance which is false in le, this contradicts case A). 

Case B2.2: no reducible variable in e1 and e2 : 

Thereexistsarule(ct[it))' => Ct[rt]produced byaninstanceDtO' := rl -t Llt,Ct[it) ~ c2[ri] 
of a clauses D1 with C >~xt D10'. So there exists a clause G1 E NE such that D1 is in 
Ext*(GI) with GtO' = rl -t Llt,il ~ Tt and c >~xt GtO' (lemma 6.35). The rule reduces 
e10' at position Pt to a term s1 . The position p1 is a non-variable position of e1 . By 
lemma 6.31 (part 3 of the lemma) there exists a clause D1E (in general an extended clause 
originated from Gt) and a substitution 0'1 such that D1EO'I = ft -t Ll~, u1[it) ~ u1[r1], 
€tO' =E ul[it]O't and le I= Ut[rt)O't ~St. 

The maximal term of DtEO't is E-equal to tmax· For DtEO't =E GtO' we do not need 
D1E (use Gt) and have already C >~xt GtO'. For DtEO't #E G10' we know that DE is an 
extended clause, hence smaller than C (see lemma 6.43). From the existence of such an 
extended clause (or the fact that a clause of NEG produces rules with left side E-equal to 
tmax), we conclude that all terms E-equal to tmax are reducible in le. Note that for this 
conclusion we need that E-extended clauses produce rules. In particular e20' is reducible 
(etO' and e20' are E-equal). So there exists a rule (c2[i2])' => c2[r2] in Re produced by an 
instance D20' := f2 -t Ll2, c2[£2] ~ c2[r2] of a clause D2 with C >~xt D20'. So there exists a 
clause G2 E NE such that D2 is in Ext*(G2) with G20' = f 2 -t Ll2,£2 ~ r2 and C >~xt G20' 
(lemma 6.35). The rule reduces e20' at position p2 to s2 (we here use the same substitution 
for all instances, such a substitution can always be constructed by proper renaming). The 
position P2 is a non-variable position of e2. By lemma 6.31 there exists a clause D2E 
and a substitution 0'2 such that D2E0'2 = f2 -t Ll2, u2[i2] ~ u2[r2], e20' =E u2[i2]0'2 and 
le I= u2[r2]0'2 ~ s2. etO" and e20' are E-equal, so we may superpose DtEO't and D2E0'2 (both 
terms are reducible at a non-variable position, so neither e1 nor e2 is simply a variable). 
Also D20' and G20' are smaller than C. 

If we have DtEO't =E D2E0'2, then le I= St ~ Ut[rt]O't, Ut[rt]O't =E u2[r2]0'2 (so 
le I= Ut[rt]O't ~ u2[r2]0'2 by case A) and le I= u2[r2]0'2 ~ s2. Together with the reduction 
steps (also contained in le), we get le I= e1 0' ~ e20' and are done. 

or 

Otherwise (DtEO't #E D2E0'2) we get one of the following superposition right inferences: 

f1 -t Llb Ut[ft)O'I ~ Ut[Tt)O't f2 -t Ll2, u2[£2)0'2 ~ u2[r2]0'2 

fbf2 -t Llt,Ll2,Ut(Tt]O't ~ u2[r2]0'2 

f2 -t Ll2, u2[f2]0'2 ~ U2(r2)0'2 ft -t Llt, Ut[ft]O't ~ Ut[Tt)O't 

ft, f2 -t Llt, Ll2, Ut[rt]O't ~ U2[r2]0'2 

which have the same conclusion (only the order of premises changes). Both premises are 
either productive clauses or instances of extended clauses so non-redundant. The inference 
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can be lifted and instantiated to an E-equal ground inference with conclusion r]_, r2 -
~~, ~2, ( u1[T1]ut)' ~ ( u2[T2]u2)'. Also premises of the lifted and instantiated inference are 
non-redundant. By saturation this inference has to be redundant, i.e. the conclusion has to 
be satisfied (in the interpretation of the maximal premise). G1u and G2u are productive. 
By case A and our induction hypothesis we know that the interpretations of these clauses 
satisfy all ground instances of E-equations between terms smaller than their maximal term. 
By lemma 6.40 they are non-redundant, so we apply lemma 6.42 and conclude that r~ and 
r2 are satisfied but no equation in ~~ or ~2 can by true. So the conclusion is satisfied 
only if the equation ( u1 [T1]ut)' ~ ( u2(T2]u2)' is true, i.e. both sides are reducible to E-equal 
terms. These sides are both smaller than e1u =E tmax, so the needed rules are already 
contained in le. With case A we know that le satisfies this equation and the E-equal one 
u1(T1]u1 ~ u2[T2]u2. But le also provides the rules and equations to show these terms equal 
to s1 resp. s2 (see above; it is a conclusion from lemma 6.31) and the rules to reduce e1u 
to s1 and e2u to s2, so le F= e1u ~ e2u. 

As there are no equations e1 ~ e2 in E(jl with e1 > E tmax (definition of E(jl), cases A and 
B imply E(jl ~le. o 

Now we are able to prove lemmata similar to 5.15 and 5.19, but now for MExt-saturated 
and closed sets of clauses. 

Lemma 6.45 (Monotonicity of Interpretations) 
Let C and D be ground clauses of NG with C >~xt D. If N is MExt-saturated on NGe 
and closed under E-extension, then we have le 2 ID. 

Proof: By construction we have Re 2 RD. By the previous lemma all equations in ED 
are also satisfied in le (ED ~ El:fl ~ E(}l ~ le; first inclusion by definition, second one by 
C >~xt D, third one by lemma 6.44). 0 

Lemma 6.46 Let N be MExt-saturated and closed under E-extension. Let B, C and D 
be ground clauses of NG with D >~xt C and C >~xt B or C =E B. If B is true in le then 
it remains true in ID· 

Proof: If an equation in the succedent is satisfied apply lemma 6.45. Otherwise an equation 
in the antecedent is not satisfied and remains so by lemma 6.26. o 

With restrictions 6.37 we can prove that extended clauses are always greater than the 
clauses they extend (or E-equal to them): 

Lemma 6.47 Let DEu be a ground instance of DE E Ext U SExt. Then there exists a 
clause D in NE such that DEu >~xt Du or DEu =E Du and DEu is satisfied, if Du is 
satisfied. 

Proof: Let DE be the clause r- ~' t ~sand t ~ s an extended equation in DE. 
First we consider the case DE E Ext: By lemma 6.12 we know DE E Ext+(D) (for a 

clause D E NE), D = r- ~,£ ~ T, tfp = £, sfp = T and p :f. e. So the comparison of 
D EO' and Du depends only on the equations tu ~ su and £u ~ TO'. 

• Case 1: lu >E TO' 
Then (by stability against contexts) we have tu > E su. 
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• Case 1.1: ta =E la 
If we have ta = E la = ta / p, i.e. t is E-equal to a subterm of itself, then by restrictions 
6.37 we know sa =Era and so DEa and Da are E-equal. 

• Case 1.2: ta > E la 
The extended equation is greater than la ~ ra because ta > E la > E ra. 

• Case 2: la =Era 
Then we have also ta = E sa. 

• Case 2.1: ta =E la 
All considered terms are E-equal, so D Ea and Da are E-equal. 

• Case 2.2: ta > E la 
The extended equation is greater than la ~ ra because ta > E la = E ra. 

So we know DEa >~xt Da or DEa =E Da. 
If Da is true, because its antecedent is not satisfied, then the same holds for D Ea (they 

have the same antecedent). Also if an equation in !:::..a is satisfied, the same equation in the 
succedent of DEa is satisfied. We can write ta ~ sa as u[la] ~ u[ra], so this equation is 
satisfied, if la ~ ra is true. In any case D Ea is satisfied, if Da is satisfied. 

Now we consider DE E SExt. Similar to lemma 6.12 we can find a clause D E NE 
such that DE extends some (at least two) equations of the succedent of D. Similar to 
the paragraph before, if D is satisfied then any extended clause originated from D is also 
satisfied. That implication does not depend on the number of equations which are extended 
from D to DE. If Dais not smaller than DEa, then it is E-equal to it (for any term t of 
Da there exists a term c[t] occurring in DEa). So the lemma holds for extended clauses in 
SExt. o 

Lemma 6.48 Let N := NE U Ext U S Ext be set of clauses and C be a ground clause in 
NG. If N is MExt-saturated on NGe, closed under extension and does not contain the 
empty clause, then le satisfies all clauses Da E NG smaller than C. 

Proof: Let C be a ground clause with maximal term tmax· In the following proof we 
consider an instance Ha of a clause H in N, such that C > ~xt Ha and C i= E Ha. Due to 
the definition of our ordering we also have C >~xt Ha' for all a' with a =E a'. As N is 
saturated on NGe, all inferences with such premises Ha' have to be redundant. 

We derive a contradiction from the fact that there exists a minimal (w.r.t. >~xt) ground 
clause Djalse, C >~xt Djalse' Djalse different from the empty clause, Djalse E NEG and 
Dfalse is not satisfied by le. By lemma 6.47, then also all clauses in (ExtGUSExtG)nNGe 
are satisfied by le. Hence we may assume Dfalse E NEG. 

If the clause D false is false in C, it is also false in its own interpretation ID fal•e (otherwise 
we get a clause which is true in its interpretation and false in the interpretation of a greater 
clause, this contradicts lemma 6.46). So Djalse is non-redundant. Similarly we conclude 
Dfalse := Da' to be non-redundant and le ~ Dfalse (by the fact that Dfalse E NEG and 
lemma 6.44 we conclude that ID, 1 = Iv' and le satisfy all E-equalities needed to 

a. "e fal&e 

show Dfalse =E Dfalse)· If Djalse is productive, then by lemma 6.39 it is satisfied by le. 
So we may assume that D false is non-redundant and not productive. If for a variable x of 
D, xa' is reducible by Re (for any a' =Ea), then we can construct a smaller false clause 
using lemma 6.30. This contradicts the minimality of D false· So we also assume that D false 
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and every Du' are reduced ground instances. It follows a case analysis depending on the 
maximal equation in Djalse· 

a) If there is a trivial (maximal) equation t :::::: t' in the succedent, Dfalse is satisfied 
because the needed E-equality is contained in le (see lemma 6.44 and definition 
6.15). 

b) Let DJalse = ru ~ Llu,t1u:::::: t2u be an instance of D = r ~ Ll,t1:::::: t2 EN with 
maximal equation t1u:::::: t2u, t1u >E t2u. 

b1) The equation t1u:::::: t2u is strictly maximal in Djalse: 

Since lD1,.14e ~ Djalse' the clause Djalse has not produced the rule t1u:::;. t2u. This 
can only be the case if (t1u)' is reducible by RD1,.,.e (see lemma 6.42; note that Djalse 

is non-redundant and not productive, the only requirement Djalse does not fulfill is the 
irreducibility). Let (t1u)' be reducible by RD,,.z.e with a rule (u1[81]ui)':::;. u1[82]u1 
produced by a clause C1u1 E NGe smaller than Dfalse' C1 = r1 ~ Llbu1[81]:::::: u1[82] 
and (t1u)' fp =E 81u1. By lemma 6.35 productive clauses have always this form and 
there exists a clause G := r ~ Ll, 81 :::::: 8 2 in NE such that Gu1 is ptoductive and 
DJa.lse >~:et Gu1 and C1 E Ext*(G,81 :::::: 82)· By lemma 6~31 (part 2) there exists 
a clause CE := r 1 ~ Ll1,uE[81]:::::: uE[82], CE E Ext*(G), a substitution UE and a 
position U with UE[8I]UE =E t1uju, r1u1 = rluE, Ll1u1 = Ll1uE, 81U1 = 81UE, 
82u1 = 82UE and le I= t 1u[u ~ uE[82]uE]:::::: (t1u)'[p ~ u1[82]u1]. If u is at a variable 
position of t (or below a variable position: then use an additional context in the 
following), then with xu' := uE[81]uE (we assume the considered variable is denoted 
by x) we can define a substitution u' such that Du' is reducible below the variable 
x (note that 81u1 is reducible because Gu1 is productive). But all Du' are reduced 
instances (see above), sou is a non-variable position. 
The equation uE[81]uE :::::: uE[82]uE is the extension of a productive equation, so 
satisfied by lD,,.z.e (the clause Gu1 containing the productive equation is smaller than 
Djalse)· If the equations t1u :::::: t2u and UE[81]uE :::::: uE[82]uE are E-equal, then 
by lemma 6.44 and definition 6.15 le satisfies also the E-equal equation t 1u :::::: t 2u 
and Dja.lse would be true (contradicting that Djalse is false). Otherwise one of the 
equations is greater than the other and we consider the strict 8uperpo8ition right 
inference between Dja.lse and CEUE: 

or the above inference with exchanged premises (if uE[81 ]uE :::::: uE[82]uE is greater 
than t1u :::::: t2u). Note that the clause CEUE is smaller than C (see lemma 6.43; in 
the case where C is itself an extended clause with smaller complexity for its maximal 
equation, we may need the fact that the maximal term of Dja.lse and therefore also 
the maximal term of CEu is smaller than the maximal term of C, otherwise the 
NEG-clause D fa./ se would be greater than the ExtG-clause C). 
We denote the conclusion by D1r. The inference 1r can be lifted (cf. lemma 4.12), and 
we can instantiate the lifted inference to an inference 1r1 E-equal to 1r. We show that 
there is exactly one equation in the succedent of D1r' of 1r

1 which can be satisfied by 
the interpretation of its maximal premise. We may assume that CE is either G or an 
extension of a clause G1 E Ext*(G) such that Gu1 #E G1u1 (otherwise we can use 
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G1 instead of CE; if G1 is also not appropriate we iterate the process). In both cases 
we get Dfalse >~t CEu' (if CE is really an extended clause note that Dfalse E NEG, 
so Dfalse is greater than CEUE because of the smaller complexity of the extended 
equation in CEuE)· So the maximal premise is Dfalse· 

- ru' c ID' : - fa.l•e 
fu' is satisfied by ID' (otherwise D'false is true); fa.l•e 

- f1u~ ~ID' : fa.l•e 
f 1u1 is satisfied by Iau1 and remains so by lemma 6.42. 

- no equation in !:l.u' is satisfied: 
lDfa.l•e n !:l.u' = 0 because Dfalse is false in le (and lemma 6.44); note lDfa.Z.e = 
ID' (lemma 6.18) fa.l•e 

- !:l.1u~ is not satisfied because oflemma 6.42 for the productive (hence non-redun­
dant) clause Gu1 

So the only equation which can possibly be satisfied by the interpretation ID' is the fa.l•e 
reduced equation t1u'[u +-- uE[s2]uE:] ~ t2u' in the succedent ofthe conclusion. If it is 
satisfied, then also the E-equal equation t1u[u +-- uE[s2]uE] ~ t2u is satisfied (again 
all needed instances of E-equations are provided by lemma 6.44). By lemma 6.31 
also le I= tu[u +-- uE[s2]uE] ~ (tu)'[p +-- ui[s2]u1]. Because le contains (ui[s1u])' => 
u1[s2u], it would also satisfy the unreduced equation (t1u)'[u +-- (u1[s1u])'] ~ t2u and 
with lemma 6.44 also the E-equal equation t1 u ~ t2u of the succedent of D false· By 
lemma 6.44 we would have le 2 ID' I= t1u ~ t2u. This would mean: Dfalse is fa.Z.e 
true in le. 
CEuE and Du' are non-redundant (CEUE is either productive or an extended clause, 
so CEu' is also non-redundant; Du' is not satisfied by le, because this holds for 
Du and we have lemma 6.44; if Du' is not satisfied in le, it is not satisfied in its 
own interpretation for the same reasons as Du is not satisfied in its interpretation, see 
beginning of this proof). As 1r

1 is redundant (because of saturation), the interpretation 
of the maximal premise of 1r

1 satisfies the conclusion D1r'· By the above considerations, 
this is a contradiction to the statement that the clause D false is false in le. So the 
clause D false cannot be false in le. 

b2) There exists an equation t3u ~ t4u in !:l.u which is E-equal to t1u ~ t2u: 
We consider the equality factoring inference 

ru ~ !::J.u, tlu ~ t2u 
7r= 

ru, t2u ~ t4u ~ !::J.u 

We lift 1r and instantiate it to an inference 7r
1 with premise Df' alse· Because ID' I= fa.Z.e 

t2u ~ t4u (lemma 6.44; note t2u =E t4u), the inference 1r is only redundant if Dfalse 
is redundant. Using lemma 6.46 this contradicts le ~ Dfalse· 

c) Let now Dfalse be a clause fu, t1u ~ (t1u)' ~ !:l.u with maximal equation t1u ~ (t1u)'. 
In this case the lemma follows in a similar way using the equality resolution inference 

ru, tlu ~ (tlu)' ~ !::J.u 

ru~!:l.u. 
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The lifted (and then instantiated) inference is redundant (saturation of N). As the 
premise is non-redundant, the conclusion of the above inference is true in ID' = 

fahe 
lDtal•e ~ le. So either the antecedent is not satisfied or an equation in the succedent 
is satisfied, both contradicts the fact that D false is false. 

d) It remains to consider Dtalse = ru, t1u ~ t2u --+ flu with maximal equation t1u ~ 
t2u, t1u >E t2u. In this case le I= t1u ~ t2u (because Djalse is not satisfied) and 
t1u is reducible by =?Re (also by ==?RD ) with a rule (s1u1)' => s2u1 produced 

fo.l •e 
by a clause C1ut, C1 = r1 --+ ll1,s1 ~ s2 E Nand t1u/u = (s1u1)'. Dtalse is a 
reduced ground instance, so u is a non-variable occurrence of t1 . We consider the 
strict superposition left inference 

Similar to case bl) we get a contradiction: the premises of the inference are non­
redundant, so the conclusion has to be satisfied in ID' , but then Djalse cannot be 

fal•e 
false in le. 

0 

Theorem 6.49 (Redundancy-Completeness of MExt) 

The inference system MExt is redundancy-complete for sets closed under E-extension. 

Proof: Let N := NE U Ext U S Ext be an MExt-saturated set of clauses closed under 
E-extension. Assume N U E is inconsistent and N does not contain the empty clause. 
There are no inferences with premise TOP, soN is MExrsaturated on NGTOP· By lemma 
6.44 we have EG ~ lTOP· By the previous lemma 6.48 we know that frop satsifies all 
ground clauses in NG. Hence every clause Cu with C inN U E and u an arbitrary ground 
substitution is satisfied. So frop is indeed a model for NU E. 

This is a contradiction to the inconsistency. So N U E cannot be inconsistent or N 
contains the empty clause. 0 

Corollary 6.50 (Inferences with Extended Clauses) 
The system MExt remains redundancy-complete if we exclude equality factoring and equal­
ity resolution inferences with premise CEu, whenever CE is an E-extended clause in Ext 
(and u an arbitrary substitution). Moreover every superposition into a non-extended equa­
tion of an E-extended clauses is superfluous, e.g. superposition left inferences into the 
antecedent of an E-extended clause are not necessary. Also superpositions upon an occur­
rence strictly below the root of a term in an extended equation or into a non-maximal term 
of an extended clause are not necessary. 

Proof: They are not needed in any previous lemmata used for the completeness proof. 0 
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6.4 Extensions for the Theory AC 

6.4.1 Extensions and Context Variables 

With AC-theories we mean theories with some AC operators (but the following holds also 
for theories with some ACU-operators). In commutativity axioms (like x + y ~ y + x; 
and also in identity axioms like x + 0 ~ x) there are no terms having a non-variable proper 
subterm. So only associativity axioms (like x+(y+z) ~ (x+y)+z) lead to AC-extensions. 
These AC -extensions starting with a clause 

-+a+b~c 

are 

-+(a+b)+x~c+x 

-+z+(a+b)~z+c 

--+((a+ b)+ x) + x2 ~ (c + x) + x2 

... ' 
i.e. we need infinitely many clauses to get closed (under AC-extension) sets. But the second 
extension is AC -equal to the first one, and all other clauses are AC-equal to instances of 
the first one. So if any of the above left sides AC-matches a term, the first one will also 
match. Also the right sides of the extended equations are AC -equal, so if we replace a term 
matched by the left side of any of the above extensions by the (instantiated) right side 
ru, we can do the same with the first rule and obtain a term E-equal to ru. We will use 
these facts to show that we do not need more than one AC -extension and no extensions of 
extensions. We need extensions only for lemma 6.31. Below we present an AC-version of 
this lemma using at most one extension step. 

