
'$ �
�

' $ �

��

I N F O R M A T I K

 	

� �

Summaries for While Programs
with Recursion

Andreas Podelski Ina Schaefer Silke Wagner

MPI–I–2004–1–007 December 2004

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T
FÜ R

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbrücken Germany

Authors’ Addresses

Andreas Podelski

Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken

podelski@mpi-sb.mpg.de

Ina Schaefer

Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken

ina.schaefer@mpi-sb.mpg.de

Silke Wagner

Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken

silke.wagner@mpi-sb.mpg.de

Abstract

Procedure summaries are an approximation of the effect of a procedure call. They
have been used to prove partial correctness and safety properties. In this paper,
we introduce a generalized notion of procedure summaries and present a frame-
work to verify total correctness and liveness properties ofa general class of while
programs with recursion. We provide a fixpoint system for computing summaries,
and a proof rule for total correctness of a program given a summary. With suit-
able abstraction methods and algorithms for efficient summary computation, the
results presented here can be used for the automatic verification of termination
and liveness properties for while programs with recursion.

Keywords

Recursive Programs, Summaries, Total Correctness, Program Analysis, Pro-

gram Verification

1 Introduction

Procedure summaries are a fundamental notion in the analysis and verification
of recursive programs [20, 18, 3]. They refer to the approximation of the “func-
tional” effect of a procedure call. So far, they have shown useful for deriving and
proving partial correctness, invariance and safety properties (“nothing bad may
happen”). The results in this paper show that procedure summaries may be use-
ful for deriving and proving termination and liveness properties (“something good
will happen”).

More specifically, we present a notion of summaries that applies to general
programs with arbitrary nesting of while loops and recursion; the program vari-
ables range over possibly infinite data domains. A summary captures the effect
of the unbounded unwinding of the body of procedure definitions, as well as of
while loops. More generally, a summary may refer to any pair of programs points
and captures the effect of computations that start and end atthese program points.

We may use a pair of state assertions to express a summary, e.g. the pair(x >

0,x < 0) to describe that the program variablex is first positive and then negative.
We also may use assertions on state pairs, e.g. the assertionx′ = −x to describe
that the program variablex gets multiplied by−1.

It is obvious that partial correctness and invariance and safety properties can
be expressed in terms of summaries. This paper shows that also termination can
be expressed in terms of summaries. We here concentrate on termination; the
reduction of more general liveness properties to termination would follow the lines
of [22, 14, 15].

The two classical proof rules for partial correctness and termination use invari-
ants and variants (ranking functions) for the auxiliary assertion on the program.
We present a proof rule for total correctness that uses summaries for the (one) aux-
iliary assertion on the program. Besides illustrating a newfacet of total correct-
ness of recursive programs, the contribution of the proof rule lies in its potential
for automation via abstract interpretation [8, 9]. The considerable investment of
research into the efficient computation of summaries has been a success; its payoff
through industrialized tools checking invariance and safety properties of recursive
programs [3] may well extend to termination and liveness properties. We believe
that our paper may lead to several directions of follow-up work towards that goal.

2 Related Work

Among the vast amount of work on the analysis and verificationof recursive pro-
grams, we will cover the part that seems most relevant for ours. In short, to
advance a sum-up of the comparison, none of that work considers a notion of

1

summary as general as ours (which refers to arbitrarily precise descriptions of the
effect of computations between general pairs of program points of general while
programs), and none of that work exploits summaries for termination.

Hierarchical State Machines (HSMs) [5], called Recursive State Machines
(RSMs) in [2], are a model of recursive programs over finite data domains (and
hence with finitely manystates, if state refers to the valuations of the program
variables, i.e. without the stack contentsγ; in our technical exposition, we use
configurationto refer to the pair(s,γ) and avoid the term ‘state’ altogether).

As a side remark, we note that while loops are irrelevant in finite-state pro-
grams such as HSMs or RSMs, and can be eliminated in programs with recursion.
Our exposition (for programs with while loops and recursion) permits to compare
summaries for while loops with the summaries for recursive procedures replacing
them.

The model checking algorithms in [5] and in [2] account for temporal prop-
erties including termination and liveness. Hence, one may wonder whether one
can not prove those properties for general recursive programs by first abstracting
them to finite-state recursive programs (using e.g. predicate abstraction as in [3])
and then applying those model checking algorithms. The answer is: no, one can
not. Except for trivial cases, the termination or liveness property gets lost in the
abstraction step. In the automation of our proof rule by abstract interpretation,
one may use the idea of transition predicate abstraction [15] to obtain abstractions
of summaries; a related idea, developed independently, appears in [11].