Definition 6.51 (Context Variable) 
Let C be a clause r --+ !:J., l ~ r, + an AC -operator and x a variable. x is called a context 
variable in l if 

• l = £1 + £2, i.e. the root of lis marked with + 
e X does not OCCUr in f or !:J. 

• x occurs once in l 

• x occurs directly below a + operator: 
x E subtermsAc( +, l) 

x is called a full context variable (in l) if 

• x is a context variable in l 

• r = r1 + r2 or r = x, i.e. the root of r is + or r is only the variable x 

• x occurs once in r 

• x occurs directly below a + operator (on both sides): 
x E subtermsAc( +, r) 

Definition 6.52 (E-Superterm) 
tIp is an E -superterm of t I q in t if and only if there exists 
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• an equation e 1 ~ e2 E E, 

• a non-variable position Pe E 0( e1), Pe =/; c 

• a position q1 E O(t) strictly above of q 

• and a substitution u with (ei/pe)u =E tjq and tjq1 =E e1 u 

• and either q1 = q or tjq is an E-superterm of tjq1 in t. 

We say a subterm tjq to be a maximal E-superterm of tjp, if it is not properly contained 
in any E-superterm of tjp. We say tjq to be a maximal E-superterm, if there is no E­
superterm of tjq in t. 

There are subterms oft which have no E-superterm (e.g. if their root symbol does not 
occur in any E-equation). If a subterm t1 has an E-superterm t 2 than there may be an 
E-equal term t~ and some subterm ti/p1 which has no E-variant that is a subterm oft~. 

Example 6.53 Let+ be an AC-operator, t = (a+b)+c, t1 = a+b and t~ = t' = (a+c)+b. 
t1 has an AC-superterm in t (which is t) but neither t 1 nor its only AC-variant b +a is a 
subterm oft'. 

Deciding whether a subterm has an E-superterm might be a difficult (and expensive) 
operation, depending on the theory E. ForE= AC it is a trivial operation: a subterm tfp 
has an AC-superterm in t, if the root operator of tjp is the AC-operator f and the node 
directly above tjp in t is marked with the same operator f. 

Definition 6.54 (AC-Extended Clause) 
Let + be an AC-operator and C be a clause r- t:,.,l ~rand l = £1 + £2 or l = v (for a 
variable v ). If there exists a ground substitution u such that lu ~ ru is the strictly maximal 
equation in C u, root( lu) = + and lu > AC ru, then the clause C AC = r - t:,., l + x ~ r + x 
is the AC-extended clause of C (for the equation l ~ r). We here assume x to be a new 
variable (i.e. a variable not occurring in other clauses). In that case we call the equation 
l + x ~ r + x the extended equation for l ~ r in C. 

Note that we have at most one AC -extended clause for every equation in the succedent 
of a clause C (and for every AC-operator), in particular, we do not consider the symmetric 
(and AC-equal) clause r- t:,., x + l ~ x + r, which is an AC-extended clause in the sense 
of the general definition for E-extended clauses (definition 6.3). 

Lemma 6.55 (Context Variables in AC-Extended Clauses) 
If C is an AC -extended clause (i.e. there is another clause D such that C is the AC -extended 
clause for D), then the extended equation in C contains a full context variable. 

Proof: Trivial (see definitions 6.51 and 6.54). 0 

Definition 6.56 (Sets Closed under AC-Extension) 
A set N of clauses is closed under AC -extension if for every clause C which 

• is unextended in N and 

• has a ground instance C u containing an equation lu ~ ru in the succedent that is 
strictly maximal in C u ( lu > AC ru) and the root of lu is marked with an AC -operator 
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the extended clause C AC of C for the equation f ~ r is also contained in N. 

Different to definition 6.8, we do not need the notion of an extended clause in N, because 
we do not consider extensions of extensions. 

Lemma 6.57 (Finite Closed Sets) 
If N is a finite set of clauses, then there exists a finite set M of clauses such that N ~ M 
and M is closed under AC -extension. 

Proof: By the closedness definition above, no extensions are needed for extended clauses. 
Each clause C in N has only a finite number n of equations in its succedent . For each 

such equation there exist at most two AC -extended clauses of C for each of the finitely many 
AC-operators (note that E = AC is finite by definition 4.1). If no side of the equation in 
the succedent is simply a variable, then we get at most one AC -extended clause for such 
an equation. 

Let Ext denote the set of all AC-extended clauses for clauses inN, then M:= NU Ext 
is closed under AC -extension: All extensions required for clauses in N are contained and 
extensions for clauses in Ext are not needed. 0 

Lemma 6.58 (Contexts and Productive Clauses) 
Let Du = r --+ Ll, fu ~ ru be a productive ground clause with strictly maximal equation 
£u ~ ru (and fu >Ac ru) . Let D 1u be a productive ground clause, D1 E Ext*(D,f ~ r) 
and the maximal equation of D1u is u1 [£u) ~ u1[ru). Let the root of fu be marked with f. 

• If f is not an AC-operator, then D1 = D (hence u1 = D). 

• If f is an AC-operator +,then u1 = []or the root of u1 and all nodes on the path from 
the root to the occurrence of 0 are also marked with +, so u1 = AC [) + c1 + · · · + en 
(n ~ 1). 

• u1 = 0 or the root of u1 is the same AC -operator as on the root of £u. 

Proof: If f is not an AC-operator, then all terms £-equal to u1 [£u) contain a subterm 
( fu )' which is reducible, because Du is productive. Hence D1 u is not productive unless it 
is Du itself. 

Now consider the case f = + and u1 :f.[). If there exists a node marked with g :f.+ on 
the path from the root of u1 to[), then the clause D1 cannot be a productive AC-extended 
clause of D. So all nodes on the above path are marked with + and we can write u1 as 
[) + Cl + . · . + Cn . 

The third part follows from the previous parts. o 

Lemma 6.59 (Properties for AC-Theories) 
Let c be a context such that c =Ac [) + c1 + . .. +en (n ~ 1). We have c[r) =Ac (c[r])' for 
every term rand the root of any term AC-equal to c[r] is marked with +. 

Let t be a ground term and t/PAC be a maximal AC-superterm of t/PAC in t . Every 
term t' contains a subterm (t/PAc)', say at position PAc E O(t'), and t[pAc - r] =Ac 
t'[pAC - r1 (for all terms r and r' with r =Ac r'). Moreover (t/PAc)' is a maximal 
AC -superterm of itself in t' . 

Proof: The first part of the lemma is obvious for AC-theories (all equations are linear). 
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Now consider the single step proof t = t1 = Ae t2 = Ae . . . = Ae tn = t'. By the 
definition of AC-superterm each ti contains a subterm Si AC-equa.l to tiPAe· Moreover Si 
is a maximal AC -superterm of itself in ti. Because of the linearity of the AC -equations 
we can rearrange and split the above chain into t = Ae ti = Ae t' and the AC -equation in 
the first part apply below PAe and in the second part above this position and moreover 
the subterm (tiPAC )' (in every term of the second part of the chain) is below a variable of 
the applied AC-equations. So (by linearity) we can apply the same AC-equations as in the 
second part (with a substitution in which (tiPAc)' is replaced by r for a certain variable) 
to show t[pAc f- r] =Ac t'[p~c f- r]. The required equality now follows from the previous 
one and r =Ac r'. 0 

Now we present the promised AC-version of lemma 6.31. 

Lemma 6.60 (Use of AC-Extended Clauses) 
Let NE U Ext U SExt be a set of clauses closed under AC-extension (in the sense of 6.56). 
Let D = r -+ ~'f. ~ r be a clause in NE U Ext and er a ground substitution such that 
fer ~ rer is a strictly maximal equation in Der, fer > E rer and Der is productive. Let t 
be a ground term. Assume le satisfies all ground instances of E-equations between terms 
smaller than t. 

1. If t' is reducible at position p to a terms := t'[p f- u1[rer]] by a rule (u1[£er])' =? 

u1[rer] produced by D1er and D1 E Ext*(D,£ ~ r), then there exists a clause 
DAe = r -+ ~.f.Ac ~ TAC in NE u Ext (sometimes D itself), a substitution erAc 
(sometimes er itself) with fer = ferAe, ~er = ~erAc, f.AcerAe =Ae tiPAC and 
t[pAc f- rAeerAe] =Ac t'[p f- u1[rer]] = s (hence le F= t[pAe f- rAcerAc] ~ s), 
where tiPAC is the maximal AC-superterm of tip in t. Either DAe = D or DAe is 
the AC -extended clause of D for f. ~ r. 

2. In particular, if t is a ground instance of a side of an associativity axiom (other 
equation of AC do not have non-variable subterms) e ~ ee E E, i.e. t = eere and 
p is a non-variable position of e such that t (resp. eere) is reducible at position p 
to s by application of a rule generated by Der, then there exists a clause D Ae = 
r-+ ~,f.Ac ~ rAe and a substitution erAc (as above) with f.AcerAc =Act (i.e. f.Ac 
matches t at the root position) and le f= rAcer Ae ~ s. 

In both cases we have either DAcerAc = Der or -+ t ~ t >~xt DAeerAe (and the maximal 
equation of D Aeer Ae gets the special complexity for extended clauses in part (ii), definition 
of >~~t, 6.13). 

Proof of part 1 

If the root of tip is not an AC-operator, then PAe = p, D1 = D (hence u1 = [] and we can 
use er AC : = er; see also lemma 6.58). t[p AC f- r Ae er AC] = Ae t' [p f- u1 [ rer ]] follows from 
6.59. 

Similar to lemma 6.59 we need only to consider the case that all AC-equalities are 
applied below tiPAc, i.e. t'[pAe f- []] = t[pAe f- []].Assume the root operator of (u1[£er])', 
hence the root of u1[fer], tip (lemma 6.59) and tiPAe (definition of AC-superterm) is the 
AC-operator +. By lemma 6.58 the root operator of fer is also +. We have t' IPAC = 
c AC [ t' I p] = AC c Ac[ u1 [fer]] (by our above consideration also t I PAe = Ae c Ac[ u1 [fer]]) and 
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define context:= cAc[u1]. By lemma 6.58 and definition of AC-superterm context is either 
the empty context or AC -equal to c1 + c2 + · · · + Cn + [] ( n ~ 1 ). We distinguish some cases: 

• Case A: context = [] 
We have p = PAG, u1 = [] and the applied rule is (iu)'::::} T. Simply take O'AG := u 
and DAG :=D. 

• Case B: context#[] and DE Ext 
Then D contains a full context variable x in f. Take D AG := D, so l AG = l and 
TAG= T. We have l =AG £1 + x and T =AG T1 + x (for appropriate £ 1 and TI)· Now 
define O'AG by XO'AG := xu + c1 + · · · + Cn and YO'AG := yu for ally# x. We have: 

Because of lemma 6.59 we get 

=AG T10' + XO' + C1 + · · · + Cn =AG T10' + XO'AG =AG T AGO'AG 

If we put this AC-equality into the context t[pAG - []] we immediately get t[pAG -
TAGO'AG) =AG S. 

Obviously lu AG > AG iu and lu AG is the maximal term of the extended clause D 
under the substitution u AG. Therefore lu AG ~ TO' AG gets the special complexity (in 
definition 6.13, case (ii)) and we have ~ t ~ t >~xt DuAG· 

• Case C: context # [] and D E NE 
Here we take the AC -extended clause of D for .e ~ T' i.e. D AG = r ~ .6., .e + X ~ T + X' 

so l AG = l + x and TAG = T + x and x is a context variable of D AG. Now define u AG 
by XdAG := c1 + · · · + Cn and YO'AG := yu for ally# x. We have: 

Because of lemma 6.59 we get 

=AG TO'+ XO'AG =AG TAGO'AG· 

If we put this AC-equality into the context t[pAG - []]we immediately get t[pAG -
TAGO'AG] =AG S. 

Obviously iAGO' AG > AG lu and iAGO' AG is the maximal term of the extended clause 
D AG under the substitution u AG. Therefore iAGO' AG ~ T AGO' AG gets the special 
complexity (in definition 6.13, case (ii)) and we have ~ t ~ t >~xt DAGO'AG· 

Proof of part 2 

Here we have PAG = €, so part 2 is simply an application of part 1. 0 

Remark to the previous lemma: Case B proves that extensions for extended clauses are not 
necessary. It uses only the fact that D contains a context variable x. So replacing D E Ext 
in case B by D contains a context variable x in l and also replacing D E NE in case C 
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by D does not contain a context variable in .e, the lemma proves that for superpositions 
we do not need extensions for clauses containing a context variable (in the considered 
equation). But if the clause D contains a context variable and belongs to NE, we do not 
get ......, t:::::: t >~xt DO'AC, because clauses in NEG do not get a reduced complexity in the 
definition of >::t (6.13). The reduced complexity is needed in lemmata 6.44 and 6.48 to 
show the used extended clause to be smaller than the considered clause Cor ......, t:::::: t. We 
will reuse this proof with the above remark in lemma 6.67. 

This lemma looks quite different to lemma 6.31 (in particular the proofs are different). 
To prove refutational completeness of MExt we used only parts 2 and 3 of lemma 6.31. 
Part 1 is used for induction to prove the lemma itself (we in general need extensions of 
extensions of productive clauses, but already the first extension might not produce rules). 
Here (in lemma 6.60) we can skip part 1 (of lemma 6.31) because we need at most one 
AC -extension step. 

We also prove a stronger property: If a term is reducible at position p we can superpose 
on the maximal AC-superterm oftjp and not simply on tfp. So in the AC-case we can also 
superpose on t/PAC and for general E on maximal E-superterms. But we doubt, whether it 
is interesting for general E. We are sure it is interesting for AC: It is sufficient to superpose 
upon maximal AC-superterms, so all possible AC-variants are treated the same way and in 
an implementation we can abstract from certain AC-variants, e.g. use flattened terms. 

But the lemmata (6.31 and 6.60) share the main property: If a term t' is reducible, 
then we can superpose a clause on any AC-variant t oft' (and the term obtained by the 
superposition replacement is in our interpretation equal to the reduced term). 

Using the lemma 6.60 (parts 1 and 2) instead of 6.31 (parts 2 and 3) we can prove the 
refutational completeness for AC-theories as done for the general case. 

Lemma 6.61 (Superpositions upon Maximal AC-Superterms) 
If we restrict the superposition left and superposition right inferences such that we superpose 
upon maximal AC-superterms only, the inference system remains redundancy-complete. 

Proof: If we can superpose (the greater side of the maximal equation of a productive 
clause) upon a sub term t / p (occurring in another clause; note that other inferences are not 
considered in previous proofs), then by lemma 6.60 we always find a clause such that we 
can also superpose upon the maximal AC-superterm of tfp in t. Replacing an inference 1r 

with a superposition upon a term having a proper AC -superterm by an inference 1r max with 
superposition upon the maximal AC-superterm, we get an AC-equal conclusion. Moreover 
for any ground instance, we know that the AC -equalities to show the conclusions of 1r and 
1r max to be AC -equal contain only terms smaller than the maximal term of the inference. 
Whenever we need a superposition inference in the completeness proof for MExt, we know 
that the needed AC -equalities are satisfied. So the completeness proof remains valid, if we 
exclude the above inferences. 0 

6.4.2 Further Reducing the Number of AC-Extended Clauses 

Unnecessary extended clauses may have a strong influence on the efficiency of completion or 
theorem proving methods. Therefore we now want to give a weaker (than 6.56) closedness 
definition (we call it AC-closed sets), sometimes resulting in much less AC-extended clauses 
(see example 6.65). 
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Definition 6.62 (AC-Closed Sets) 
A set N of clauses is AC -closed if for every clause C = r - !:l., l ~ r which 

• is unextended and 

• has a ground instance C q such that the equation fq ~ rq is strictly maximal in C q, 
fq > AC rq and root( fq) = + for an AC -operator + 

either the AC -extended clause of C for l ~ r is contained in N or C contains a context 
variable x inland there are finitely many clauses Di E NU AC such that for all ground 
terms c there are ground substitutions Pi with the following properties: 

• DiPi contains only terms smaller than fq + c and 

• {DiPi} I= rq + c ~ rqh 

where q 1 denotes the substitution with yql = yq for all y :f: x and xq1 = xq + c. 
Let us in the latter case call C a self extending clause (in N ). 

Lemma 6.63 Sets closed under AC-extension (by definition 6.56) are always AC-closed 
(hence there are always finite AC-closed sets for finite sets of clauses). 

Proof: Always use the "either" branch in the above definition. 0 

But in the previous definition, self extending clauses (a subset of clauses containing a 
context variable) do no need extensions. A clause with a full context variable (e.g. every 
AC -extended clause) is self extending: 

Example 6.64 Let x denote a full context variable in C = r - !:l., l + x ~ r + x. Then 
{ C} is AC -closed (and also { C} UN for an arbitrary AC -closed set N). Let q, c and q 1 be 
defined as in 6.62. We have to show that ( r + x )q + c ~ ( r + x )qi follows from other clause. 
We need only the AC -equality ( rq + xq) + c ~ rq + ( xq +c), which obviously contains only 
terms smaller than ( l + x )q + c. 

But there are also clauses C with context variables (not full context variables) such that 
C does not need extensions. 

Example 6.65 (Natural Numbers) 
We consider a specification of natural numbers with 0 and the successor function s as 
constructors and AC-operator symbols + (addition) and* (multiplication). 

Nat = { - x + 0 ~ x 

- s(y) + x ~ s(y + x) 

-x*o~o 

-s(y)*X~Y*X+x 

-X* (y + z) ~X* y +X* z) } 

The set is AC -closed (if we assume an ordering > AC such that each of the above equations is 
orientable from left to right): W.o.l.o.g. we consider a substitution q replacing the variables 
in the clauses by arbitrary ground terms denoted by n, nt, n2 , ••• and the context variable 
x (from definition 6.62) by m. We will show that for every clauses C of Nat we do not need 
any extension, because C is self extending in Nat . 
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• -t x + 0 ~ x: This clause already contains a full context variable (so does not need 
an extension, cf. previous example). 

• -t s(y) + x ~ s(y + x ): The clause contains a context variable x. It remains to show 
that s(n1 + (n2 +m))~ s(n1 + n2) +m follows from clauses containing only terms 
smaller than (s(n1) + n2) +m. It follows from the clause itself with the substitution 
{y- n1 + n2, x- m} and the AC-equality s((n1 + n2) +m) =Ac s(n1 + (n2 +m)). 

• -t x * 0 ~ 0: the clause contains a context variable x and 0 * m ~ 0 follows from the 
clause itself by substituting x with m. 

• -t s(y) * x ~ y * x + x: The context variable is named x. Now consider (n1 * n2 + 
n2) * m ~ n1 * ( n2 * m) + n2 * m: it follows with some AC -equalities and the instance 
-t (n1 * n2 + n2) *m~ (n1 * n2) *m+ n2 *m of the last clause (the distributivity 

law). 

• -t x * (y + z) ~ x * y + x * z: Again the clause contains a context variable x. We 
conclude ( n1 * n2 + n1 * n3) * m ~ n1 *m* n2 + n1 *m* n3 by another application of the 
distributivity axiom to the left side of this equation (and some small AC-equalities). 

With definition 6.56 we need AC-extended clauses for all clauses. This would result in 
many unnecessary superposition inferences with these useless extended clauses. 

Example 6.66 As a second example we present a structure with an associative and com­
mutative multiplication operation, a zero 0 (clause 2), a neutral element 1 (clause 3), which 
is different from 0 (clause 1, hence there is no trivial model for this specification), and 
an inverse operation for multiplication (clauses 4 and 5). Moreover the structure is zero 
divisior free (clause 7). Note that it contains three non-Horn clauses (clauses 4, 5 and 7). 

(1) 1 ~ 0 -t 

(2) -t X· 0 ~ 0 

(3) -t X ·1 ~X 

(4) -t x · inv(x) ~ 1,x ~ 0 

(5) -t(x·inv(x))·y~1·y,x~o 

(6) -t inv(1) ~ 1 

(7) W ·V~ 0 -t W ~ 0, 1J ~ 0 

The set of clauses is AC -closed. Clause ( 5) is the AC -extended clause for ( 4). Any other 
clause does not need an extension: clauses (1) and ( 6) do not contain a multiplication 
operator; clause (7) has its maximal equation in the antecedent; clauses (2) and (3) are 
self-extending, clause (5) too, because it is itself an extended clause. 

Inferences from the above clauses are redundant. As an example we consider a super­
position left inference between clauses (5) and (7): 

-t (x · inv(x)) · y ~ 1· y,x ~ 0 inv(x) · (x · y) ~ 0 -t inv(x) ~ O,x · y ~ 0 

1 • y ~ 0 -t inv( X) ~ 0, X· y ~ 0, X ~ 0 

We have to substitute clause (7) by u = {w- inv(x), v- x·y} to obtain the right premise 
of the above inference. Because clause (7) is symmetric in w and v, the redundancy of a 
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similar inference with u sym = { v +-- inv( x), w +-- x · y} follows from the redundancy of the 
above inference. 

Now we prove the redundancy ofthe above inference. Consider a ground instance of the 
above inference with substitution u1. If the equation 1 · yu1 ~ 0 in the antecedent of the 
conclusion is not satisfied, the ground instance is true. Otherwise we have 1 · yu1 ~ 0, and 
by clause (3) also yu1 ~ 0. With clause (2) we conclude xu1 · yu1 ~ 0, hence an equation 
in the succedent of the conclusion is satisfied and the conclusion is true in this case, too. 

The self extending clauses do not really fit in our previously presented framework, which 
is based on the separation of NE and Ext. Here some instances of self extending clauses 
have to be treated as NEG-clauses, others as ExtG-clauses. 

We will only sketch, which modifications are needed to work with self extending clauses. 
We will denote a self extending clause by Sand assumeS= f---+ !:l.,f. + x ~ r (for a context 
variable x in f.+ x ). For the interpretation (cf. definition 6.17), instances Su are in general 
treated as NEG-clauses, except x is substituted by t1 + c, then they are treated as ExtG­
clauses, e.g. produce rules if Sr is productive (where T is similar to u, except that x is 
substituted by t1 only). So we may regard Su as an extended clause for Sr. Also the 
complexity of such a u-instance of S has to be similar to the complexity of ExtG-clauses 
(cf. definition 6.13, case (ii) ). 

Then we can formulate a lemma similar to 6.60, but now using definition 6.62. We will 
emphasize the differences to lemma 6.60 using italics. 

Lemma 6.67 (Use of AC-Closed Sets) 
Let N be an AC-closed set of clauses (see definition 6.62). Let D = r ---+ !:l.,f. ~ r be a 
clause in N and u a ground substitution such that f.u ~ ru is a strictly maximal equation 
in Du, lu >E ru and Du is productive. Let t be a ground term. Assume le satisfies all 
ground instances of E-equations between terms smaller than t and all ground instances of 
clauses in N containing only terms smaller than t. 

1. If t' is reducible at position p to a terms := t'[p +-- u1 [ru]] by a rule ( u1 [lu])' => u1 [ru] 
produced by D1u and D1 E Ext*(D,f. ~ r), then there exists a clause DAc = f---+ 
!:l., lAc~ r AC in N (sometimes D itself), a substitution u AC (sometimes u itself) 
with fu = fuAc, f:l.u = f:l.uAc, lACUAC =Ac tfPAC and le~ t[pAC +-- TACUAc] ~ s, 
where t/PAC is the maximal AC-superterm of tfp in t. 

2. In particular, if t is a ground instance of a side of an associativity axiom (other 
equation of AC do not have non-variable subterms) e ~ ee E E, i.e. t = eue and 
p is a non-variable position of e such that t (resp. eue) is reducible at position p 
to s by application of a rule produced by Du, then there exists a clause D AC = 
r ---+ !:l., lAc ~ r AC and a substitution u AC (as above) with lAcu AC = AC t (i.e. lAc 
matches t at the root position) and le I= r ACU AC ~ s. 

In both cases we have either D ACU AC = Du or ---+ t ~ t >~xt D Acu AC (and the maximal 
equation of D Acu AC gets the special complexity for extended clauses in part (ii), definition 
of >~~t, 6.13). 

Proof: The proof is very similar to the one of lemma 6.60. Whenever lemma 6.60 needs 
an AC-extended clause (i.e., when the clause does not contain an appropriate context 
variable, see also the remarks following lemma 6.60), then either there exists an extended 
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clause CAe by definition 6.62, or another instance of the already considered clause D, 
which has properties similar to AC-extended clauses. Note that we do not require t[pAe +­

TAeO"Ae] =Ae t[p +- c[rO"]] = s but only le F= t[pAe +- rAeO"Ae] :::::::: s (because for self 
extending clauses we may need further clauses of N to show this equality, it is in general 
not simply an AC-equality) and that le has to satisfy more clauses than in lemma 6.60. 

Note that we obtain the match of£ and tiPAe in case B (proof of lemma 6.60), if£ 
contains a context variable. We do not need a full context variable for the match. But for 
a full context variable we get t[pAe +- rAeO"Ae] =Ae sand with a context variable which 
is not a full context variable, we need the clauses Di to show that a similar equation holds 
in le. o 

The previous completeness proofs already contain le satisfies all clauses smaller than C 
as an induction hypothesis (for some lemmata; we can add it as a hypothesis to the whole 
proof). So we can use this lemma the same way we used lemma 6.31 to show the redundancy­
completeness of MExt for AC-closed sets. 

Continuing the above consideration (with the example S, SO" and Sr) about modifica­
tions in the completeness proof, we have to remark that a lemma similar to 6.47 (there we 
show that D EO' is satisfied if the corresponding non-extended clause DO" is satisfied) does 
not hold for SO" and Sr. Sr ~SO", but using the AC-equality (£0' + ti) + c:::::::: fq + (t1 +c) 
we have {(£0' + t1 ) + c:::::::: £0' + (t1 + c),Sr} I= SO". So again the clause SO" is satisfied, 
if all NEG-clauses and all AC-equalities are satisfied. But the above AC-equality is (in 
general) not satisfied in lsu nor the interpretation of greater ExtG-clauses with the same 
maximal term fq + t1 + c (or a term E-equal to it), so we have to modify lemma 6.48: if 
C is an NEG-clause, it satisfies all smaller clauses (no modification needed), but if C is an 
ExtG-clause, then le satisfies only every clause in NG which contains only terms smaller 
than the maximal term of C. This lemma is sufficient to prove that all clauses are satisfied 
by hoP· So we can use lToP to show the redundancy-completeness of MExt for AC-closed 
sets (cf. theorem 6.49). 

Note that we have to modify lemma 6.48. So whenever we use this lemma in the following 
(e.g. in connection with compositeness, cf. section 7), we need some modification to use the 
following for AC -closed sets (e.g. an inference with maximal premise S 0' is composite, if 
its conclusion follows from clauses containing only terms smaller than the maximal term of 
SO", so ExtG-clauses with the same maximal term cannot be used). 

6.4.3 Implementing AC-Rewriting 

Working with equational specifications or sets of Horn clauses (which are both contained 
in our framework as special cases) we often use rewriting or conditional rewriting to show 
clauses (equations) to be redundant (i.e. for simplification and elimination purposes). For 
E = AC rewriting with AC -matching is often used. We will here present a slightly weaker 
rewrite relation having the advantages that it is easy to implement and works also with 
flattened terms. We will give the definition for the unconditional case. It can be lifted to 
conditional rewriting for definite Horn clauses the usual way. 

Definition 6.68 (Rewriting with Maximal AC-Matching) 
Let R be a rewrite system. A term t rewrites with maximal AC -matching to s (we write 
t ===?RAC s) if and only if there exists a position p E O(t) such that tip is the maximal AC­
superterm oft I p in t, a rule £ => r and a substitution 0' with tIp = AC £0' and s = t[p +- rO"]. 
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Note that rules are applied with AC-matching, but only at maximal AC-superterms. 
We will study the properties of the interesting rewrite relation =>RAC in greater detail. 

Definition 6.69 Let R be a set of rewrite rules, represented as a set of clauses N, where 
N contains a clause --t l ~ r for each rule l ~ r of R. Let N 1 denote the set of all AC­
extended clauses (in the sense of AC-specific definition 6.54) for clauses in N. Rext denotes 
the rewrite system consisting of a rule l ~ r for each clause --t l ~ r in N U N 1 (note that 
NU N1 is closed under AC-extension). 

Lemma 6. 70 Let R be a set of rules and t and s be ground terms. We have: 

t =>RjAC s 

t => Rezt·AC S 
I 

t 11 =>RAC S ezt 

if and only if 

if and only if 

Proof: By definition of AC -extension we have {:::::::} R = {:::::::} Rezt. Regarding a rewrite step 

as an abbreviation of 

we can translate it to 
t =Act' =>R S. 

This implies =>R,.ze·AC ~ =>RjAC· The inclusion =>R:.,~ ~ =>R...,e·AC is obvious. Both 
inclusions yield a proof for the if-direction of the lemma. 

Now consider 
t =>RjAC S 

as an abbreviation for 
t =Act' =>RjAC s' =Ac s, 

where the rule l ~ r is applied at position p' oft' under the substitution u. Let t' fPAc 
denote the maximal AC-superterm oft' fp' in t'. By lemma 6.59 there exists a position PAC 
oft such that tfPAC =Act' fPAc and t[pAc - u] =Ac t'[pAC - u'] (for all terms u and u' 
with u =Ac u'). Moreover (t/PAC )'is a maximal AC-superterm of itself in t. Note that 
t' IPAc =Ac c[lu] for an appropriate context c = c1 + ... +en+ 0 and s =Ac t'[pAC- c[ru]]. 
Similar to lemma 6.60, there exists a rule l1 ~ r1 in Rext which matches tfPAC at the root 
and reduces it to a term AC-equal to c[ru]. As only the notation differs from lemma 6.60, 
we will repeat only a sketch of the case analysis: 

• For p' = PAc we use the same rule l ~ r under the same substitution u. 

• If the rule l ~ r contains a context variable x, we extend the substitution such that 
x also matches the context part c (not the 0 of course). 

• Otherwise we use the extended rule. 
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Because t/PAC is a maximal AC-superterm, this rule reduces t to a term s" using the 
rewrite relation with maximal AC-matching. So we have shown that the first line of the 
lemma implies the third one. But with :=}RAc ~ :=}Re.:r:t·AC this implies also the second 

e.:r:t 

statement. 0 

Using Rext and AC-matching we get the same reduction power as using rewriting modulo 
AC. Even more, we get a coherent rewrite relation: 

Lemma 6. 71 Let R be an arbitrary set of rules. The rewrite relations :=}R/AC' :=}Re.:r:t·AC 

and :=}RAC are coherent modulo AC. (But they are not confluent in general.) Moreover· 
e.:r:t 

t :=}Re.:r:t·AC S 

t :=::}RAC s 
e.:r:t 

implies 

implies 

(More exactly: the rewrite step implies that for all t 1 with t 1 = AC t there exists an s1 with 
s1 = AC s and t 1 can be reduced to s1

.) 

Proof: Rewriting modulo AC is coherent (modulo AC) by definition. We now prove only 
the "moreover" part of the lemma, which implies coherence, so consider 

By the previous lemma we have 
I I 

t :=::} R/AC S 

and applying the lemma again we get 

That is the coherence modulo AC of:=::} Re.:r:t·AC. The same proofs applies to :=::} RAc instead 
e.:r:t 

of:=::} Re.:r:t·AC · 0 

This lemma ensures that we can apply lemma 6.70 to arbitrary chains of rewriting, not 
only to one-step rewriting: 

Lemma 6. 72 Let R be a set of rules and t and s be ground terms. We have: 

if and only if 

if and only if 

Proof: We will only consider a chain of two rewrite steps and simulate a derivation with 
rewriting modulo AC by rewriting with AC-matching. Then the remaining parts of the 
proof become obvious. Consider 

t :=}R/AC S :=}R/AC r. 

By lemma 6.70 we have two rewrite steps 

and 
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By the previous lemma applied to the second rewrite step we yield 

I 11 
S =}R.,t·AC T · 

So we can combine rewrite steps to 

0 

So we can simulate the relation =}R/AC by rewriting with maximal AC-matching in the 
extended set of rules. Often in AC-completion procedures based on MEzt, the set of clauses 
is kept closed under AC -extension, so the rewrite system related to the set of clauses (or 
a subset of it) is often already closed under AC-extension (i.e. R = Rezt) and we can 
immediately use rewriting with maximal AC-matching without constructing an enhanced 
rewrite system. 

Implementing rewriting with a set R of rules in a completion procedure, we could 
construct a global matching procedure considering all of the rules in R at the same time: 
we can use information discovered when trying to match a term with a rule T, to match the 
same term with other rules. But as the set of rules often changes during completion, we do 
not do so: we forget about information involved in previous mismatches (because it is too 
expensive to construct a global matching procedure for a set of rules which often changes, 
so we have to construct such a procedure every time the set of rule changes). The pair 
of a rule and its extension is often considered as a unity, e.g. both rules are constructed 
together and are eliminated together. If we do so, we should also implement the matching 
with both of these rules as a single action, because the rules are so closely related that a 
mismatch with one of them yields valuable information to the match (or mismatch) with 
the other rule. 

Regarding that sometimes a rule which has an extension does not need the extension 
(e.g. s(x) + y ~ s(x + y), cf. example 6.65), a completion algorithm might work with a 
subset of Rezt. 

Definition 6. 73 By R1 we denote any subset of Rezt such that for each rule l ~ T in Rezt 
the terms .e and T are joinable modulo AC with the rewrite relation ==} RAc. 

1 

We may construct such a set R1 by first adding extended rules for each rule in R 
(of course only if there is any such extended rule for the considered rule). Then we can 
eliminated some rules .e ~ T, if .e and T are reducible to AC -equal terms using rewriting 
with maximal AC-matching and applying only rules different from .e ~ T. 

Assume .e + x ~ T + x is the extension of .e ~ T and .e already contains a context variable. 
If we can reduce l + x by a u-instance of .e ~ T to TU and then join TU and T + x, then the 
clause isomorph to the rule l ~ T is self extending. This method yields a sufficient criterion 
for a clause to be self extending. The above definition of R1 covers this method and we may 
encounter such a set of rules R1 in an AC-completion process based on AC-closed sets. 

Lemma 6. 7 4 Let R be a set of rules and t and s be ground terms. We have: 

implies 
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Proof: The proof of lemma 6. 70 provides a rule £1 ::;. r1 E Re:r:t able to reduce t to s'. By 
the above definition of R1 we have £1 .J,I.RAc rb which implies t .JJ.RAc s'. 0 

1 1 

To get a coherent rewrite relation, we have to further restrict the elimination of rules from 
Re:r:t. We admit at most one reduction step at the right side of a rule: 

Lemma 6. 75 If the rewrite relation :::::::} R/AC is terminating and for every rule i :::} r E 

Re:r:t \ R1 we have i :::::}R+ Ac v = AC v' <== RAc r (note that the last rewriting is single step 
1 1 

rewriting) or i :::::::} ~Ac r' = AC r (for an example of such a set R1 see 6.65 and consider 
1 

each clause in Nat as a rewrite rule), then the rewrite relation :::::::} RAc is coherent modulo 
1 

AC. 

Proof: Rewriting modulo AC is coherent (modulo AC) by definition. Now consider 

Then we have 

t' = AC t :::::::} RAC S. 
1 

, , 
t :::::::} R/ AC S 

(because :::::::} R1 ~ :::::::} Rezt = :::::::} R) and applying the previous lemma (regarding that there 
exists a rule £1 ::;. r 1 E Re:r:t which is able to reduce t' to s" and this rule is either contained 
in R1 or eliminated the restricted way allowed for this lemma) we get either 

or 

t' :::::::} ~AC s" 
1 

t , + , " 
:::::}RAC V = AC V <==RAC S • 

1 1 

The first case is the coherence modulo AC of :::::::} RAC . For the latter case we have to 
1 

eliminate a coherence peak 
" , S =AC S =:}RAC V 

1 

using induction on the size of coherence peaks occurring in the equational proof (using 
:::::}R/AC as on ordering). Due to our restriction on eliminating Re:r:t rules, we get only 
coherence peaks, e.g. solving the above coherence peak by reducing s to w and v' to w' we 
get a new proof of the equality of t' and s containing a coherence peak 

but never a confluence peak (we will get confluence peaks for arbitrary Rll i.e. admitting 
more than one reduction step on the right side of a rule). Each of these coherence peaks 
can be eliminated (we can prove this using induction). So in all cases we get a coherent 
relation. 0 

But to simulate chains of :::::}R/AC we either need the confluence modulo AC of =:::}Rfc 

(see next lemma) or we have to require that for rules i ::;. r eliminated from Re:r:t we have 
i =:::} ~Ac r' (i.e. without reducing the right side of the rule). The latter case seems too 

1 

unnatural to us, so we do not further consider it here. 
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Lemma 6. 76 If ~ Rfc is confluent modulo AC and ~ R/AC is terminating, then we 
have: 

t ~RJAC s implies 

Proof: Similar to the previous lemma we can show the coherence modulo AC of ~RAC 
1 

using its confluence modulo AC. Then by [Jouannaud/Kirchner 86] (their theorem 5) the 
relation is Church-Rosser modulo AC, so any equality in =RuAC can be decided by rewriting 
(note that the termination of ~R/AC implies the termination of ~RI/AC)· This holds 
particularly for t and s. 0 

Without confluence of ~ Rfc, we could transform a rewrite chain of ~ RJAC only into a 
(in general) non-rewrite proof using ~RAc. 

1 
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7 Redundancy and Completion 

We consider refutational theorem proving. To prove that a theorem T holds in a specifica­
tionS (here this means a setS of clauses), we add the negation ofT (we assume -.T to be 
a set of clauses too) to S resulting in a specification S0 • Then a theorem prover takes as 
input this specification So and produces a (possible infinite) sequence SI, s2, ... of specifi­
cations until it finds a specification Sn for which it knows whether Sn is consistent (then 
T is not a theorem in S) or inconsistent (and T is a valid theorem). For ME-saturated 
(and finite) sets we can decide consistency by theorem 5.32 (and for MExt-saturated set~ 
by theorem 6.49). So a main task for the prover is the construction of such a saturated 
set starting from So (we call this part completion procedure). A minimal requirement for 
the correctness of a transformation from Si-l to Si is the preserving of consistency and 
inconsistency. But often we want to use (parts of) the prover (its completion procedure) 
also to construct ME-saturated (resp. MExrsaturated) sets for a consistent set So to get 
a saturated set Sn which allows more efficiently to prove other theorems involving So (ex­
ample: the Knuth-Bendix completion of a set So of unconditional equation; if we find a 
saturated set of equations (used as rules) Sn, then we can decide validity in So by rewriting 
with Sn; if we allow transformations which preserve consistency but changes the class of 
models satisfying our specifications, consistent sets Sn produced with the theorem prover 
will be useless for further theorem proving). So we here require more: each transformation 
preserves the class of models (so Si-I and Si have the same models, if any). We distinguish 
addition and deletion transformations: 

• Addition: Si = Si- I U A, where A is a set of logical consequences from Si- I 

• Deletion: Si = Si-I \ D, where D is a set of logical consequences of Si-I \ D 

Here a simplification transformation replacing a clause C by a simpler clause Cs is regarded 
as an abbreviation for the addition of Cs followed by a deletion of C. 