The model checking algorithms in [5] and in [2] are based on the automata-
theoretic approach. In [5], the construction of a monitor Buechi automaton for the
LTL or CTL* property is followed by a reachability analysis for the monitored
HSM in two phases. First, summary edges from call to return ofa module and
path edges from entry nodes of a module to an arbitrary node inthe same module
are constructed. Additionally, it is indicated whether those paths pass an accepting
state of the monitor. Second, the graph of a Kripke structureaugmented with
summary and path edges is checked for cycles. If a cycle through an accepting
path exists the Buechi acceptance condition is satisfied andthe property fails.

In [5], the construction of summary edges follows the fundamental graph-
theoretic set-up of [18]. In [2], a (closely related) setup of Datalog rules is used.
The fixpoint system that we use (in our proof rule in order to validate a summary
for a given program) are reminiscent of those Datalog rules;for a rough com-
parison one may say that we generalize the Datalog rules frompropositional to
first-order logic. This is needed for the incorporation of infinite data types, which
in fact is mentioned as a problem for future work in [2].

The CaRet logic in [1] expresses properties of recursive state machines, such
as non-regular properties concerning the call stack, that go beyond the proper-
ties considered in this paper (which refer to program variables only). The model

2

checking algorithm for CaRet presented in [1] uses summary edges for procedures
as in [2] and is again restricted to finite data types.

The model checker Bebob [4], a part of the SLAM model checkingtool [3],
is based on the construction of procedure summaries adaptedfrom [18] using
CFL-reachability. The applied algorithm is again a two stage process. First, path
and summary edges are constructed and then, the actual reachability analysis is
carried out by using summary and path edges. Bebop applies toC-like structured
programs with procedures and recursion and no other than Boolean variables.

The work presented here is related to the work on program termination in [13,
14, 15] in the following way. The notion of transition invariants introduced in [14]
for characterizing termination can be instantiated for recursive programs in either
of two ways, by referring to program valuations (i.e. without stack contents) or by
referring to configurations (i.e. pairs of program valuations and stack contents).
Either case does not lead to useful proof rules for total correctness. The notion of
summaries, and its putting to use for termination proofs forrecursive programs,
are contributions proper to this paper. The work in [14] and in [15] is relevant for
the automation of our proof rule in two different ways. The algorithm presented
in [13] can be used to efficiently check the third condition ofthe proof rule. As
mentioned above, the abstraction investigated in [15] can be used to approximate
summaries (and thus automate their construction by least-fixpoint iteration).

As pointed out by an anonymous referee, it is possible to define summaries
using the formalism of so-called weighted pushdown systems[6, 19]. This would
be useful in order to give an alternative view on our results in this framework.

3 Examples

We consider the programfactorial below. We will construct a summary for the
program and use the summary for proving total correctness. We hereby informally
instantiate the proof rule that we will introduce in Section6. The semantics of
procedure calls is call by reference.

factorial(x,y) =
entry : if x > 0

{
x = x−1;

ℓ1 : factorial(x,y);
ℓ2 : x = x+1;

y = x·y;
}

exit :

factorial
factorial

x>
0

x≤ 0 ∧ x′ = x ∧ y′ = y

x ′
=

x+
1

∧
y ′

=
x ′y

∧
x
′ =

x−
1

ℓ2

exitentry

ℓ1

3

In the abstract notation used in this paper, the program consists of one moduleM0

given by a setCmds0 of threecommandsand a setCalls0 of onecall.

Cmds0 = { (entry, x≤ 0 ∧ x′ = x ∧ y′ = y , exit) ,

(entry, x > 0 ∧ x′ = x−1 ∧ y′ = y , ℓ1) ,

(ℓ2, x′ = x+1 ∧ y′ = x′y , exit) }

Calls0 = { (ℓ1, 0, ℓ2) }

The one-step transition relationR over program valuations is specified by the as-
sertionsR1 to R5 below. The assertionsR1 to R3 correspond to the execution of
the commands inCmds0 (and are obtained by their direct translation). The asser-
tionsR4 andR5 correspond to the execution of a call; we will see further below
how we can obtainR4 andR5.