If a deletion removes only one clause D at a time, it is sufficient to require Si-I \ D I= D. 
But here we have the disadvantage that we cannot look in parallel for different clauses to be 
deleted. Also if we have done some work to delete a clause (e.g. have a partial prove that it 
follows from other clauses) we have to reconsider the whole work after the deletion of another 
clause. Moreover it may destroy work we have done to yield a saturated specification: to 
show inferences to be redundant in general the system adds clauses which are conclusion 
of inferences (with premises in Si-1 ). The addition of these clauses makes the inferences 
redundant (see corollary 7.13 together with lemmata 7.14 and 7.17; the user and the system 
might provide other clauses for simplification purposes). But if a clause (which is such a 
conclusion) is deleted because it follows from arbitrary clauses, the inferences do not remain 
redundant and have to be reconsidered again. The notion of redundancy (for clauses) itself 
it also not appropriate: first of all the deletion of redundant clauses does not preserve the 
class of models (as redundancy is defined using a single interpretation, i.e. a single model) 
and additionally it is not modular in the sense that a clause redundant in Si might become 
non-redundant in a set Sj (j > i). Therefore we will introduce a notion of compositeness 
and delete composite clauses. This allows the deletion of composite clauses in parallel, the 
deletion of composite clauses preserves the redundancy of inferences and a clause composite 
in Si will remain composite in all Sj with j ~ i. 

As we consider completion as a task in theorem provers, we first give some notions 
about completion. Then we will prove compositeness to be a general method to subsume 
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elimination and simplification methods known in theorem proving. Again for 'R we always 
substitute ME or MExt· 

Definition 7.1 (Redundancy Criterion) 
Let S be a set of clauses. A redundancy criterion Red is a relation Red between inferences 
and sets of clauses with 

1. For any inference 1r with maximal premise C and P-set Se which is 'R-saturated on 
NGe we have 

Red(1r, Se) implies 1r is redundant in Se 

2. 
Red(1r, S) implies for all s1 2 s. 

Definition 7.2 (Deletion Criterion) 
Let Red be a redundancy criterion. A deletion criterion del (w.r.t. Red) is a relation 
between sets of clauses with: 

del(D, S) implies S\DI=D 

and 
Red(1r, S) implies Red( 1r, S \ D) 

If we are only interested in theorem proving (and not in completion for consistent sets 
of clauses), we might in the above definition replace the condition S \ D I= D by S \ D is 
inconsistent if and only if S is inconsistent. 

Definition 7.3 (Completion Derivation) 
Let del be a deletion criterion. A completion derivation is a sequence S0 , St, S2, ... of sets 
of clauses with either: 

• Addition: Si = Si-1 U A, where A is a set of logical consequences from Si_ 1 

• Deletion: Si = Si-1 \ D with del(D, Si-1) 

Definition 7.4 (Limit System) 
The limit system Boo of a completion derivation S0 , S1 , S2, .•• is defined as the set of all 
persistent clauses, i.e. 

Definition 7.5 (P-Fairness) 
A completion derivation So, St, S2, ... is called fair (w.r.t. an inference system 'R) if every 
inference 1r (in 'R) with premises in S00 satisfies Red(1r, Si) for some i and S00 is a P-set. 

Lemma 7.6 (Correctness of Fair Completion Derivations) 
Let So, S1, S2, ... be a fair completion derivation (w.r.t. 'R). Then Soo is an 'R-saturated 
P-set and Soo and So have the same models (if any). 
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Proof: As we only delete and add logical consequences, the class of models remains 
invariant during the whole derivation. For any inference 1r with premises in S00 we have 
Red(1r,Si) for some Si, so Red(1r,Sj) for all j > i: for additions during completion it 
follows from definition 7.1, for deletions from definition 7.2. So for 1r we have Red(1r, 800). 

By fairness S00 is also a P-set. Assume S00 is not 'R.-saturated. Then there are inferences 
(with premises in S00 ) which are non-redundant in S00 • The totality of >c (resp. >~xt) 
implies that there exists a clause C and a non-redundant inference 1r with maximal premise 
C such that C is minimal in the following sense: every inference with premises (in S00 ) 

smaller than C is redundant. So we may assume Soo to be 'R.-saturated on NGe. We 
already know (see above) that we have Red(1r, Soo) and Soo is an 'R.-saturated P-set on 
NGe. But then with definition 7.1 we conclude 1r to be redundant in S00 • This contradicts 
our assumption, so S00 is 'R.-saturated. 0 

7.1 Compositeness 

We will define notions of compositeness for ME and MExt· We expect that similar defini­
tions and lemmata are useful for similar inference systems. 

Definition 7. 7 ( C-Boundedness) 
Let D be a clause, C be a ground clause, tmax a maximal (w.r.t. >E) ground term of C 
and u a ground substitution. Du is called C -bounded if 

• C >c Du and a term E-equal to tmax occurs in the antecedent of C, 

• or C >c Du and there is no variable x in D with xu =E tmax· 

Definition 7.8 (Bounded ME-Compositeness) 
Let N be a set of clauses. Let C and B be ground clauses. C is ME-composite (w.r.t. 
N) with bound B, if there exist ground instances C1u1 , ••• ,Ckuk of NU E such that 
CtUt, ... , Ckuk f: C and CjUj is B-bounded for all j with 1 ~ j ~ k. 

Note that in general we cannot use arbitrary instances of E-equations with terms E­
equal to the maximal term of B to show an inference or clause to be redundant. But 
there are special inference systems admitting special orderings on clauses, for which an 
E-equation is a very small clause, so that its use for redundancy is (nearly) unrestricted. 
An example is the system MExt, where we can use all E-equations applicable at terms 
occurring in C or smaller clauses to prove the clause C to be MExt-composite (see below). 

Definition 7.9 (ME-Compositeness of Clauses) 
Let N be a set of clauses and C be a ground clause. C is ME-composite (w.r.t. N), if C 
is ME-composite (w.r.t. N) with bound C. 

A non-ground clause is ME-composite if all its ground instances are ME-composite. 

Lemma 7.10 Let C be a ground instance of a clause in N and N be ME-saturated on 
NGe and N does not contain the empty clause. if an instance Du of a clause D in N is 
C-bounded, then le f: Du. 

Proof: By lemma 5.31 le f= Du' for a substitution u' with u' =E u. Let tmax be a maximal 
term of C. If a term E-equal to tmax occurs in the antecedent of C, then by lemma 5.30 le 
also satisfies Du. If there is no variable x in D such that xu =E tmax, by the same lemma 
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we also get le I= D(J'. If there is such a variable in D and there is no term E-equal to tma:r: 

in the antecedent of C, then D(J' is not C-bounded, which contradicts our assumptions. So 
with our assumptions in any case le I= D(J'. 0 

Lemma 7.11 (Redundancy of ME-Composite Clauses) 
Let C be a ground instance of a clause in a set N which is ME-saturated on NGe and does 
not contain the empty clause. If C is ME-composite (w.r.t. N), then it is redundant. 

Proof: There are ground instances Cb ... , Ck of Nu E which show C to be redundant. 
By lemmata 7.10 and 5.30 we know that le satisfies all these clauses C3. So le is a model 
satisfying these clauses and by cb ... ' ck I= c le must also satisfy c' which means that 
C is redundant. 0 

Definition 7.12 (ME-Compositeness of Inferences) 
A ground inference 1r with conclusion C and maximal premise B is called ME-composite 
(w.r.t. N) if either one of its premises is ME-composite (w.r.t. N), or else C is ME­
composite (w.r.t. N) with bound B. 

A non-ground inferences is ME-composite if all its ground instances are ME-composite. 

Corollary 7.13 (Addition of Clauses for ME) 
Let 1r be an inference with conclusion D. Then 1r is composite in NU {D} (for arbitrary 
N). 

Proof: For every ground instance 7r(J' and every inference rule of ME D(J' is smaller (w.r.t. 
>c) than the maximal premise C of 7r(J'. Trivially we have {D(J'} I= D(J'. So every ground 
instance of 1r is composite in NU {D}, hence 1r is composite. 0 

So simply adding conclusions is the straight forward way in a completion procedure to make 
inferences composite (so redundant in the limit system). 

Lemma 7.14 (Redundancy of Composite Inferences) 
Let 1r be a ground instance of an inference with premises in N U E. Let C be its maximal 
premise. Let N be ME-saturated on NGe and N does not contain the empty clause. If 1r 

is ME-composite (w.r.t. N), then it is redundant. 

Proof: Suppose the maximal premise of 1r is B and the conclusion is D. If one of the 
premises is composite, then (by lemma 7.11) it is also redundant and so 1r is redundant. 
Otherwise there are ground instances Cb ... , Ck of Nu E which prove D to be composite. 
By lemmata 7.10 and 5.30 we know that lB satisfies all these clauses Cj. So lB is a model 
for these clauses and (by Cb ... , Ck I= D) lB must also satisfy D, which means that 1r is 
redundant. 0 

Lemma 7.15 (Compositeness is well-founded) 
If a clause c is ME-composite (w.r.t. N), then for every ground instance c(J' there exist 
non-ME-composite ground instances C1, ... , Ck of NU E which prove C(J' to be composite. 

Proof: see [Bachmair/Ganzinger 91c]. 0 

Lemma 7.16 (Modularity of Compositeness) 

81 



(i) If N ~ N1, then every inference or clause which is ME-composite w.r.t. N is also 
ME-composite w.r.t. N1. 

(ii) If N ~ N1 and all clauses in N1 \N are ME-composite w.r.t. N1, then every inference 
or clause which is ME-composite w.r.t. N1 is also ME-composite w.r.t. N. 

Proof: Part (i) is obvious. For part (ii) assume there exists a ground instance C of a 
clause (or inference) which is ME-composite in N1. By lemma 7.15 there exists a set of 
non-ME-composite ground instances C1, ... , Ck of clauses in N1 U E which prove the clause 
(or inference) C to be ME-composite. As all ground instances of clauses in N1 \ N are 
ME-composite (by the assumption above), the clauses Cj are ground instances of clauses 
inN U E and C is also ME-composite w.r.t. N. 0 

Lemma 7.17 ME-Compositeness ofinferences is a redundancy criterion. ME-Composite­
ness of clauses is a deletion criterion w.r.t. ME-compositeness of inferences (as redundancy 
criterion). 

Proof: By lemma 7.14 and lemma 7.16 (part (i)) compositeness of inferences is a re­
dundancy criterion. By lemma 7.16 the compositeness of clauses is a deletion criterion. 
0 

Compositeness for MExt 

Note that the ordering >~xt (definition 6.14) depends on the set N: the weight of an 
extended equation in an extended clause might take the values from 0 to 2. 

Definition 7.18 (Complexities of Clauses) 
Let Ca be a ground instance of a clause. Consider >~xt as an ordering over E-multiset 
expressions for MExt of clauses (i.e. we do not consider clauses and compare their E-multiset 
expressions (which depend on the set N), but comparing given multiset expressions). For 
each set NU {C} there is an E-multiset expression of Ca. The minimal (w.r.t. >~xt) 
such multiset expression of C a is called the minimal complexity of C a. We denote it by 
CompMin(C). The maximal (w.r.t. >~xt) such multiset expression of Ca is called the 
maximal complexity of Ca. We denote it by CompMax(C). The maximal or minimal 
complexity of a clause C is denoted as a complexity of a clause C. 

Note that for many clauses the complexity is independent from the given set N. Only 
for clauses which might be extended clauses the minimal and maximal complexity may 
differ. 

Definition 7.19 (Bounded MExt-Compositeness) 
Let N be a set of clauses. Let C be a ground clause and B be a complexity of a clause. C 
is MExt-COmposite (w.r.t. N) with bound B, if there exist ground instances Ct, ... ' ck of 
Nu E such that C1, ... , Ck I= C, B >~xt CompMax(Cj) for all j with 1 '5: j '5: k. 

Definition 7.20 (MExt-Compositeness of Clauses) 
Let N be a set of clauses and C be a ground clause. C is MExt-composite (w.r.t. N), if C 
is MExt-composite (w.r.t. N) with bound CompMax(C). 

A non-ground clause is MExrcomposite if all its ground instances are MExt-composite. 
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Lemma 7.21 (Redundancy of ME:z:t-Composite Clauses) 
Let N := NE U Ext U S Ext be a set of clauses. Let C be a ground instance of a clause in 
N \Ext. Let N be ME:z:t-saturated on NGc, closed under E-extension and N does not 
contain the empty clause. If C is composite (w.r.t. N), then it is redundant. 

Proof: The proof is similar to lemma 7.11. Note that the clause C has an E-multiset 
expression in the set N which is equal to CompMax(C). All clauses Cj which prove C to 
be composite have E-multiset expressions inN which are not greater than CompM ax(Cj)· 
Hence CompMax(C) >~xt CompMax(Cj) implies C >~:z:t Cj. For the remaining part of 
the proof see the proof oflemma 7.11. 0 

Definition 7.22 (ME:z:t-Compositeness of Inferences) 
A ground inference 1r with conclusion C and maximal premise B is called MExt-composite 
(w.r.t. N) if either a premise Cu of 1r with C EN\ Ext is MExt-composite (w.r.t. N), or 
else C is MExt-COmposite (w.r.t. N) with bound CompMin(B). 

A non-ground inferences is MExt-COmposite if all its ground instances are MExt-com­
posite. 

Corollary 7.23 (Addition of Clauses for MExt) 
Let 1r be an inference with conclusion D. Then 1r is composite in NU {D} (for arbitrary 
N). 

Proof: For every ground instance 1ru and every inference rule of MExt Du is smaller 
(w.r.t. >~xt) than the maximal premise C of 1ru. For superposition left, equality factoring 
and equality resolution inferences this fact is obvious. The only problematic case is the 
superposition right inference with an (possibly) extended clause CE = r ~ D., t ~ s as 
maximal premise: 

r I ~ D.}, ti ~ si r ~ D., t ~ s 

r, ri ~D., D..t, t[p +-si]~ s 

Obviously all equations except the equations in D. and D..I are smaller (w.r.t. >:~t) than 
t ~ s of CE. Either the latter equation has a weight of 2 (see definition 6.13) and the 
conclusion is obviously smaller than CE, or we used the weight 0 for its maximal equation 
and all terms in D. are smaller than t. The other clause is smaller than CE, so either is 
is also an extended clause with weight 0, or contains only terms smaller than t. In any 
case also the equations in D..I are smaller than t ~ s and the conclusion is smaller than the 
maximal premise. 

Trivially we have {Du} I= Du. So every ground instance of 1r is composite inN U {D}, 
hence 1r is composite. 0 

So simply adding conclusions is the straight forward way also in an MExt-completion pro-­
cedure to make inferences composite (so redundant in the limit system). 

Lemma 7.24 (Redundancy of Composite Inferences) 
Let 1r be a ground instance of an inference with premises in N. Let C be its maximal 
premise. Let N be MExt-saturated on NGc, closed under E-extension and N does not 
contain the empty clause. If 1r is MExt-composite (w.r.t. N), then it is redundant. 

Proof: Let us denote the maximal premise of 1r by B. If one of the premises is composite, 
then (by lemma 7.21) it is also redundant and so 1r is redundant. Otherwise we use the 
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arguments of the proof of lemma 7.21 to prove that the conclusion follows from smaller 
(in the given set N) clauses of NG. So there are ground instances C11 ••• , Ck of NU E 
smaller than B which show D to be redundant. By lemmata 6.48 and 6.44 we know that 
lB satisfies all these clauses Cj. So lB is a model for these clauses and (by ell ... ' ck I= D) 
lB must also satisfy D, which means that 1!' is redundant. 0 

Similar to lemma 7.15, also MExt-compositeness is well-founded and satisfies lemma 
7 .16. So MExt-compositeness is a deletion criterion (cf. lemma 7 .17). 

As an example of compositeness we present the following lemma, which is specific to 
MExt-completion for E = AC: 

Lemma 7.25 Let E = AC. Let c = r- !:::..,£~rand CAc = r- !:::..,£+X~ r +X be 
clauses inN such that CAc is the AC-extended clause of C (for the equation i ~ r). Every 
superposition right inference on the term i + x of C AC, where we superpose upon £ + x 
strictly below the root, is MExt-composite in N. 

Proof: Let D be a clause r 1 - t::..1 ,t ~ s of N. Let 

be a ground instance of such a superposition right inference (with p =J £ and tcr > AC so'). 
Asp is a non-variable position of i + x and p =J £,we have p = l.p1 and Pl is a position in 
i. There is also a superposition right inference between Dcr and C cr: 

Let A be the set of ground instances of AC-equations which are needed for (ljp1)cr =Ac tcr, 
then we have 

But this clause implies the conclusion of the first inference 1l'CT in this proof (the clauses 
differ only by an additional context ([] + x )cr for the last equation in the succedent; note 
that we use implication for models with equality). All clauses in A U { Dcr, C cr} are smaller 
than C ACCT (for every set N, because ( i + x )cr > AC icr, so this holds also for minimal 
and maximal complexities of these clauses), so the inference with superposition on CAc is 
MExt-COmposite in N. 0 

A main efficiency problem in (semi)automatically theorem proving is the great number 
of inferences which have to be considered during completion and the inability to show a large 
subset of these inferences to be irrelevant. The notion of compositeness is the key to adopt 
a lot of known methods developed to show inferences to be irrelevant. Often these methods 
are originally applied to equational completion or Horn clause specifications only, but are 
valid also for a wider class of completion problems. The most popular technique shows 
the joinability of a critical pair by rewriting. It can be extended to rewrite relations for 
conditional equational specifications (conditional rewriting, or even contextual rewriting, 
cf. [Bachmair/Ganzinger 90], [Bachmair/Ganzinger 91c]) and even further to rewriting (or 
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conditional or contextual rewriting) with E-matching or even modulo E. These and also 
less algorithmic but more general methods (e.g. using connectedness instead of joinability) 
are subsumed by our notion of compositeness, hence can be implemented in a completion 
procedure based on our inference systems to enhance the performance of the completion 
component of a theorem prover. 

In particular, if we deal with associative and commutative properties, there are often a 
lot of unifiers and so a lot of inferences. Due to the permutative nature of the AC-theory, 
often inferences are merely duplicates of other ones or can be ruled out because of symmetry 
considerations. The number of clauses influences the number of inferences, so we should 
keep the sets of clauses as small as possible (the same argument applies to completion with 
E = 0). But even for a small set of clauses there can be an enormous number of inferences, 
which are expensive to generate and expensive to be shown to be composite (more expensive 
than for E = 0). Therefore techniques which show the compositeness of inferences right 
at construction time have been developed (e.g. avoiding reducible substitutions for the 
creation of critical pairs; or other critical pair criteria, cf. [Bachmair/Dershowitz 88]). But 
even further improvements are possible for methods which conclude the compositeness 
of inferences from the compositeness of other inferences (e.g. if we have superposed on a 
subterm sb we do not need superpositions on the symmetric subterm s2 ). These techniques 
are only known (to the author) for the special case E = AC ([Kapur/Musser/Narendran 
88], [Zhang/Kapur 89]; [Zhang/Kapur 90]). 
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8 Variants of Inference Systems 

8.1 Merging Paramodulation/Perfect Models 

In [Bachmair/Ganzinger 90], [Bachmair/Ganzinger 91a] and [Bachmair/Ganzinger 91b] we 
find a different inference system (compared with 4.6) where 

a) the formulation 
it exists a ground substitution such that the equation (term) is maximal (w.r.t. an 
ordering based on an ordering on ground terms) 
is replaced by 
the equation (term) is maximal (based on an ordering on terms with variables), i.e. 
all other equations (terms) are smaller or not comparable with the considered equation 
(term) 
and 

b) equality factoring is replaced by ordered factoring and merging para modulation. 

If we use the weaker formulation (the second one in (a) above) for our inference system (with 
equality factoring), we will get some more inferences (see example 8.2). But the merging 
paramodulation inference in [Bachmair/Ganzinger 91a] has a formulation where not only 
maximality is required but uT > vT for two terms perhaps containing variables. This is 
stronger than maximality and results in less merging paramodulation inferences (for non­
ground clauses). It is the reason why the lifting of some ground merging paramodulation 
inferences yields superposition right inferences (and not again merging paramodulation 
inferences on the non-ground level). Working with an ordering on ground terms only, we 
could replace the formulation UT > VT by UTUt > VTUt for all ground substitutions Ut. 
But then we may find situations where a ground merging paramodulation inference is not 
liftable (see example 8.3). So we will here use a weaker condition and require the relation 
uT > vT only for one ground substitution. This admits completeness and lifting is easier as 
in [Bachmair/Ganzinger 91a]. 