As usual, we express a binary relation over program valuations as a set of val-
uations of the program variables and the primed version of the program variables.
The program variables include the program counterpc which ranges over the four
locations (entry, exit, ℓ1 andℓ2) of the program.

R1 pc = entry ∧ x≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = exit

R2 pc = entry ∧ x > 0 ∧ x′ = x−1 ∧ pc′ = ℓ1

R3 pc = ℓ2 ∧ x′ = x+1 ∧ y′ = x′y ∧ pc′ = exit

R4 pc = ℓ1 ∧ x≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = ℓ2

R5 pc = ℓ1 ∧ x > 0 ∧ x′ = x ∧ y′ = (x−1)! xy ∧ pc′ = ℓ2

We next consider execution sequences that contain no orfinishedrecursive calls
(where the final stack of the execution sequence is again the same as the initial
one). The corresponding transition relationT is specified by the assertions below
in addition to the relationsR1−R5. The assertionsT1 andT2 apply to pairs of
program valuations atentry andexit. The assertionsR4 andR5 apply to pairs of
program valuations atℓ1 andℓ2. We obtainR4 andR5 by replacing inT1 andT2
the conjunctspc = entryandpc′ = exit by the conjunctspc = ℓ1 andpc′ = ℓ2.

T1 pc = entry ∧ x≤ 0 ∧ x′ = x ∧ y′ = y ∧ pc′ = exit

T2 pc = entry ∧ x > 0 ∧ x′ = x ∧ y′ = (x−1)! xy ∧ pc′ = exit

T3 pc = entry ∧ x > 0 ∧ x′ = x−1≤ 0 ∧ pc′ = ℓ2

T4 pc = entry ∧ x > 0 ∧ x′ = x−1 > 0 ∧ y′ = (x−2)! (x−1)y ∧ pc′ = ℓ2

T5 pc = ℓ1 ∧ x≤ 0 ∧ x′ = x+1 ∧ y′ = (x+1)y ∧ pc′ = exit

T5 pc = ℓ1 ∧ x > 0 ∧ x′ = x+1 ∧ y′ = x! (x+1)y ∧ pc′ = exit

4

Finally, we consider multiple-step execution sequences with unfinishedrecursive
calls (i.e. where the final stack of the execution sequence has increased by at least
one item). The corresponding transition relationS is specified by assertions such
asS1 andS2 below (we omit the otherS-assertions).

S1 pc = entry ∧ x≥ 0 ∧ x′ < x

S2 pc = ℓ1 ∧ x≥ 0 ∧ x′ < x

The disjunction ofR-, S- andT-assertions is asummaryof thefactorial program.
The total correctness, specified by the pair of the precondition and the postcondi-
tion

pre ≡ pc = entry ∧ x≥ 0 ∧ y = 1

post ≡ pc′ = exit ∧ y′ = x!

follows, by the proof rule presented in Section 6, from two kinds of basic obser-
vation on the summary.

(1) The assertionT1∨ T2 in conjunction with the assertionpre entails the
assertionpost. (2) Each assertion denotes a well-founded relation. This is true

for the assertionS1 by a classical argument, and it is trivially true for each ofthe
other assertions presented here (since a relation with pairs of different locationsℓ
andℓ′ admits only chains of length 1).

Second Example: Insertion Sort. In this example, reasoning over termination
must account for the nesting of recursive calls and while loops. Given an array
A and a positive integern the ins sort program sortsA. The procedureinsert is
applied to an array of sizen and uses a while loop to insert itsnth elementA[n−1]
in its proper place, assuming that the firstn−1 elements are sorted.

ins sort(A,n) =
entry0 : if n≤ 1 then A

else
{

n = n−1;
ℓ1 : ins sort(A,n);
ℓ2 : n = n+1;
ℓ3 : insert(A,n);

}
exit0 :

insert(A,n) =
entry1 : i = n;
ℓ4 : while (n > 1 &

A[n−1] < A[n−2])
{

swap(A[n−2],A[n−1]);
n = n−1;

}
ℓ5 : n = i;
exit1 :

A summary of theins sort program must account for execution sequences with
nested recursion and unfolding of while loops. Again, we give a summary for the

5

program in the form of a disjunction ofR-, S- andT-assertions; see below for the
ones that are most interesting for the total correctness proof.