Working modulo a theory E, such an inference system with merging paramodulation and 
ordered factoring is complete, if we add inferences like E-closure or consider sets closed un­
der E-extension. We expect that also a version with merging paramodulation and one of the 
above E-specific enhancements in the formulation of [Bachmair/Ganzinger 91a] (i.e. with 
maximality and orderings on terms with variables) is complete. We prove the redundancy­
completeness for a derivative of ME. We therefore adopt the definitions for redundancy, 
saturation and completeness from ME. 

Definition 8.1 Let MME be the inference system as in definition 5.8 with the inference 
equality factoring replaced by the following two inferences: 

4.a) ordered factoring 
f -+b., tt ~SI, t2 ~ S2 

(f -+ b., tt ~ St )u 

where u E JLCSUE(tt ~ s11 t2 ~ s2) and there exists a ground substitution Ut such 
that itUUt ~ StUUt is maximal (w.r.t. >eq) in (f-+ b., it~ s11t2 ~ s2)uu1. 
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4.b) merging paramodulation 

rt ~ .6.1,8t ~ 82 r2 ~ .6_2,Ut ~ tt,U2 ~ t2 

(r1,r2 ~ .6.t,.6.2,ut ~ tt[p- 82],u2 ~ t2)u 

where u is the composition rp of two substitutions, r is in J.LCSUe(tifp,81), p E 
J.LCSUe(u1r,u2r), tifp is not a variable and there exists a ground substitution O't 
such that 

a) 8tO'O't >E 820'0't 
b) 8tO'O't ~ 820'0't is strictly maximal (w.r.t. >eq) in (rt -t .6.t,8t ~ 82)uut 

c) Ut O'O't ~ t1 O'O't is strictly maximal ( w .r. t. > eq) in (r 2 -t .6.2, Ut ~ tb u2 ~ t2 )uut 

d) tt O'O't > E t20'0't 

e) Ut O'O't > E t1 O'O't. 

The next example shows one difference between the formulations in a) (see beginning 
of this section). 

Example 8.2 We assume a lexicographic path ordering with decreasing precedence for the 
operators a/0, b/0, c/0, f /2 and g/2. Consider the clause 

C := -t g(x,b) ~ f(x,x). 

If we want to superpose with a u-instance of g(x,b) we need g(x,b)uut > f(x,x)uut, 
therefore b > XO'O't and the term substituted for x cannot contain an operator a. Now 
consider 

D := ~ g(y,b) ~ z,a ~c. 

If we want to superpose on g(y, b) we need g(y, b )uut ~ a, so yuut ~ a and the term 
substituted for y must contain an operator a. For a superposition right inference of Con the 
term g(y, b) in D we have to substitute x and y by the same variable (say x) and then need 
a substitution for x which must contain an a and cannot contain an a. This is impossible, 
so there is no such superposition right inference. For the inference system in [Bachmair/ 
Ganzinger 91a] there is such an inference with the conclusion -t f( x, x) ~ z, a~ c. 

Example 8.3 We continue the previous example by considering a merging paramodulation 
inference between the ground clauses Cu and Du, where u = {x- c,y- c,z- a}. 

~ g(c,b) ~ f(c,c) -t g(c, b)~ a, a~ c 

-t f(c,c) ~a, a~ c 

With our definition of merging paramodulation in definition 8.1 we can lift this inference, 
because u is a needed ground substitution fulfilling all conditions a) toe). With the stronger 
formulation g(x, b) > y (as in [Bachmair/Ganzinger 91a] or in this paper: g(x, b)u > yu 
for all ground substitutions) we cannot lift this inference to another merging paramodula­
tion inference. For [Bachmair/Ganzinger 91a] there is a superposition inference (previous 
example) which has a conclusion we can instantiate to the conclusion of the above ground 
inference (and that is the way they do the lifting of such merging paramodulation infer­
ences). But here there would be no such superposition right inference and we could not lift 
this inference. So we use the weaker requirement Ut O'O't > E t1 uu1 for at least one ground 
substitution u1 and have less superposition inferences but more merging paramodulation 
inferences in MMe (compared to the inference system in [Bachmair/Ganzinger 91a]). 
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Why using merging paramodulation? 

As we see in the following two examples, starting with the same set of (ground) clauses, 
for the different inference systems ME and MME we yield different saturated sets. Also 
the constructed rewrite system and even the interpretation may differ (even if we assume 
E = 0). In [Bachmair/Ganzinger 91b] the notion of perfect models is introduced. These 
models are only yield by inferences systems with merging paramodulation (see example 
8.5). 

Example 8.4 We consider four ground terms a to d with the total ordering a> b > c > d: 
We start with a set of two clauses: 

{ -a~ b,a~ d, 

- b~ c } 

. If we saturate this set w.r.t. our inference system ME (with equality factoring) we get one 
additional clause: 

Because b ~ d is not satisfied in the interpretation of this clause, the clause itself is satisfied 
in its interpretation and not productive. The rewrite systems RToP = Rfact constructed 
for the interpretation of these three clauses (which form an ME-saturated set) consists of 
two rewrite rules: 

R fact = {a =:} b, b =:} c} 

If we now saturate the above set of two clauses w.r.t. the inference system in [Bachmair/ 
Ganzinger 91a] or w.r.t. MME, we get also one additional (non-redundant) clause (with a 
merging paramodulation inference): 

-a~ c,a ~ d 

Now the rule set RToP = Rmerge contains a different rule: 

Rmerge = {a =:} c, b =:} c} 

But in this example we have the same interpretation in both cases, Rjact = R':nerge· In the 
next example we get different interpretations. 

Example 8.5 We consider the same ground terms with the same ordering as in the previ­
ous example 8.4. We start with an other set of two clauses: 

{ -a~ b,a ~ c, 

If we saturate this set w.r.t. our inference system ME (with equality factoring) we get one 
additional clause 

b ~ c- a~ b, 

which is not productive. 
Rjact ={a=:} b, b =:} d} 
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is the constructed rewrite system. H we now saturate the above set of two clauses w.r.t. the 
inference system in [Bachmair/Ganzinger 91a] or w.r.t. MME, we get also one additional 
(non-redundant) clause (with a merging paramodulation inference): 

--+a~ d,a ~ c 

Now the rule set RToP = Rmerge is different from Rjact: 

Rmerge = {a => c, b => d} 

And also 
Rjact = {a ~ b, b ~ d, a~ d} -=/= {a ~ c, b ~ d} = R':nerge· 

With the ordering on interpretations in [Bachmair/Ganzinger 91b] R':nerge is smaller than 
Rjact· R':nerge is the perfect (minimal) model. 

Completeness with merging paramodulation 

The lifting of ordered factoring inferences is obvious (cf. lemma 4.11) and the lifting of 
ground merging paramodulation inferences is more obvious than in [Bachmair/Ganzinger 
91a] (it may not result in superposition right inferences between non-ground clauses). But 
we include a remark in the proof of the following lemma how to prove lifting of merging 
paramodulation inferences in inference systems similar to [Bachmair / Ganzinger 91a]. 

Lemma 8.6 (Lifting Lemma 3) 
Let N be a set of clauses, c := rl --+ ~1, St ~ 82 and D := r2 --+ ~2, Ut~ tb U2 ~ t2 be 
clauses of N and <12 be a ground substitution. For any merging paramodulation inference 

in which we superpose at position pinto the term t1 <12 of D<12 , and pis not at or below a 
variable position of D, there exist ground substitutions r, p and <13 such that 

C D 

B 

is a merging paramodulation inference with the unsubstituted clauses and 

• 1" E J.LC SUE(St, tt/P) 

• p E J.LC SUE( Ut r, u2r) 

• rp<13 =E <12, so Crp<13 =E C<12 and Drp<13 =E D<12 

• B<13 =E F and all E-equality steps apply within subterms SB of B<13 with Ut<12 ?::.E 
SB1"P<13· 

Proof: We have (tt!P)<12 =E s1<12. So there are substitutions rand rt such that <12 =E rr1 
and r E J.LC SU E(ttf p, St)· Because Ut <12 = E u2<12 we get Ut rr1 = E u2rrt and therefore 
substitutions p and Pt with rt =E PPt and p E J.LCSUE(u1r,u2r). With transitivity of E­
equality we get <12 =E <11 := TPP1· Now we define <1 := rp and look at the above definition 
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8.1. Because all comparisons in conditions a) to e) for merging paramodulation inferences 
are done by E-compatible orderings, with substitutions a and a1 all these conditions are 
satisfied and the inference 

C D 
(rb r2 -+ ~b ~2, U1 ~ t1[p .__ s2), U2 ~ t2)rp 

is the desired merging paramodulation inference (with as := P1)· 
Remark: If we want to consider an inference system similar to the system in [Bachmair / 

Ganzinger 91a) (but working modulo E), where we do not use comparisons after instantiat­
ing the clauses with a1 but looking for maximal terms (equations) and requiring u1 T > E t1 T 

for merging paramodulations, we may use the following information: 
Let the ordering >E be stable under substitutions. For the substitution rp 

• the equation (s1 ~ s2)rp is maximal in Crp, 

• s2TP is not greater than s1 rp, 

• ( u1 ~ t 1 )rp is maximal in Drp and 

• t2rp is not greater than t1 rp 

(otherwise there cannot be a ground substitution as p1 : e.g. for stable orderings t2r p > E 
t1 rp implies t2TPP1 > E t1 rpp1). With the same argument (using the ground substitution 
pp1) we cannot have t1 T > E u1 T. So either we have also u1 T > E t1 T (and the above 
inference is also a merging paramodulation inference in that inference system) or u1 T and 
t1 T are incomparable and the above inference (needed for the lifting) is a superposition 
right inference. D 

The interpretation and its properties remain the same as in section 5.1. The definitions 
and lemmata in section 5.2 apply also to the inference system MME, except that we have 
to replace lemma 5.29 and 5.31, because these are the only lemmata which use equality 
factoring inferences. We will first prove a stronger version of lemma 5.29: in some cases 
the right sides of the productive equations are irreducible (see the difference to the former 
inference system with equality factoring: in example 8.5 a rule a => b is produced by a 
clause -+ a ~ b, a ~ c and b is reducible, but the interpretation of this set saturated with 
respect to MME does not contain such a rule). 

Lemma 8.7 (Properties of Non-Redundant Clauses) 
Let Fa := ra -+ ~a, ta ~ sa be a non-redundant ground instance of a clause in N and 
and assume that for all substitutions a' with a' =E a we have lFu ~ ra-+ ~a'. Let the 
equation ta ~sa be maximal (w.r.t. >eq) in Fa with ta >E sa, and let ta' be irreducible 
by ==>RFu (for all a' =Ea). If N is MME-saturated on NGFuU{Fa' I a' =Ea} and if lFu 
satisfies all ground instances of E-equations between terms smaller than ta, the following 
holds: 

(i) a is irreducible (w.r.t. ==>RFu), i.e. xa is irreducible for all x E vars(F) 

(ii) F is productive. 

(iii) For all (ra)' with (ra)' =Era and all ground clauses C >c For C =E Fa, 

(ra)' ~le . 
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(iv) For all Au' with a' =E u and all ground clauses C >c For C =E Fa, 

Au' n le= 0. 

( v) if A a contains a term t2u £-equal to tu, i.e. A a = t2u :::::: s2u, A2u, then sa is irre­
ducible by ~RFu (i.e. the right side of the productive equation is irreducible). 

Proof: The proof is similar to the one of lemma 5.29. We use induction on the ordering 
>c, so let us assume that (i)-(v) hold for every suitable instance F1 of N with Fa >c F1 . 

Since Fa is non-redundant we have Tu ~ lFu and Au n lFu = 0. 
(iii) see 5.29. 
(i) see 5.29. 
(ii) If Fa is not productive, then an equation t 2 u:::::: s2u £-equal to (but different from) 

the maximal equation tu :::::: sa of Fu occurs in the succedent of Fu. In other words, the 
equation tu :::::: sa is not strictly maximal and the clause is not productive, for this reason. 
A clause F1 = Tu'-+ Au' smaller than Fa can be obtained as conclusion of an instance of 
an ordered factoring inference with premise T -+ A, t :::::: s. This clause is false in lF(j = lFu'· 
This contradicts the required saturation. So from now on we may assume that no other 
equation £-equal to tu:::::: sa occurs in the succedent of Fa and hence that Fa is productive. 

(iv) lFu ~Tu-+ Au, so lFu n Au = 0. By our assumptions we also have lFu n Au' = 0 
and so by lemma 5.10 also l(Fu)' n Au' = 0. 

Suppose an Au' contains an equation uu' :::::: vu' which is satisfied by an le (with 
C >c Fa). We may assume that uu >E vu, for otherwise, if uu =E vu, then tu >E uu (if 
tu = E uu the equation tu ·:::::: su were not maximal in F u) and uu' :::::: vu' is also satisfied 
by lFu (by the assumption the needed E-equalities are available). By construction all 
interpretations are Church-Rosser systems, so uu' and vu' are reducible by Re to EFu­
equal terms (the terms cannot grow by reduction, so the needed instances of £-equations 
from Ee are also satisfied in lFu ). The equation is not satisfied by lFu, so uu' is reduced 
with a rule of Re\ RFu, hence the left side of the reducing rule is £-equal to tu or even 
greater. As Au' contains no term greater (w.r.t. >E) than tu, we have uu' =E tu. With 
(ii) we already know that Fa is productive and other clauses cannot produce rules whose 
left side is £-equal to tu and which are not contained in irred_Tules(tu :::::: sa, RFu) (this 
is the set of rules produced by Fu ). All rules produced by Fa have the same right side 
sa. The equation uu' :::::: vu' (remember that uu = E tu) is rewritten to sa :::::: vu' (note 
that with restrictions 5.23 we know that uu' is reduced at the root, hence to su) and the 
sides sa and vu' are reducible to EFu-equal terms. Because tu > E sa we can only use the 
rules of RFu to reduce su or vu', so lFu I= su :::::: vu' (and lFu I= su" :::::: vu"). We have 
sa ?:.E vu ( maximality of the equation) and by part (ii) (see proof above) even su > E vu. 
We conclude that sa is reducible at a (non-variable, see part (i)) position p by a rule 
(la)' => TO" in RFu produced by Clu with cl = Tl -+At,£:::::: T (we here assume that we 
use the same substitution for F and C1 ; we can always construct this situation by proper 
renaming of variables). Being more precise we have to remark here that the rules produced 
by Fa have right side (su)min· But all E-equalities to show su =E (su)min are satisfied by 
lFu· So by the Church-Rosser property of interpretations we know that sa is reducible if 
and only if (sa )m in is reducible. For simplicity we omitted the index min. We consider the 
merging paramodulation inference 

Tlu-+ Alu,lu:::::: TO" Tu-+ Au, tu:::::: s[(£u)1u 
~= ------------------------------~~~ 

Tu,T1u-+ Au,A1u,tu:::::: s[p +- T]u 
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which can be lifted (and then instantiated) to an £-equal inference with maximal premise 
F u" = r u" - !::..u", tu" ~ su". By our assumptions (and induction for C tu) the conclusion 
of this inference is false in lFu = lFu"· This contradicts the saturation, so there cannot be 
an equation in t:..u' which is satisfied in le. 

(v) By part (i) su is not reducible at a variable position. With the same inference as in 
the paragraph above, we get a contradiction from the reducibility of su at a non-variable 
position. So su has to be irreducible. 0 

We do not give a repetition of lemma 5.31. The lemma uses a degenerated equality 
factoring inference in case b2). If we replace this inference by an ordered factoring inference, 
the proof remains valid (and becomes simpler, because we do not get an additional £­
equality in the antecedent of the conclusion, cf. lemma 5.31 case b2). 

8.2 Hierarchic Specifications 

In [Bachmair/Ganzinger/Waldmann ed] hierarchic specification with first-order clauses are 
considered (in the many-sorted case). Their main definitions (e.g. base term, abstracted 
term, simple substitution, ... ) can be adopted when working modulo E. Their inference 
system e (and similar their system P, cf. section 8.1) can be extended forE;/; 0 (we yield 
the inference rules of 4.5). But to get their results, we have to require that the £-part of 
a hierarchic specification is properly separated into a base part and an extended part (and 
not spread arbitrarily between the base specification and the extending specification): 

A specificationS Pis a quadruple (:E, !l, Ax, E), where :E is a set of sorts, !lis a set of 
operator symbols over :E, Ax is a set of axioms (i.e. first-order clauses over (:E, !l)) and E 
is a set of unconditional equations (over (:E, !l)). 

A hierarchic specification SP is a pair (SPt,SP2), where SPt = (:Et,!l~,Ax~,Et) is 
called the base specification, S P2 = (:E2, !l2, Ax2, E2) is called the body of S P. We require 
:Et ~ :E2, fit ~ !l2, and (in addition to the other requirements of [Bachmair/Ganzinger/ 
Waldmann ed]) 

• Et~ E2, 

• ops(E2 \Et) n fit = 0, where ops(C) is the set of all operator symbols occurring in a 
clause of the set C of clauses, 

• E2 is a set of unconditional equations as in definition 4.1, 

• there is no non-base ground term t which is (E2 \ Et)-equal to a ground base terms. 

Further definitions are adopted from [Bachmair/Ganzinger/Waldmann ed]. 
With this definition we can consider completion and theorem proving in a modular fash­

ion, e.g. use a theorem prover for the base specification S Pt as a subroutine in a theorem 
prover for the whole specification S P or saturate the axioms of S P without considering 
inferences with premises in Axt. But we can neither forget E-equations (Et ~ E2), when 
considering saturation of Ax2 , nor later add £-equations which influence the base specifi­
cation (so we require ops(E2 \Et) n fit = 0). We will only give short examples for both 
restrictions: 

Example 8.8 (Omitting Restriction Et~ E2) 

SPt =(:Et= {s},!lt = {*:s x s- s},Axt = 0, Et= {x * y ~ y * x}) 
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We extend the specification by 

where 

Ax2 = { 0 ~ 1 ~ , 

~ 0* X~ 0, 

~i(x)*x~1}. 

Ax2 is saturated modulo E2 = 0 and does not contain the empty clause. But the spec­
ification is inconsistent if we add the equations of E1. By this example, we need £­
completion techniques even if we extend a base specification and the extension does not 
introduce new E-equations. Often only the base specification will introduce £-equations 
(e.g. AC -operators are typically found in base specifications like natural numbers, integers 
or booleans ). But even in this situation we need the methods described in this paper to 
work (e.g. saturate) with the extension part of a hierarchic specification. 

Example 8.9 (Omitting Restriction ops(E2 \ E1) n fl1 = 0) 

where 

Ax1 = { 0 ~ 1 ~, 

~ O*X ~ 0, 

~ i( X) * X ~ 1} . 

We extend the specification by 

i.e. add the commutativity of*· As there are no clauses in Ax2 , SP is saturated modulo 
E = E1 U E2 = E2 and does not contain the empty clause. But the specification is 
inconsistent. If we want a notion of saturation which also covers this case, we have to 
reconsider inferences with clauses in Ax1 (here, in particular superposition inferences of 
Ax1-clauses with unification modulo E = E2). This would destroy the modularity of our 
(completion) method. Therefore we require ops(E2 \ E1) n Q1 = 0. 

The effect of requiring ops(E2 \ E1) n fl1 = 0 is as follows: 

Lemma 8.10 Let t and s denote two terms occurring in a clause in S P1. The substitution 
u is a simple E1-unifier oft and s if and only if it is a simple £ 2-unifier oft and s. 

Proof: From E1 ~ E2 we conclude that £ 1-unifiers are also £ 2-unifiers. Now assume u to 
be a simple substitution which is an £ 2-unifier oft and s, i.e. tu =~ su. Both terms (t 
and s) do not contain operator symbols of n2 \ fl1. The substitution is simple, so cannot 
introduce such operator symbols, hence tu and su are fl1-terms. As equations of E 2 \£1 do 
not contain fl1-operators, we cannot apply those equation to show tu = E2 su, hence have 
already tu =E1 su. Sou is already an E1-unifier. 0 
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Orderings for Hierarchic Specifications: 
Term orderings used for hierarchic specifications need the following property: 

Every ground base term is smaller than every term that contains a non-base 
operator symbol. 

This contradicts the E2-compatibility if there exists a term t containing at least one non­
base operator symbol and t is E2-equal to a term s without non-base operator symbols 
(above we require t > E s, from compatibility and t = E2 s we conclude s > E t, hence t > E t 
which contradicts the irrefiexivity and well-foundedness of the ordering). E1 equations are 
variable preserving (E1 ~ E 2 and E 2 satisfies definition 4.1). So there cannot exist terms t 
and s as above with t = E1 s and no further restrictions for E1 are needed. For the other part 
of E2 (i.e. for E2 \ E1 ) we require this explicitly. Note that any pure AC-theory (without 
ACU-operators; with non-base ACU-operators J, we can find base terms which are ACU­
equal to non-base terms, e.g. f(baseterm, e) = ACU baseterm; such equalities may destroy 
the compatibility of an ordering for hierarchic specifications, see above), where non-base 
operators are AC -operators (otherwise we may not ful:fill the restriction ops( E2 \ E1 ) n n1 = 
0), is an appropriate candidate for E2 \ E1. 

For hierarchic specifications satisfying all our requirements it is possible to have £­
compatible (well-founded) orderings, where every base term is smaller than any term con­
taining a non-base operator. 

For lexicographic and recursive path orderings every base term is smaller than any term 
containing a non-base operator, if we use a precedence, where every non-base operator is 
greater than every base operator. 

Orderings based on polynomial interpretations ([Cherifa/Lescanne 87]), where operator 
symbols are interpreted as polynomials and the interpretation of a ground term is always 
a natural number can not guarantee the above property. That is a disadvantage, because 
polynomial orderings are often used as AC -compatible orderings (and E = AC is the most 
popular example for working modulo E). But there is a different method to use polyno­
mial interpretations to construct AC-compatible (and even total) orderings ([Narendran/ 
Rusinowitch 91 ]): here operator symbols are interpreted as variables and the interpretation 
of a ground term is polynomial over such variables (see section 9.2). This method is also 
appropriate for hierarchic specifications (see lemma 9.15). 

By a last example, we will sketch a useful application of hierarchic specifications. 

Example 8.11 Consider the extension of a boolean specification by arithmetics. 

SPbool = ( {bool}, {and, or, ... }, ... , AC( {and, or})) 

S Pbool+others = ( { nat, bool, .. . }, {and, or, ... ,+,*,>, ... }, ... , AC( {and, or,+,*})) 

We here can expect to use S Pbool in a modular way, e.g. the result of completing S Pbool+others 
without considering inferences of clause in S Pbool will be inconsistent, if and only if it 
contains the empty clause. Note that the set of AC-operator symbols contains base and 
non-base operators, hence neither E1 nor E2 \ E1 is empty. 
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8.3 Basic Paramodulation and Superposition 

In [Bachmair et al. 92] a class of restrictions for calculi similar to our inference system is 
introduced. Inspired by the basic strategy for narrowing, in their calculus paramodulation 
inferences are forbidden at terms introduced by substitutions from previous inference steps. 
They represent the objects of their inference systems as pairs C · u, where C is a clause (the 
skeleton) and u is a substitution. Such a pair is called a closure. A closure C · u represents 
a clause C u and is called a ground closure, if C u is a ground clause. We identify a clause 
D with the closure D ·id, where id is the identity substitution. The closure C ·up is called 
an instance of C · u (by substitution p ). The inferences are formulated with closures as 
premises and conclusion, e.g. 

basic superposition left 

where 

(ri ---+ ~I, si ~ s2) · P (r2, ti ~ t2 ---+ ~2) · P 

(rb r2, ti[u- s2] ~ t2 ---+ ~}, ~2). () 

• ()is the composition of p and u, where u is a most general unifier of SIP and (ti/u)p 

• (si~ s2 )p is strictly maximal in the first premise 

• (ti ~ t2)P is maximal in the second premise 

• ti / u is not a variable. 

Note that the unifier u (and also the substitution p) does not influence the skeleton part 
of the conclusion. As we would need a non-variable occurrence of the skeleton part to get 
further superpositions upon the above conclusion, we exclude superpositions upon positions 
introduced via substitutions in previous inference steps. That is the essential idea of basic 
superposition. 

As done for the non-basic inference rules, we can enhance the above inference rule to 
work modulo E by using E-unification and an E-compatible ordering for the maximality 
constraints (note that above we have used the notion of maximality of non-ground terms; 
similar we could use the existence of a ground substitution ui making the considered terms 
or equations maximal after instantiation with UI; cf. the discussion of these alternatives 
in section 8.1). Similarly we can extend the other inference rules of [Bachmair et al. 92] 
to work modulo E. To get a refutation complete calculus, we again have to use either E­
extended clauses orE-closure inferences. As we never use a superposition upon an instance 
( ---+ ei ~ e2 )u of an E-equation (except for u = id) and the E-closure inference may be 
regarded as a superposition upon a non-variable subterm of an E-equation, the E-closure 
inferences are already basic superpositions, if we represent their conclusion as a pair of 
skeleton and substitution. 

Using E-extended clauses, the only superposition we need are upon the root of a maxi­
mal side of an extended equation (corollary 6.50), hence we can import other subterms into 
the substitution part of an extended clause. So the AC-extended clause for 

will be 
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For completeness proofs we reason on the level of ground clauses, ground closures and 
ground terms only. To avoid lifting problems, it is again essential to consider inferences with 
reduced (ground) closures only. Note that in every lemma of our completeness proof, where 
we use inferences between ground clauses, we always first show that there is no reducible 
variable occurring in one of the premises. 

We conjecture that it is possible to extend the completeness proof in [Bachmair et al. 
92] to work modulo E yielding a proof similar to the completeness proof for ME or MExt· 

The conjecture is based on the similarity between their construction of an interpretation 
and the interpretation for ME and MExt· In particular, considering reduced instances, the 
essential properties are: 

• We consider reducibility w.r.t. a system of ground rewrite rules. 

• Only the strictly maximal equation of a ground instance in the succedent can produce 
rules. 

But for the case E = AC we have to be careful in combining optimizations. H we combine 
AC-closed sets (see definition 6.62), the restriction of superposing upon maximal AC­
superterms only (lemma 6.61) and basic superposition, we get an incomplete system. 

Example 8.12 Consider an AC-operator + and a singleton set of clauses {-+ x + 0 ~ x} 
which is AC-closed. After adding a goal 0 + (0 + 0) ~ 0 -+ , the set remains AC-closed. 
There is only one basic superposition left inference, where we superpose upon a maximal 
AC -superterm: 

( -+ X+ 0 ~ X) ·id (0 + (0 + 0) ~ 0 -+ ) ·id 

(x ~ 0-+) · {x ~ 0 + 0} 

We are unable to reduce 0 + 0 to 0. So either we have to superpose upon non-maximal 
AC-superterms or we have to give the above clause a special treatment. We recommend the 
latter one, because the clause is a real exception. We cannot construct a similar example, 
if the context variable x occurs on the right directly below a + sign. So for clauses like 

-+ s(y) + x ~ s(y + x) (which does not need an extended clause) and for all extended 
clauses, we do not need a special treatment. By this special treatment we mean to replace 
the above inference by a new one with conclusion (x1 + x2 ~ 0-+) · {x1 ~ 0, x2 ~ 0}. 

Using subsumption in a calculus with basic superposition, one has to ask for the inter­
section of two substitution parts. Representing a closure C · u (or parts of it) by C u and 
underlining the parts introduced by substitution u, what is the intersection of (a + b) + c 
and b +(a+ c)? We conjecture that the intersection can contain f!. (and not only a) and 
that the intersection of (a + c) + b and (a + b) + c will contain a + b. The use of flattened 
terms (which is always possible when superposing upon maximal AC-superterms) may help 
to define the notion of intersection for E = AC. For general E it will be difficult to give a 
definition. 

We expect that our work and the method in [Bachmair et al. 92) can be combined. 
The combination will be straightforward except some nasty minor details as in the two 
paragraphs above. As the work on basic superposition is currently in progress, we regard 
it as a future work to fill the small gaps needed in the combination of the two extensions 
of a paramodulation calculus. 
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9 E-Compatible Orderings 

An early branch of research to provide orderings for E-completion tries to avoid the use 
of E-compatible orderings. They only consider the E-termination of ==> R (i.e. the termi­
nation of ==> R/ E) for a given R (and the termination of ==> R can be verified using an 
arbitrary reduction ordering). E.g. [Jouannaud/Munoz 84] gives a method to check the 
E-termination of a rewrite system R (similar to check the confluence by convergence of 
critical pairs). So it considers E-compatibility in an indirect way, i.e. regarding ==> R as an 
ordering over terms, it gives a criterion to decide, whether ==> R can be used to characterize 
an E-compatible ordering. But a method to construct such an E-compatible ordering is 
not presented in [Jouannaud/Munoz 84]. 

But the main notion of [Jouannaud/Munoz 84], theE-commutation, was later applied 
to orderings > not given by a rewrite relation ([Bachmair/Dershowitz 86], [Porat/Francez 
86]). This way, E-commutation can be used to prove that a certain method to define an 
ordering, yields orderings useful for E-completion. 

Definition 9.1 (E-Commutation) 
A relation > is E-commuting, if for every terms t, t' and s (with t =E t') with t > s there 
exists an s' (with s' = E s) such that t' > s'. 

If > is E-commuting, we can guarantee that there is no infinite chain t1 > t2 = E t2 > 
t3 =Et~ > ... ([Jouannaud/Munoz 84]). > is not E-compatible in general, but very close 
to it: 

Lemma 9.2 Let > be an E-commuting and well-founded ordering. Then there are no 
terms t, t', s and s' such that t > s but s' > t'. So t > s implies that either t' > s' or these 
terms are incomparable. 

Proof: Assume s > t = E t1 > s1 = E s. By the E-commuting property for s > t, there 
is a term t2 (with t2 =E t) and s1 > t2. But then using E-commutation for t1 > s~, we 
get a term s2 with s2 = E s1 = E s and t2 > s2. So we can construct an infinite chain 
t1 > s1 > t2 > s2 > ... , which contradicts the well-foundedness. 0 

So using E-commutation instead of E-compatibility we gain only the incomparability of 
some terms. In particular, for total orderings the difference between E-compatibility and 
E-commutation disappears. But even for non-total orderings we can construct an E­
compatible ordering >E based on an E-commuting and well-founded ordering >: 

t >E s if and only if 

t f:. E s and there exist terms t' and s' with t' > s' 

As we cannot have t > s > t' (see the lemma above), the ordering is irreflexive. Similar 
> E inherits other properties from >. So work done on orderings using E-commutation is 
useful to construct E-compatible orderings. 

Nearly all papers constructing E-compatible (or E-commuting) orderings, which give 
an example for E, use E = AC. Often papers are even specialized to the case E = AC (we 
will cite some in the next section). So the only theory E for which there are really useful 
results is E = AC. 
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9.1 AC-Compatible Orderings 

From methods to construct simplification orderings, methods have been derived to get 
AC-compatible (or at least AC-commuting) orderings. This holds for 

• the Knuth-Bendix ordering ([Steinbach 89b]) 

• recursive path orderings ([Bachmair/Plaisted 85], [Gnaedig/Lescanne 86]) 

• and other path and decomposition orderings ([Steinbach 89a]). 

All these orderings are based on a precedence relation >prec on the operator symbols and 
use flattening of terms (e.g. a term (a + ( b + c)) + d is flattened to +(a, b, c, d)). Because 
of flattening, we have to have minimal precedence for AC -operator symbols to yield a 
monotonous ordering (monotonicity here means: t > s implies /( ... t. . . ) > f( ... s .. . ) ). 
With the help of distributivity transformations, we can relax this restriction to have two 
comparable AC -operator symbols. Proofs about these orderings often use AC -commuting 
properties. A slightly different approach can be found in [Gnaedig 87], here commuting 
is replaced by "cooperation" and flattening by "decanting" (an operation similar to flat­
tening but preserving the original height of the terms, e.g. (a+ (b +c))+ d is replaced by 
+(+(+(a,b,c,d)))). This paper also proves that E = AC is the maximal theory, where 
flattening can be used to construct E-compatible orderings. 

All above mentioned techniques share the same disadvantage, they are limited to two 
comparable AC-operator symbols. This is a severe restriction, in particular, if we con­
sider total orderings based on total precedence relations (so there can be at most two 
AC-operators in our signature). An AC-compatible ordering based on a modification of 
the lexicographic path ordering without requiring minimal precedence of AC -operators is 
recently developed in [Bachmair 91]. But as mentioned with an example in the conclusion 
of [Bachmair 91], this method does not provide orderings total on ground terms. 

[Cherifa/Lescanne 87] gives another approach to AC-compatible orderings using poly­
nomial interpretations. Besides the disadvantage that in general polynomial interpretations 
for the operator symbols of the considered signature are more difficult and less intuitive 
to find than the precedence relation >prec, they are in general not total on ground terms 
(more precise: total on ground term AC-congruence classes) and not useful in hierarchic 
specifications (a lemma similar to 9.15 does not hold). 

But AC-compatible orderings >pol based on polynomial interpretations have one ad­
vantage: they are completable, i.e. there exists a total (here total means that we always 
can compare two non-AC-equal ground terms) and AC-compatible ordering >~c such that 
>pol ~ >~c: 

Lemma 9.3 Let> AC be an AC-compatible ordering total on non AC-equal ground terms. 
Let ~ be an AC-compatible ordering and > its strict (and partial) counterpart. Let >lex 

denote the following lexicographic combination of > and > AC: 

t >lex S if and only if 

• t > s or 

• t ~ s, s ~ t and t > AC s. 
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The ordering >lex is AC-compatible. If the relation ~ is total on ground terms, then >lex 

is total on non-AC-equal ground terms. 

Proof: The AC-compatibility follows from the AC-compaiibility of the combined orderings. 
Now we show the totality, so let t and s be ground terms with t #Ac s. If we have t > s or 
s > t, then we are done. Otherwise, because of the totality of ~, we have t ~ s and s ~ t 
and either t >lex s or s >lex t because of the totality of > AC. 0 

Polynomial interpretations (in the sense of [Cherifa/Lescanne 87]) of ground terms are 
natural numbers. So ~pol (for ground terms) is essentially the total ordering~ over natural 
numbers and so we can complete >pol by combination with an ordering > AC (such an 
ordering is described in the next section). 

Things are different for recursive path orderings: extending the precedence of the op­
erator symbols to a total relation yields a total ordering, but due to the severe restrictions 
on the precedence of AC -operator symbols, there may not be a total precedence yielding 
an AC-compatible ordering. So total precedences do not complete recursive path orderings 
for AC-completion. On the other hand, we cannot (in general) define a total (on ground 
terms) relation ~ based on a (partial) recursive path ordering >. So in general recursive 
path orderings cannot be completed to total AC -compatible orderings. 

But also for the above lexicographic combination with orderings like >pol we need a 
total and AC -compatible ordering > AC, so we consider the most recent approach to AC­
compatible orderings in greater detail: 

9.2 Total AC-Compatible Orderings 

N arendran and Rusinowitch presented a method to construct an AC -compatible and to­
tal ordering on ground terms ([Narendran/Rusinowitch 91]). For each operator h of the 
signature there is a variable X h. The set of all such variables is called V:E. We interpret 
ground terms as polynomials (with non-negative coefficients) over this set of variables. So 
an interpretation I is a homomorphic mapping from ground terms to polynomials over V:E, 
i.e. an n-ary operator h is interpreted as an polynomial hr with n variables and we have 
I[h(t11 ... , tn)] = hi(I[ti], ... , I[tn]). Then we construct an ordering for terms from a total 
ordering on the set of variables. To avoid subscripts we ambiguously write h for both, the 
operator h and the variable Xh. We will improve the results in [Narendran/Rusinowitch 
91] by giving an interpretation with smaller and less complicated polynomials and outline 
the extension of their method to compare non-ground terms. 

Definition 9.4 An interpretation I is AC -compatible, if and only if 

t =Ac s implies I[t] = I[s]. 

Lemma 9.5 An interpretation I (i.e. a mapping from ground terms to polynomials over 
VE) is AC-compatible, if and only if it is of the following form (for AC-operators h): 

where Fi is a polynomial over the variable hand F11 F2 and F3 satisfy the following equation 
for all AC -operators h: 
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Proof: Let the homomorphic mapping I be defined as 

where hi is a polynomial with arity n. 
For AC -compatibility we require for every AC -operator h 

for commutativity and (for associativity) 

From the first equation we conclude that hi has to be symmetric in its arguments. The 
second equation implies that hi cannot contain an argument to a power greater than one: 
The equation is equivalent to 

and if hi raises its first argument to a power k, then in the above we have (I(t1])k on the 
left, but (I[t1]) 2k on the right (and the same holds for the second argument and I[t3]). 

So (because of symmetry and every exponent is not greater than one) it is of the above 
form: 

I[h(tt, t2)] = F1(h) · I[t1]· I[t2] + F2(h) · (I[t1] + I[t2]) + F3(h) 

The restriction for the polynomials Fi follows from the equation for associativity (using this 
representation of I) by a small computation. It is the same restriction (and computation) 
as for polynomial interpretations in [Cherifa/Lescanne 87] (they give an ordering for terms 
with variables and map those term variables to variables of polynomials; but the restrictions 
on the coefficients for the interpretation of AC -operators (which are in their case natural 
numbers and in our case polynomials over h) are the same). 0 

Example 9.6 In [Narendran/Rusinowitch 91] we find the following interpretation: 

We can generalize this to 

F1(h) (h + 1)(h2 + 2h) 

F2(h) (h + 1? 
F3(h) (h + 1) 

F1(h) 

F2(h) 

F3(h) 

(h + l)(n-l)[(h + lt- 1] 

(h + l)n 

= (h + 1) 

for n ~ 2. The above instance with n = 2 is the only interpretation given in [Narendran/ 
Rusinowitch 91], but it is easy to extend their methods to n > 2. 

Note that the AC-compatibility of an interpretation depends only on the interpretation of 
the AC-operators, so can be seen as a property local to the interpretation of AC-operator 
symbols, whereas the following property is a global one, i.e. depends on the interpretation 
of all operator symbols. 
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Definition 9. 7 An interpretation I is root injective, if and only if I[t] = I[s] implies 
that neither root( t) nor root( s) is an AC -operator or else both are the same AC -operator 
(root(t) = root(s)). 

N arendran and Rusinowitch use a stronger property than our root injectivity: I[ t] = I[ s] 
implies root(t) = root(s). We will show that our restriction is sufficient. The example 9.6 
satisfies the stronger property. 

Definition 9.8 An interpretation I is occurrence preserving, if and only if I[t] = I[s] 
implies that every function symbol has the same number of occurrences in s and t. 

Again we need only a weaker definition: 

Definition 9.9 An interpretation I has finite preimages, if and only if every polynomial 
has only finitely many (if any) preimages, i.e. for every p E I[T:E] there are at most finitely 
many terms t1, ... , tn such that I[ti] = p. 

Lemma 9.10 If an interpretation I is occurrence preserving, then it has finite preimages. 

Proof: Let p be a polynomial. Every term t with I[t] =pis built of the same multiset of 
operator symbols. This multiset is finite, so there are only finitely many terms t1 , ... , tn 
with this multiset of operator symbols. The preimage of p under I is a subset of { t11 ••• , tn}, 
hence finite. 0 

But there is a much weaker characterization for I having finite preimages: 

Definition 9.11 Let I be an interpretation such that for every n-ary operator symbol h 
and every n-tuple (t11 ... , tn) the interpretation I[h( t~, ... , tn)] contains an occurrence of 
xh (with exponent greater than 0), i.e. the interpretation does not forget about operator 
symbols occurring in the interpreted term. Then we call I an admissible interpretation. 