T1 pc = entry0 ∧ n≤ 1 ∧ pc′ = exit0

T2 pc = entry0 ∧ A′[0] ≤ A′[1] ≤ . . . ≤ A′[n−1] ∧ pc′ = exit0

T3 pc = ℓ4 ∧ n > 0 ∧ n′ < n ∧ pc′ = ℓ4

S1 pc = entry0 ∧ n > 0 ∧ n′ < n ∧ pc′ = entry0

S2 pc = ℓ1 ∧ n > 0 ∧ n′ < n ∧ pc′ = ℓ1

Total correctness follows from the same two kinds of properties of the summary
as in the previous example. The assertionsT1 andT2 imply partial correctness ifn
is equal to the length of the array. Termination follows fromthe well-foundedness
of T3 (which accounts for computation sequences in the while loop) andS1 and
S2 (which account for the recursive descend). Note that the well-foundedness
argument is itself detached from the account for (possibly nested) recursion and
loops; it is applied to each assertion in isolation.

4 Recursive Programs

In this section we fix the abstract notation for general whileprograms with re-
cursion. It should be straightforward to map the concrete syntax of an imperative
programming language into this notation. In the remainder of the paper, we as-
sume to have an arbitrary but fixed programP .

• The program consists of a set ofmodules{M0, . . . ,Mm}.

• The set oflocationsof the moduleM j is denoted byLoc j .

• Each moduleM j has two distinguished locations notedentry j and exit j

which are its uniqueentry pointand its uniqueexit point.

• Each command of a module is a triple (ℓ1,c, ℓ2) consist-
ing of the locations ℓ1 and ℓ2 of the module (the be-
fore and the after location) and the transition constraintc.
A transition constraint is a formula over primed and unprimed pro-
gram variables.

• Eachcall of a module is a triple(ℓ1,k, ℓ2) consisting of the locationsℓ1 and
ℓ2 of the module (thecall location and thereturn location) and the indexk
of the module being called (i.e.k∈ {0, . . . ,m}).

6

The setsCmds andCalls consist of the commands and calls, respectively, of all
modules of the program. The setLoc consists of its locations, i.e.Loc = Loc0∪
. . .∪Locm.

The setVar consists of the program variables, which usually range overun-
bounded data domains. The setVar′ contains the primed versions of the program
variables. We use an auxiliary variable, the program counter pc, which ranges
over the finite setLoc of locations of all modules.

A program valuation(“state”) s is a valuation for the program variables and
the program counter, i.e.s is a mapping fromVar∪{pc} into the union of data
domains. We noteΣ the set of all program valuations.

A configuration q= (s,γ) is a pair of a program valuations and a wordγ (the
stack) over the alphabetLoc of program locations of all modules. We noteQ the
set of configurations; formally,Q = Σ×Loc⋆.

In assertions we useγ as a “stack variable”, i.e. a variable that ranges over
Loc⋆. An assertion (e.g. a first-order formula) over the set of variablesVar∪{pc}∪
{γ} denotes a set of configurations. For example, the set of initial configurations
is denoted by the assertionpc = entry0 ∧ γ = ε whereentry0 is the entry location
of the designated ‘main’ moduleM0 andε is the empty stack. An assertion over
the set of variablesVar∪{pc}∪{γ}∪Var′∪{pc′}∪{γ ′} denotes a binary relation
over configurations.

We note; the transition relation over configurations, i.e. ; ⊆ Q×Q. The
three different types of transitions are: local transitioninside a single module, call
of another module and return from a module. The transition relation; is denoted
by the disjunction of the assertions below.

pc = ℓ1 ∧ pc′ = ℓ2 ∧ c ∧ γ ′ = γ where(ℓ1,c, ℓ2) ∈ Cmds

pc = ℓ1 ∧ pc′ = entry j ∧ Var′ = Var ∧ γ ′ = ℓ2.γ where(ℓ1, j, ℓ2) ∈ Calls

pc = exit j ∧ pc′ = ℓ2 ∧ Var′ = Var ∧ γ = ℓ2.γ ′ where(ℓ1, j, ℓ2) ∈ Calls

According to the three kinds of assertions, we distinguish three kinds of transi-
tions.

A local transition q; q′ is induced by a command(ℓ1,c, ℓ2) of the module. It
is enabled in the configurationq if the values of the program variables satisfy the
guard formula in the transition constraintc of the command at the corresponding
location ℓ1. The program counter and the program variables are updated in q′

accordingly; the stack remains unchanged.
Both, acall and areturn transition q; q′, are induced by a call command

(ℓ1, j, ℓ2) calling a moduleM j . In both, the stackγ is updated and the program
variables remain unchanged (Var′ = Var stands for the conjunction ofx′ = x over
all program variablesx).

7

In a call transition the stack is increased by the return locationℓ2 (by apush
operation). The value of the program counter is updated to the entry location
entry j of the moduleM j being called.

When the exit location of the called moduleM j is reached, the control flow
returns to the return locationℓ2 of the calling module, which is the top value of
the return stack. Thus, in areturn transition, the value of the program counter is
updated by the top value of the stack, and the stack is updatedby removing its top
element (by apopoperation).

A (possibly infinite)computationis a sequence of configurationsq0,q1,q2, . . .

that starts with an initial configuration and that is consecutive, i.e.qi ; qi+1 for
all i ≥ 0.

5 Summaries

In its generalized form that we introduce in this section, a summary captures the
effect of computations that start and end at any pair of program points (and not just
to the pair of the entry and exit points of a module). The computations in questions
may contain calls that are not yet returned; i.e., in generalthey don’t obey to the
‘each call is matched by a subsequent return’ discipline. We first introduce the
correspondingtransition relation over program valuationsthedescendsrelation,

noted
≤

−→.

Definition 1 (Intraleads (=
−→), Strictly Descends (<

−→), Descends (
≤

−→)) The
pair (s,s′) of program valuations lies in theintraleadsrelation if a configuration
(s,γ) can go to the configuration(s′,γ) (with the same stack) via alocal transition
or via thefinishedexecution of a call statement.

s
=

−→ s′ if (s,γ) ; (s′,γ) or

(s,γ) ; (s1, ℓ.γ) ; (s2,γ2) ; . . . ; (sn−1,γn−1) . . . ; (sn, ℓ.γ) ; (s′,γ)
where γ ∈ Loc⋆, ℓ ∈ Loc, andγ2, . . . ,γn−1 containℓ.γ as suffix

The pair(s,s′) of program valuations lies in thestrictly descendsrelation if a
configuration(s,γ) can go to a configuration(s′, ℓ.γ) via acall transition.

s
<

−→ s′ if (s,γ) ; (s′, ℓ.γ)
where γ ∈ Loc⋆ andℓ ∈ Loc

Thedescendsrelation
≤

−→ is the union of the two relations above.

≤
−→ =

=
−→ ∪

<
−→

8

We can now define summaries.

Definition 2 (Summary) A summaryS is a binary relation over program valua-
tions that contains the transitive closure of its descends relation.

S ⊇
≤

−→
+

In other words, a summaryS contains a pair(s,s′) of program valuations if there
exists a computation from a configuration(s,γ) to a configuration(s′,γ ′) such
that the initial stackγ is a suffix not only of the final stackγ ′ but also of every
intermediate stack.

Summaries as Fixpoints. The fixpoint system below1 is a conjunction of inclu-
sions between relations over valuations.

Fixpoint SystemΦ(R,S,T)

I1 R ⊇ (pc = ℓ1 ∧ c ∧ pc′ = ℓ2) (ℓ1,c, ℓ2) ∈ Cmds

I2 T ⊇ R ∪ T ◦R

I3 R ⊇ (pc = ℓ1 ∧ c ∧ pc′ = ℓ2) if

T ⊇ (pc = entry j ∧ c ∧ pc′ = exit j) (ℓ1, j, ℓ2) ∈ Calls

I4 S ⊇ (pc = ℓ1 ∧ Var′ = Var ∧ pc′ = entry j) (ℓ1, j, ℓ2) ∈ Calls

I5 S ⊇ S◦ (pc = ℓ1 ∧ Var′ = Var ∧ pc′ = entry j) (ℓ1, j, ℓ2) ∈ Calls

I6 S ⊇ S◦T ∪ T ◦S

A fixpoint is a triple (R,S,T) that satisfies all inclusions of the formI1 to I6.
It can be computed by least fixpoint iteration of (an abstraction of) the operator
defined by the fixpoint system. The operator induced byI3 takes a set of pairs of
valuations, restricts it to pairs at entry and exit locations and replaces them with
the corresponding pairs at call and return locations.

1In our notation, we identify an assertion with the relation that it denotes. We use the operator◦
for relational composition. That is, for binary relationsA andB,

A◦B= {(s,s′′) | ∃s′ : (s,s′) ∈ A ∧ (s′,s′′) ∈ B}.