Lemma 9.12 Every admissible interpretation I has finite preimages. 

Proof: Let p be a polynomial and t be a term with I[t] = p. Let k · m ( k E IN) be a 
monomial, where the variable associated with the operator h occurs with exponent i. We 
then say the h-weight of k ·m is k · i. If we sum up the h-weights of each monomial in p, 
we get a finite number j. I is a homomorphic mapping and admissible, therefore there are 
at most j occurrences of h in t. By the same method, we get a finite bound on the number 
of occurrences for each of the finitely many operator symbols in t. We can define a finite 
maximal multiset M of operator symbols, such that each terms with I[s] =pis built of 
operators occurring in a submultiset of M. So there can only be finitely many terms with 
the same interpretation. 0 · 

Definition 9.13 (Ordering over Polynomials) 
A polynomial pis a finite multiset { mon1, ... monn} of monomials moni. A monomial mon 
consists of a factor k (a non-negative integer: k E IN) and a variable part j;t · ... · Jfnm, 
where each exponent ii is greater than 0. We assume a total ordering >prec on the set VI: of 
variables (as we identify names of variables and names of operator symbols from 'E, we also 
use the same name for the ordering on operator symbols and the ordering on the variables 
associated with operator symbols). 

First we define an ordering >mon on monomials by 

k f it Jim > k it in 
1 · 1 • • • · • m mon 2 • 91 • · · · · 9n if and only if 
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• n = m = 0 and k1 > k2 or 

• !t >prec gl or 

• it = g1 and it > it or 

• it= 9t, it= it and kt. !~2 
••••• J:;. >mon k2. 9~2 

••••• 9~n. 

We here assume the fi and gj to be listed decreasingly w.r.t. >prec· Now we define >I to 
be the multiset extension of >mon to finite multisets of monomials, so to polynomials. 

Lemma 9.14 If >precis total on V:r; and well-founded, then> I is a total and well-founded 
ordering over polynomials. 

For this ordering >I (and the orderings we derive from it, e.g. >Ac , definition 9.16) we 
can prove a property which is know from (lexicographic or recursive) path orderings: 

Lemma 9.15 Let I be an admissible interpretation. Let t and s be ground terms. Let 
f be an operator occurring in t such that for every operator 9 occurring in s the variable 
X1 associated with f is greater than the variable X 9 associated with g. Then we have 
I[t] >I I[s]. 

Proof: We consider only interpretations such that I[t] contains at least one monomial, 
in which we find an occurrence off (with exponent greater than 0). (Remember: for 
notational convenience we do not distinguish f and Xt; in the previous sentence Xt is 
meant). This monomial is greater than every monomial in I[s], hence I[t] >I I[s]. 0 

Assume there is a (total) precedence relation >prec on the operator symbols and we use this 
precedence relation to compare the associated variables. Further assume that an ordering 
> AC is based on an admissible interpretation and such a precedence relation. If an operator 
occurring in a term t is greater than every operator in a term s, then we have t > AC s. 

We can use this property for hierarchic specifications: Assume the set of operators is 
divided into base operators and non-base operators. Assume that every non-base operator 
is greater than every base operator. A ground term containing a non-base operator is 
greater than any ground term built of base operators only. 

Definition 9.16 Let I be an admissible, AC-compatible and root injective interpretation. 
Let t = f(tt, .. . , tn) and s = 9(s1 , .. . , sm)· Then t > AC s if and only if 

• I[t] >I I[s] or 

• I[t] = I[s] and 

-if f is an AC-operator then subtermsAcCf,t) >AC(mult) subtermsAcCf,s) 

- if f is not an AC -operator then subterms( t) > AC(lex) subterms( s) 

where > AC(mult) (resp. > AC(lex)) is the multiset (resp. lexicographic) extension of> AC, 
subterms(t) is the multiset of immediate (direct) subterms (sons) of the root oft and 

( ( )) { 
u~=~ subtermsAc(f, ti) if j = h 

subtermsAc J, h it, . . . , tn = {h-( )} t1, ... , tn otherwise 

Lemma 9.17 The relation > AC is 
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1. irrefl.exive and transitive 

2. well-founded 

3. monotonic 

4. total on the set of AC-congruence classes (for all t, s we have either t > AC s or 
S > AC t or t = AC s) 

5. AC -compatible 

Proof: The proof is very similar to the corresponding one in [Narendran/Rusinowitch 91), 
but using root injectivity instead of the stronger property I[t] = I[s] implies root(t) = 
root( s) and the fact that I is admissible instead of occurrence preserving. 

1) Irrefl.exivity is trivialy obtained. Suppose now t > AC s > AC u. If at least one 
comparison of the interpretations yields a >I, the transitivity of > AC follows from the 
transitivity of >I· Now, if I[t) = I[s] = I[u] then, due to the root injectivity of I, all three 
terms have the same AC -operator as root symbol or no terms has an AC -operator at the 
top. The transitivity can be concluded using induction on the size ( = height) of terms. 

2) Suppose there exists an infinite antichain t1 > AC t2 > AC . . .. Since >I is well­
founded, there exists a k E IN such that for all j ;:::: k, we have I[tj] = I[tk]· Because I has 
finite preimages (we require I to be admissible; use lemma 9.12 to show that I has finite 
preimages ), there are only finitely many terms which have the same interpretation I[tk]· 
So there are two indices i1 and i2 with k :::; i1 < i2 and ti1 = ti2 • By transitivity we have 
ti1 > AC ti2 , which contradicts irrefl.exivity, hence there is no such chain and the ordering 
> AC is well-founded. 

3) The interpretation I is monotonic in the following sense: 
I[t] >I I[s] implies I[f( ... t ... )] >I I[f( ... s ... )] and I[t] = I[s] implies I[f( ... t ... )] = 
I[!( ... s .. . )). 
Fort >Ac sand I[t] >r I[s] we immediately get f( ... t ... ) >Ac f( ... s ... ). Fort >Ac s 
and I[t] =I[~] we conclude f( .. . t ... ) >Ac f( ... s .. . ) from the comparison of their (AC-) 
subterms. 

4) As the ordering is defined by recursively comparing certain subterms, the totality 
can be proved using induction on the size (=height) of terms, assuming that for terms of 
smaller size they are either comparable or AC -equal. 

5) Follows from the AC-compatibility of I and with induction on the size (=height) of 
terms following the definition of > AC. 0 

The example 9.6 gives an interpretation that is appropriate to define an ordering > AC. 

There are inappropriate interpretations: 

Example 9.18 Let I2 be an interpretation with 

F1(h) = (h + 1) 
F2(h) = (h + 1) 
F3(h) = h 

It is AC-compatible and occurrence preserving but not root injective: With simple compu­
tations we get: 
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Let f and g be two different AC-operators. Sot= f(g(a, a), a) and s = g(f(a, a), a) (terms 
with different root symbols) have the same interpretation: 

(! + 1)(g + 1)(I2[a] + 1?- 1 

In a well-founded ordering defined as above using 12 these terms are not comparable (i.e. 
the ordering is not total): We have t > AC s only if the multiset {g( a, a), a} is greater than 
{g(f( a, a), a)}. This leads to g( a, a) > AC g(f( a, a), a) and a > AC f( a, a) which violates the 
well-foundedness. For the inverse comparison we obtain the same situation with the roles 
of f and g exchanged. 

Lemma 9.5 gives a restriction for the interpretation of AC-operator symbols. We are 
free to use very simple interpretations for other symbols: 

Definition 9.19 
Js[J(tb. •., tn)] = (f + 1) · 13[t1] • .. • • 13[tn] 

if f is not an AC -operator, otherwise (for AC -operators f) 

with Fi as in example 9.6. 

Lemma 9.20 The interpretation 13 is root injective. 

Proof: Assume Is[t] = ls[s]. The definition of root injectivity only requires to consider 
cases, where at least one of the root symbols is an AC-operator (if both root operators 
are not AC -operators, there are terms with different root symbol but same interpretation, 
so the stronger property in [Narendran/Rusinowitch 91] is not satisfied). So assume there 
are terms t = f(t~, t2) and s = g(t11 ••• , tn), f is an AC-operator and g is different from 
f. From the fact that the interpretation of t has to be dividable by (g + 1), we can 
construct a contradiction as in [Narendran/Rusinowitch 91]. The only thing we need is 
that the interpretation of subterms with root operator 9i are dividable by (gi + 1 ), which 
is valid in our interpretation. Considering this fact, the case where both root symbols are 
AC-operators has exactly the same proof as in [Narendran/Rusinowitch 91]. 0 

Lemma 9.21 The interpretation 13 is occurrence preserving. 

Proof: The maximal monomial in 13(t] is flteOps rxp(f) where Ops is the multiset of 
symbols in t and exp(f) is 3, if f is an AC -operator, otherwise 1. 0 

So with the help of interpretation 13 we may define an ordering as in definition 9.16. 
There are even less complex interpretations, e.g. 

14[f(tll ... , tn)] = f · 14[t1] · ... · 14[tn] 

if f is not an AC -operator, otherwise (for AC -operators f) 
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So for AC -operators we have an interpretation with 

F1(h) = h 

F2(h) = (h + 1) 

F3(h) = (h + 1) . 

Another possible and even less complex interpretation is obtained with 

FI(h) = h 

F2(h) = 1 

F3(h) = 0. 

Both interpretations are AC -compatible and occurrence preserving. But it is still unknown, 
if they are appropriate to define an AC -compatible ordering, because the root injectivity 
of such interpretations is an open question. 

If we really want to use such an AC-compatible and total ordering in a computer imple­
mentation, interpretations like / 4 are nevertheless useful: An ordering using / 4 which has 
the root injectivity build in its definition, e.g. 

if and only if 

• l4[t] > 1 l4[s] or 

• I 4 [t] = I 4 [s], f = g or neither f nor g is an AC-operator and 

-if f is an AC-operator then subtermsAc(i,t) >AC(mu.lt) subtermsAc(f,s) 

- if f is not an AC-operator then subterms(t) > AC(lex) subterms(s) 

loses only the totality (all other properties oflemma 9.17 hold). It can be used in a lexi­
cographic combination with a total AC-compatible (and inefficient to compute) ordering. 
(For the totality of the lexicographic combination we need the totality of ~AC in the :first 
component (cf. lemma 9.3), hence have to define t ~AC s by t >Ac s or I[t] = I[s].) 

The author has not found a counterexample for the root injectivity (and so for the 
totality) of the above interpretation 14 • So we conjecture that only in rare cases (perhaps 
never) the inefficient second component of the lexicographic combination of orderings has 
to be computed. 

Comparing Terms with Variables 

Now we outline an extension of the above method to compare terms with variables. 
As above, we assign a variable XJ to each operator symbol f (and identify x, with!). 

We treat (term) variables as additional operator symbols, so assign them a (polynomial) 
variable of a set of variables disjoint to V:r;, say Vv. Now interpretations are polynomials over 
the set V= Vv U V:r; of variables. Note that ground terms are interpreted as polynomials 
over V:r;. We extend a total ordering >~rec on V:r; to a partial ordering on V by 

if and only if 

So polynomial variables assigned to term variables (i.e. variables of Vv) are always incom­
parable to other variables of V. To compare polynomials containing variables of Vv, we 
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have to list the variable part of the monomial based on an order of variables in V, where 
variables in V:r; are listed in an order embedded in >prec and variables in Vv are listed prior 
to variables of V:r; in an arbitrary but fixed order, e.g. a monomial can be represented as 
2xyj9a (for f >prec 9 >prec a) but not as 2jx9ya. So we implicitly use a total precedence 
of all variables in V which extends >prec by an arbitrary precedence for variables in Vv 
such that each variable in Vv is greater than every variable in V:r;. 

Definition 9.22 (Ordering over Polynomials in V) 
A polynomial pis a finite multiset {mon1, ... monn} ofmonomials moni. A monomial mon 
consists of a factor P (a non-negative integer: FE IN), a Vv part vf1 

• ••• • v~ with Vi E Vv 
and a V:r; part f~m+l · ... · f~n+m with fi E V:r;, where each exponent ij is greater than 0. 
First we define an ordering >mon over monomials by 

if and only if 

m= k, Vr = Wr (I ~ r ~ k), ir ~ ir (I ~ r ~ k) 

and 

• n = m = 0 and F1 > F2 or 

• h >prec 91 or 

• h = 91 and im+l > ik+l or 

f • · d F fim+2 fin+m p. ilc+2 ilc+l 
• 1 = 9b Zm+l = Jk+l an 1 . 2 • • · ·. n >mon 2 • 92 . · · · . 91 · 

Now we define >I to be the multiset extension of >mon to finite multisets of monomials, so 
to polynomials. 

Now we will define an interpretation I by mixing the interpretation techniques of [Cher­
ifa/Lescanne 87] and [Narendran/Rusinowitch 9I]. Using this interpretation with definition 
9.I6, we will obtain an ordering which is 

• a stable ordering for terms with variables, 

• AC-compatible, 

• total on ground terms (more precise: total on ground term AC-congruence classes), 

• and useful for hierarchic specifications (i.e. lemma 9.15 holds). 

Definition 9.23 Let Pol(p~, ... ,pn) denote the set of polynomials over p1 , .. . ,pn, where 
each Pi occurs at least once in each polynomial (with an exponent greater than 0). We 
define an interpretation scheme for interpretations I by: 

• If h is not an AC -operator, then 

I[h(tb ... , tn)] = (h +I)· Pol(I[t1], ... , I[tn]). 

So for constants h (and variables) the interpretation is always (h + 1). 
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• For exactly one AC -operator g we have: 

• For every AC -operator f with f # g we have: 

with Fi as in example 9.6. 

Besides treating variables as new constant symbols (and extending the total precedence 
>~recto a partial one) the above interpretation differs from interpretation 13 in two ways: 

• More general polynomials are allowed to interpret non-AC-operators. We mix here 
the interpretation techniques of [Cherifa/Lescanne 87] and [Narendran/Rusinowitch 
91]. (We assume that even more polynomial overhand I[t1], ••• , I[tn] are appropriate; 
we will prove this only for the above one.) With the above interpretation, we can 
orient rules like h( x) :::} m( x, x, x), i.e. where a variable occurs more often in the 
smaller term (use the interpretation I[h(x)] = (h + 1) · (I[xJ? and I[m(x,y,z)] = 
(m+ 1) · I[x] · I[y] · I[z] together with the precedence h >prec m). 

• The interpretation of AC -operators is more determined. But at least one AC -operator 
symbol g can have a small interpretation. Such different interpretations are needed to 
orient equations between terms containing two AC -operators, e.g. distributivity in set 
theory ( x n (y U z) :::} ( x n y) U ( x n z) ). We hope that even more interpretations of AC­
operators are leading to AC-compatible and root injective interpretations, then we 
can also handle specifications with more AC -operators and critical equations between 
different AC -operator pairs (e.g. distributivity for sets and for natural numbers). 

Lemma 9.24 Any interpretation defined using the above interpretation scheme is admis­
sible and AC -compatible. 

Proof: By definition it is admissible. For any AC-operator f with f # g use lemma 9.5 for 
the Fi defined by [Narendran/Rusinowitch 91] and stated in example 9.6. This yields the 
AC -compatibility for the AC -operator f. For the AC -operator g we use the same lemma 
for the following definition of Fi: 

Note that we have 

F1(9) 0 

F2(9) = 1 

F3(g) = (g + 1) 

0 

Lemma 9.25 Any interpretation I defined using the above interpretation scheme is root 
injective. 

Proof: Let op be an operator symbol. By u op we denote the morphism from terms to 
terms replacing each symbol in V by op. 

Let h be a non-AC-operator and f be an AC-operator different from the AC-operator 
g. 
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• Part 1: Let t1 be a term with root symbol h, then I[t1] can be divided by (h + 1). 
Let t2 be a term with root symbol J, then I[t2] can be divided by(!+ 1). Both facts 
are obvious from the definition of I. Also I[t2] cannot be divided by (g + 1) or ( h + 1) 
(see [Narendran/Rusinowitch 91], lemma 2). 

• Part 2: 
Let t3 := g( t4 , t5 ) be a term with root symbol g, then I[t3] cannot be divided by ( h+ 1) 
or(!+ 1) (also not by (g + 1) but we do not need this fact): If I[t3] is dividable by 
(h + 1), the same holds for I[g(O'h(t4 ), O'h(t5 ))]. But the latter one can be written as 
(g + 1) + ( h + 1) * r (for an appropriate polynomial r ), so can obviously not be divided 
by (h + 1), hence also I[t3 ] cannot be divided by (h + 1). The same arguments apply 
to(!+ 1) instead of (h + 1). 

• Part 3: 
We will prove that in any case, where two interpretations with different root symbols 
and at least one root symbol is an AC -operator have the same interpretation, we yield 
a contradiction. For I[t1] = I[t2] observe that the first interpretation is dividable by 
( h + 1 ), the second one is not (part 1 ). For I[t1] = I[t3] observe that the first 
interpretation is dividable by (h + 1) (part 1), the second one is not (part 2). For 
I[t2] = I[t3] observe that the first interpretation is dividable by (! + 1) (part 1 ), the 
second one is not (part 2). 

0 

Using these two lemmata we can verify that an ordering based on I (definition 9.16) has 
indeed the promised properties (use lemma 9.17). To show stability use induction on the 
size of terms and the fact that t =Ao s implies tO' =Ao SO'. 

9.3 ACU-Compatible Orderings 

Definition 9.26 (ACU-Operator) 
An operator f is called an ACU -operator (with unit e) if the following equations hold: 

f(f(x, y), z) = f(x, f(y, z)) 
f(x,y) = f(y,x) 
f(x,e) = x 

( associativity) 
( commutativity) 

(unit e) 

Examples for such operators are the arithmetic AC-operators + (with unit 0) and * 
(unit 1), the boolean operators and (uriit true) and or (unit false) or the set operator 
union (unit emptySet). 

Definition 9.27 (ACU-Theory) 
If a set E of equations consists of equations used in the previous definition and every 
operator occurring in E-equations is an ACU-operator, we say E is an ACU -theory. 

We may relax this to sets of equations, where there are some operators which are 
only AC-operators (without a unit) or even only commutative operators. In the following 
we assume a fixed ACU-theory and by AC we mean the subset of all associativity and 
commutativity axioms for all ACU-operators. 
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Definition 9.28 Let RAcU be the rewrite system containing the rules f(x, e) => x and 
f(e,x) => x for every ACU-operator f (with unit e). 

Lemma 9.29 
===:}RAcu/AC is terminating. ===:}RAcu is Church-Rosser modulo AC for EACU· Let NF(t) 
denote the normal form oft with respect to ==::::} RAcu. So two terms t and s are AC U -equal, 
if and only if their normal forms NF(t) and NF(s) are AC-equal. 

We define an ordering > ACU based on an AC -compatible ordering > AC (see previous 
section for AC -compatible orderings). 

Definition 9.30 We define an ordering> ACU based on > AC by 

t >ACU S if and only if NF(t) >Ac NF(s) 

Lemma 9.31 If> AC is a well-founded reduction ordering on the AC congruence classes 
(of ground terms), it satisfies t > AC s whenever s is embedded in t and each unit e in 
ACU is minimal in this ordering, then > ACU is an ACU -compatible reduction ordering on 
the ACU congruence classes (of ground terms). H the ordering > AC is total on the AC 
congruence classes, then > ACU is total on the ACU congruence classes. 

Proof: 

1. total: Two terms are ACU-equal if and only if their normal forms (w.r.t. RAcu) are 
AC-equal (lemma 9.29). So > ACU is total because > AC has this property. 

2. well-founded: > ACU is embedded in > AC· 

3. transitive: Because > AC is transitive. 

4. monotonic: (Also called stability with contexts): 
We have to show t > ACU s implies g( . .. , t, ... ) > ACU g( . .. , s, ... ) for all operators g 
and all terms hidden by the ... notation. We speak of a context c = g(tb ... , 0, ... , tn) 
and replace the hole 0 by tors. H t is not a unit, we have NF(c[t]) = NF(c)[NF(t)] 
(for units this is wrong: NF(f(a,e)) =a :f NF(f(a,[]))[NF(e)] = f(a,e)). H s is a 
unit, then NF(c[s]) is embedded in NF(c)[NF(s)] and we require the latter one to be 
greater in > AC. From t > AC s we conclude that t is not a unit ( minimality of units). 
Now the ordering > ACU inherits its monotonicity from > Ac: 

NF(c[t]) = NF(c)[NF(t)] >Ac NF(c)[NF(s)] >Ac NF(c[s]). 

0 

An ordering > AC required in this lemma is constructed in the previous section. But to 
get a total ordering, the minimality of units restricts ourselves to theories with at most one 
unit. We need a concept of incomparability to increase the number of units. One direction 
is to introduce sorts (types) and use many sorted logic. But as units are not related to sorts 
but to operators (e.g. the natural numbers have two units, unit 0 for addition and 1 for 
multiplication) this is still not satisfying. Introducing incomparable terms via constructors 
might be a better concept. 

Often completion systems work on non-ground clauses and use orderings over terms 
with variables. These orderings have to be stable under substitutions, i.e. t > ACU s implies 
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tO' > ACU SO'. This leads to more restrictions on > ACU, e.g. we cannot have a simplification 
ordering, because x + s > ACU s (for an ACU-operator + with unit 0) would imply XO' + 
SO' > ACU SO', hence (for XO' = 0) we get 0 + SO' = ACU SO' > ACU sO', which contradicts 
the irrefl.exivity and well-foundedness of >ACU· So we have to look for ACU-completion 
methods which avoid the use of ACU-compatible orderings in such cases. A trivial solution 
is of course to use AC -completion techniques and considering clauses like --+ x + 0 ~ 0 as 
normal N -clauses, not as £-clauses. For AC -completion such unit equations can efficiently 
be handled as rules x+O => x, i.e. we need not use such equations in a nondeterministic way, 
reading it from left to right and from right to left. The main advantage of ACU-completion 
is merely the reduced number of unifiers (in particular for terms with variables). That is 
different from associativity and commutativity: obviously commutativity cannot be used 
as a rule and an ordering compatible with commutativity C and well-founded cannot orient 
associativity A, because we yield an infinite decreasing chain 

(x + y) + z ==>A x + (y + z) =c (y + z) + x ==>Ay+ (z + x) =c 

( Z + X) + y ==>A Z + (X + y) =c (X + y) + Z ••• 

(and a similar chain for orienting associativity the other way). So AC-completion has a 
stronger relevance to efficiency of theorem proving than a further extension of it to ACU­
completion. 

But there are also ACU-completion methods (e.g. based on ACU-unification), which try 
to use ACU-compatible orderings on the ground level only (and using AC-compatible order­
ings for other purposes, e.g. for orientation of equations into rules). The ACU-compatible 
orderings are very similar to the one constructed above (cf. [JouannaudjMarche 90]). On 
the non-ground level they consider rules £ => r reduced w.r.t. ==>RAcu (definition see 
above) and with £ > AC r (not £ > ACU r). They apply only instances ( £ => r )0' of these 
rules such that XO' #Acu 0 for all variables x E vars(£) and xis an immediate AC-subterm 
of an ACU-operator + with unit 0 (see [Baird/Peterson/Wilkerson 89]). Hence we have 
NF( £0') > AC NF( TO') for these substitutions 0'. But there are still no examples, for which 
ACU-completion yields a remarkable gain of efficiency compared with AC-completion (see 
[Baird/Peterson/Wilkerson 89]). 

9.4 Theories with Projections 

Definition 9.32 (Projection) 
An operator p satisfying the equation p(p( x)) ~ p( x) is called a projection operator. A 
theory E containing at least one such operator is called a theory with projections. 

For simplicity we here consider only theories E with exactly one projection operator p. 

Definition 9.33 Let E be divided into two sets E' and Ep, where Ep = {p(p(x)) ~ p(x)} 
and > be a reduction ordering compatible with E'. Let Rp be the singleton rule set 
{p(p( x)) => p( x)} and NF( t) the normal form of the term t with respect to Rp (there is 
always exactly one unique normal form). For terms t and s we define 

t >p s if and only if NF(t) > NF(s) 

110 



Lemma 9.34 H > is a reduction ordering total on the £'-congruence classes (of ground 
terms) satisfying 

p(t) > s implies t>s for all terms t with root(t) ;:/; p 

then >11 is an £-compatible reduction ordering total on the £-congruence classes (of ground 
terms). 

Proof: 

1. total: Two terms are £-equal if and only if their normal forms (w.r.t. R11 ) are £'-
equal. So >11 is total because > has this property. 

2. well-founded: >11 is embedded in >. 

3. transitive: Because > is transitive. 

4. monotonic: (Also called stability with contexts): 
We have to show t >11 s implies g( . .. , t, . .. ) >11 g( . .. , s, . .. ) for all operators g and 
all terms hidden by the ... notation. We speak of a context c = g(t~, ... , 0, ... , tn) 
and replace the hole [] by t or s. If c is not p(O) the ordering inherits its monotonicity 
from>, because NF(c[t]) = NF(c)[NF(t)]. Otherwise we assume c = p(O) and give a 
case analysis: 

(a) root(t) = root(s) = p: 
NF(p(t)) = NF(t), NF(p(s)) = NF(s), so NF(t) > NF(s) implies NF(p(t)) > 
NF(p(s)) which means p(t) >11 p(s). 

(b) root(t) = p, root(s) # p: 
p(t') := NF(p(t)) = NF(t), NF(p(s)) = p(NF(s)), so NF(t) > NF(s) implies 
p(t') > NF(s). Assume p(NF(s)) > p(t'). Then with the property we require for 
>we get NF(s) > p(t') violating p(t') > NF(s). So we cannot have p(NF(s)) > 
p(t') and yield p(t') > p(NF(s)) (totality of>) which is (via definition) p(t) >11 
p(s). 

(c) root(t) ;:/; p, root(s) = p: 
NF(p(t)) = p(NF(t)) ~ NF(t) > NF(s) implies NF(p(t)) > NF(s) = NF(p(s)). 

(d) root(t) # p, root(s) # p: 
NF(p(t)) = p(NF(t)), NF(p(s)) = p(NF(s)) and monotonicity of > implies 
p(NF(t)) > p(NF(s)). 

0 

Example 9.35 Let E = {p(p(x)) ~ p(x)} and > be an recursive path ordering (with 
total precedence). If pis the minimal operator, we get an £-compatible ordering >11 • H 
we consider other E, containing only some ground instances of the above E, e.g. E = 
{p(p( a)) ~ p( a)}, then some more precedences become acceptable. 

The construction of £-compatible orderings for similar theories E containing equations 
like not( not( x)) ~ x can be done similar by orienting the equation to a rule and comparing 
normal forms. In this case we need the requirement not(t) > s implies t > not(s). 
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10 Related Work 

10.1 Extended Paramodulation 

For E = AC it is possible to extend the notion of superposition (also called paramod­
ulation) to get a complete inference system without the use of AC-extended clauses. In 
[Rusinowitch/Vigneron 91) a calculus is presented introducing the notion of ordered AC­
paramodulation and ordered extended AC-paramodulation. 

[Rusinowitch/Vigneron 91) admits arbitrary predicate symbols, so a general resolution 
inference is needed. We only need equality resolution, which may be regarded as resolution 
with the clause -+ x ~ x. For completeness this clause has to be contained in specifications 
considered by Rusinowitch and Vigneron. To get a better comparison to our work, we will 
neglect the differences resulting from considering general resolution and discuss the calculus 
of [Rusinowitch/Vigneron 91) restricted to the predicate ~-

As a second minor difference Rusinowitch and Vigneron use ordered factoring for posi­
tive and negative literals, whereas we use factoring only for positive equations (i.e. equations 
in the succedent). Therefore they only paramodulate into strictly maximal negative equa­
tions. We have superposition left inferences also into the antecedent of a clause, where 
there are two identical (or AC-equal) maximal equations in the antecedent. 

Having no inferences similar to equality factoring or merging paramodulation in [Rusi­
nowitch/Vigneron 91), results in a major difference: they have to paramodulate into the 
smaller side of an equation. As shown by an example from Bachmair and Ganzinger ([Bach­
mair/Ganzinger 90), [Bachmair/Ganzinger 91c)) paramodulation into the maximal side of a 
positive equation only is not sufficient, hence Rusinowitch and Vigneron have to paramod­
ulate into non-maximal terms of positive equations. We conjecture that it is superfluous 
for negative equations. But nevertheless the calculus in (Rusinowitch/Vigneron 91) defines 
paramodulations into the smaller side of a negative equation, too. Considering only Horn 
clauses (or even equational specifications) we need no inferences like merging paramodula­
tion or equality factoring, but for the system of Rusinowitch and Vigneron the paramodula­
tion into smaller sides of equations (even in the antecedent) remains. This is a disadvantage 
of their calculus. 

To treat AC-properties without extended clauses, they introduce two paramodulation 
inferences which are not only extended by using AC-unification instead of unification (this 
is the only difference to standard systems for their resolution and factoring inference rule), 
but also by simulating paramodulations with extended clauses. 

First we discuss the following inference rule (the second paramodulation inference in 
their paper): 

OA C-ext-para: 

if 

(s~t)VD1 (l~r)VD2 

((f(t,x) ~ f(r, y)) V D1 V D2)u 

root( su) = root( lu) = f, f is an AC -operator 
f( s, x )u = AC f( .e, y )u, where x and y are new variables 
(f(s,x) ~ f(t,x))u is strictly maximal in the instantiated first clause 
(f(l, y) ~ f(r, y))u is strictly maximal in the instantiated second clause 
f(s,x)u is strictly maximal in (f(s,x) ~ f(t,x))u 
f(l, y)u is strictly maximal in (f(l, y) ~ f(r, y))u 
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Whenever we superpose an extended equation of an extended clause upon an extended 
equation at the root of the maximal side of this equation of another extended clause, then 
they have an OA C-ext-para inference. Note that this is a superposition on the right, because 
we extend only positive equations, i.e. equations in the succedent. Note also that this is 
the only kind of inferences between two extended clauses we need. 

Sometimes they get more inferences: They require strict maximality of the extended 
equations (f(s,x) ~ f(t,x))q and (f(i,y) ~ f(r,y))q; we require this maximality, too. 
But sometimes we do not get such an inference, because we do not need the corresponding 
extended clause: for an equation i ~ r in the succedent of a clause C to need an extension 
we require the maximality of the equation we want to extend (£ ~ r; see definition of 
closedness under AC-extension, definition 6.56). There are situations, where (i+x ~ r+x)q 
is maximal in C<1', but (£ ~ r)a is not and no extended clause is introduced. So we have 
criteria to avoid the use of extended clauses, but the OAC-ext-para rule does not know such 
criteria. 

Rusinowitch and Vigneron present a second paramodulation inference rule (the first 
paramodulation inference rule in their paper): 

OAC-para: 
(s~t)YD1 LYD2 

(Lnew V D1 V D2)q 

(Lfp)a =Ac sq or (Lfp)a =Ac f(s,x)q, 
where f is an AC-operator (= root(sq)) and xis a new variable 

( s ~ t)a or (!( s, x) ~ f( t, x ))q is strictly maximal in the instantiated first clause 
La is strictly maximal in the instantiated second clause 

if sa resp. f( s, x )a is strictly maximal in ( s ~ t)q resp. (/( s, x) ~ f( t, x) )a 
Lnew = L[p ~ t] or Lnew = L[p ~ f(t,x)] 
Moreover, if L is not a positive equational literal, p is a non-variable occurrence 
of L and if L is a positive equationalliteral i ~ r then pis either a non-variable 
occurrence of .e or possibly£ if root( sa) is an AC-operator 

This inference rule covers a lot of superposition inferences of our system: 

• superposition (left or right) between two unextended clauses 

• superposition (left or right) of an extended clause upon an unextended clause 

• superposition right of an unextended clause upon an extended equation of an extended 
clause 

Note that by corollary 6.50 and lemma 7.25 other inferences with extended clauses are not 
needed in our system. The above definition of OA C-para again admits some inferences we do 
not consider, i.e. paramodulation into the smaller side of an equation and paramodulation 
with /( s, x) where we would not need such an extended clause. 

At the whole their system admits more inferences than ours, in particular, when consid­
ering only Horn clauses or equations. They also do not introduce simplification or elimina­
tion methods and it is not clear how to understand (and implement) their calculus without 
knowing about AC -extensions and how to apply their results to theories E with E =fi AC. 
In this respect the techniques described in this thesis appear to be superior. 
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10.2 Rewrite Methods for First-Order Theorem Proving 

There are theorem proving methods based on a canonical rewrite system BR (with uncon­
ditional rules) for the boolean ring ([Bachmair/Dershowitz 87b], [Hsiang/Dershowitz 83], 
[Hsiang 85], [Hsiang 87]). Arbitrary Boolean terms are reduced to terms containing only the 
operators and (represented by juxtaposition) and exclusive_or (represented by+). As these 
operators are both associative and commutative, we need rewriting with AC-matching for 
the rules in BR. The system BR applied with AC-matching is Church-Rosser modulo AC 
for the Boolean ring. 

Specifications are sets of (unconditional) equations and rules over Boolean terms, hence 
the equality sign = (in the above mentioned papers) corresponds to logical equivalence of 
Boolean terms. A clause A --. B corresponds to the Boolean term AB + A + 1 and to the 
boolean equation AB +A = 0 (or to the rule AB + A => 0). If one is accustomed to work 
with clauses, this representation is harder to read and the inferences on Boolean rules are 
more difficult to understand, e.g. a superposition (right) inference 

A--.a~b B--.a~c 

A,B--. b ~ c 

corresponds to a para-superposition inference (in the EN-strategy of [Hsiang 87]) 

A( a~ b)+ A=> 0 B(a ~c)+ B => 0 

(B(b ~c)+ B)A => 0 

We think the former representation is more natural and more intuitive covering the idea of 
computing with the equations a~ band b ~c. Moreover clauses are often represented by 
terms containing more literals (e.g. A, B --. C, D becomes ABC D + ABC +AB D +AB => 0). 
Especially the representation of implication (which is often used in specifications, e.g. for 
logic programming) is too sophisticated. 

Similar to resolution, the rewrite based proof methods have to be enhanced to handle the 
equality predicate ~ efficiently (do not confuse the equality predicate ~ between arbitrary 
terms with=, the equivalence of Boolean terms). 

[Bachmair/Dershowitz 87b] only covers the case, where~ is given by a canonical set of 
unconditional rewrite rules. 

[Hsiang 87] extends his method, called the N -strategy, with a special treatment of~ (in 
particular his para-superposition inference incorporates paramodulation). The extended 
method is called EN -strategy. 

Hsiang uses an ordering to decrease the number of possible inferences only in one sit­
uation: when superposing s ~ t upon another (Boolean) term B with substitution u, he 
requires tu l. su. ([Bachmair/Dershowitz 87b] uses an ordering similarly as done in our 
calculus, but they do not extend their method to handle arbitrary ~-literals specially.) 
Similar to the method in the previous section, Hsiang even can (and sometimes has to) 
paramodulate into the smaller term of an equation. 

The rewrite based methods use rewriting also for simplification purposes, but a general 
criteria for simplification, such as our notion of compositeness, is not presented. 

Saturated (w.r.t. our inference system) sets for consistent specifications can often be used 
to yield more efficient theorem proving methods (cf. [Bachmair/Ganzinger 91c]). Saturation 
w.r.t. the EN -strategy is only applied in refutational theorem proving contexts. 
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The rewrite based methods, if at all extended to handle ~, have not been improved 
to work modulo AC (or modulo a general E). The only implicit use of AC-properties is 
restricted to the built-in treatment of the Boolean AC-operators and and exclusive_or. 

10.3 Resolution Based Systems 

Resolution (together with factoring) is a complete method to reason with clausal specifica­
tions. But to express equality relations, we have to add some nasty axioms like symmetry 
and transitivity of equality. Because resolution in specifications containing these axioms 
is far too inefficient , paramodulation is preferred. E.g. our inference system especially 
developed for equality literals is based on paramodulation and avoids the application of 
congruence axioms for equality. [Stickel 85] introduces theory resolution, which extends 
resolution in a very general way, e.g. paramodulation is covered as partial theory resolution. 
Just as well resolution with £-unification is an example of theory resolution for the theory 
E . But combining these two branches (paramodulation considered as partial theory reso­
lution and resolution with £ -unification) is incomplete in general ([Eisinger/Ohlbach 91]). 
To get a complete calculus, we have to separate the equality axioms from the other clauses 
such that the equality symbol does not occur in clauses not contained in E. Results pub­
lished in the framework of theory resolution combining these two branches are not known. 
Our calculus combines paramodulation and working modulo E. Since the only predicate 
symbol is ~, we do not really consider resolution. 

Holldobler ([Holldobler 88], [Holldobler 89]) also extends resolution to resolution modulo 
E, but suffers from the same drawback: he cannot arbitrarily mix equality literals and non­
equality literals in the same clause. Besides that , he only considers resolution for logical 
programming, i.e. restricted to Horn clauses. 
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11 Conclusions 

We have presented calculi for theorem proving modulo E. Inference rules are defined for full 
first-order clauses, hence theorem proving with Horn clauses and unconditional equational 
specifications is covered as a special case. The calculi are extensions and modifications 
of inference systems for E = 0. We summarize the main influences of E, i.e. the main 
differences to methods for E = 0: 

• We use E-unification. 

• Orderings are £-compatible. 

• There are E-specific inferences ( E-closure inferences) or E-specific clauses ( E-extended 
clauses). 

The main part of our work is the completeness proof for the calculi ME and MExt· For an 
ME-saturated (resp. MExt-saturated and closed) set N of clauses not containing the empty 
clause, we define a model satisfying all clauses in N and all equations of E via an equality 
Herbrand interpretation. The interpretation consists of a ground rewrite system RToP and 
a set EToP of ground instances of E-equations such that the rewrite relation ==> RToP is 
a Church-Rosser system modulo ETOP· Other methods for proving completeness results 
have already been adopted to methods modulo E, e.g. [Bachmair 88} for working with proof 
orderings or [Rusinowitch/Vigneron 91] for semantic trees and E = AC. The method of 
constructing models via Church-Rosser rewrite systems has not been extended to problems 
modulo E in the literature so far. The reader interested in this method should first study the 
interpretation and proofs for ME, because the introduction of extended clauses complicates 
the definition of the interpretation and the completeness proof for MExt· We outlined 
the use of these techniques to systems with merging paramodulation and to hierarchic 
specifications. We conjecture that a lot of other similar theorem proving methods can be 
proved to be complete with our interpretation method. But as for any other method of 
proving completeness the construction of interpretations becomes much more complicated 
and needs a lot of technical details, when we do the step from an empty set E toE =J 0. 

All our results hold for the case E = AC. Some refinements for this special case have 
been discussed, e.g. reducing the number of AC -extended clauses and implementing rewrit· 
ing modulo AC more efficiently using the relation ==>RAC. Without such refinements (e.g. 
providing the finiteness of sets closed under AC-extension) AC theorem proving remains 
intractable. 

We have shown, how our inference systems can be incorporated into completion al­
gorithms. We presented the notion of "compositeness" providing a redundancy criterion 
appropriate for completion systems working modulo E. Compositeness subsumes most 
elimination and simplification techniques known for completion and theorem proving. 

In the last section we discussed £-compatible orderings. The only known approach so 
far to obtain total and AC-compatible reduction orderings ([Narendran/Rusinowitch 91]) 
is improved here and investigated in greater detail. 

In summary, this paper covers all ingredients for the design and implementation of 
a first-order theorem prover modulo AC. With this paper we provide the basis for the 
implementation of such a prover in terms of a reliable theoretical background. 
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