9

Theorem 1 If the three relations over program valuations R, S and T forma
fixpoint for the fixpoint systemΦ, their unionS = R∪ T ∪ S is a summary for the
program.

The theorem follows from Lemmas 1 and 2 below.

Lemma 1 The relation T is a superset of the transitive closure of the
intraleads relation.

T ⊇
=

−→
+

(1)

Proof: It is sufficient to show the statement below, which refers to configurations
whose stack is empty.

If (s′,ε) is ; -reachable from(s,ε), thenT contains(s,s′).

We proceed by induction over the computation that leads from(s,ε) to (s′,ε).

Base Step(s,ε) ; (s′,ε)
The only one-step transition that does not change the stack is a local
transition, i.e. the valuation(s,s′) satisfies an assertion of the formpc =
ℓ1 ∧ pc′ = ℓ2 ∧ c where(ℓ1,c, ℓ2) is a command inCmds. By inclusions
I1 andI2, R and thus alsoT contains(s,s′).

Induction Step (s,ε) ; (s1,γ1) ; . . . ; (sn,γn) ; (s′,ε).

Case 1. The computation from(s,ε) to (s′,ε) contains no intermedi-
ate configuration with empty stack.

The stackγ1 of the second configuration consists of one locationℓ1, i.e.
γ1 = ℓ1, and it is equal to the stackγn of the last but one configuration.

The transition(s,ε) ; (s1, ℓ1) is a call transition induced by, say, the
call (ℓ1,k, ℓ2). This means that the value of the program counter ins1 is
the entry locationentryk of the called moduleM k.

The transition(sn, ℓ1) ; (s′,ε) is a return transition. This means that
the value of the program counter insn is the exit locationexitk of the
called moduleM k.

The computation from(s1, ℓ1) to (sn, ℓ1) is an execution (inM k) from
entryk to exitk. Since no intermediate configuration has an empty stack,
every intermediate stack hasℓ1 as its first element. Hence(sn,ε) is ; -
reachable from(s1,ε). By induction hypothesis,T contains the pair
(s1,sn). By inclusionsI2 andI3, R and thus alsoT contain(s,s′).

10

Case 2. The computation from(s,ε) to (s′,ε) contains at least one
intermediate configuration with empty stack.
We consider the subsequence of all configurations with emptystack in
the computation.

(s,ε) ;
+ (si1,ε) ;

+ . . . ;+ (sim,ε) ;
+ (s′,ε)

For each part of the computation from(si i ,ε) to (si i+1,ε), we can ap-
ply the first case (none of the intermediate configurations has an empty
stack) and obtain thatR contains all pairs of valuations in consecutive
configurations of the subsequence. By inclusionI2, T is the transitive
closure ofR and thus contains(s,s′).

2

The proof of Lemma 1 exhibits thatR is a superset of the intraleads relation.

R ⊇
=

−→ (2)

SinceT ⊇ R+ holds byI2, inclusion (1) is a direct consequence of inclusion (2).
It seems, however, impossible to show (2) without showing (1).

Lemma 2 The relation S is a superset of the transitive closure of the descends
relation minus the transitive closure of the intraleads relation.

S ⊇
≤

−→
+

\
=

−→
+

Proof: Since
≤

−→
+

\
=

−→
+

= (
=

−→
⋆
◦

<
−→ ◦

=
−→

⋆
)+

it is sufficient to show the statement below, which refers to configurations
whose stack is empty.

If (s′,γ ′) with non-empty stackγ ′ is ; -reachable from(s,ε), thenS
contains(s,s′).

We proceed by induction over the sized of γ ′.

Base Step (d = 1) The computation leading from(s,ε) to (s′,γ ′) is of the
form

(s,ε) ;
∗ (s1,ε) ; (s2, ℓ) ;

∗ (s′, ℓ).

The transition(s1,ε) ; (s2, ℓ) is a call transition. By inclusionI4, S
contains(s1,s2). If s is different froms1 or s′ is different froms2:
by Lemma 1,T contains(s,s1) resp.(s2,s′), and by inclusionI6, S
contains(s,s′).

11

Induction Step (d ⇒ d+1) The computation is of the form

(s,ε) ;
+ (sk,γk) ; (sk+1, ℓ.γk) ;

∗ (s′, ℓ.γk).

By induction hypothesis,Scontains(s,sk). The transition from(sk,γk)
to (sk+1, ℓ.γk) is a call transition. By inclusionI5 of the fixpoint sys-
tem,Scontains(s1,sk+1). If sk+1 is different froms′: by Lemma 1,T
contains(sk+1,s), and by inclusionI6, Scontains(s,s′).

2

6 Total Correctness

We assume that the correctness of the program is specified by the pair of pre- and
postconditionspre andpost wherepre is an assertion over the setVar of unprimed
program variables andpost is an assertion over the setVar∪Var′ of primed and
unprimed program variables. The assertions are associatedwith the entry and exit
points of the ‘main’ moduleM0.

Partial correctness is the following property: if a computation starts in a con-
figurationq = (s,ε) with the empty stack and the valuations satisfying the as-
sertionpc = entry0 ∧ pre and terminates in a configurationq′ = (s′,ε) with the
empty stack and the valuations′ satisfying the assertionpc = entry0, then the pair
of valuations(s,s′) satisfies the assertionpost.

Theorem 2 The program is partially correct if and only if there exists asummary
S whose restriction to the precondition and the entry and exitpoints of the ‘main’
module M0 entails the postcondition.

S ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

Proof: if-direction: Assume that there exists a summaryS for the program that
fulfills the condition of the theorem, but the program is not partially
correct. I.e. there exists a computation from an initial configuration
(s,ε) that terminates in a configuration(s′,ε) such thats satisfies the
precondition ofM0 but (s,s′) does not fulfill the postcondition.
SinceS is a summary for the program, reachability of(s′,ε) from (s,ε)
wrt. ;

+ implies that that(s,s′) is in S . But this is a contradiction, since
S implies the postcondition ofM0.

only if-direction: We defineS as the conjunction of the following relations
R,T andS:

R =
≤

−→ ∩ (Acc×Acc) ,

12

T =
≤

−→
+
∩ (Acc×Acc) ,

S =
<

−→
+
∩ (Acc×Acc) ,

whereAccdenotes the set of all accessible states. Clearly,S is a sum-
mary of the program.

If the program is partially correct, each execution from an initial con-
figuration(s,ε) to a configuration(s′,ε) on termination wheres fulfills
the preconditionpre implies that(s,s′) satisfies the postconditionpost;
furthermore, the pair(s,s′) is in T and thus inS . This means thatS
satisfies the condition of the theorem.

2

In the formulation above, the only-if direction of the theorem requires an as-
sumption on the program syntax, namely that the ‘main’ moduleM0 does not get
called, i.e. no call is of the form(ℓ1,0, ℓ2). The assumption can always be made
fulfilled by a small syntactic transformation of the program.

To see why the assumption is needed, consider the example programfactorial

which, in the syntax given in Section 3, does not satisfy the assumption. TheS-
assertionS2 (which refers to the precondition and the entry and exit points of the
‘main’ moduleM0) doesnot entail the postconditiony′ = x! and neither does the
refinement ofS2 of the form

∃n > 0 : pc = entry0 ∧ x > 0 ∧ x′ = x−n ∧ y′ = (x−n)! y ∧ pc′ = exit0

which is contained in every summary of the program.
The assumption on the program syntax is not required in the formulation of

the corollary below, which refers to the relationT.

Corollary 1 The program is partially correct if and only if there exists arelation
T over program valuations that is a solution in the fixpoint systemΦ and whose
restriction of T to the precondition and the entry and exit points of the ‘main’
module entails the postcondition.

T ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

Obviously only the inclusions of the formI1− I3 of Φ are relevant for a solution
for T.

Termination is the property that every computation of the program, i.e. every
sequence of configurationsq0 ; q1 ; q2 . . . is finite. The next theorem states that
one can characterize termination in terms of summaries.

Theorem 3 The program is terminating if and only if there exists a summary S

that is a finite union of well-founded relations.

13

Proof: if-direction: For a proof by contradiction, we assume that there ex-
ists an infinite computation(s0,ε),(s1,γ1),(s2,γ2), . . . starting in the
empty stack. We now construct an infinite subsequence of configu-
rations(s0,γ0),(s1,γ1),(s2,γ2), . . . such that the corresponding valua-
tions form a descending sequence.

s0 ≤
−→ s1 ≤

−→ s2 ≤
−→ . . .

The first part of the subsequence of configurations consists of all con-
figurations with an empty stack, i.e.(sk,γk) = (sik,ε). If there are in-
finitely many configurations with empty stacks, then we are done with
the construction and we obtain an infinite intraleads sequence.

Otherwise, there is a configuration(sik,ε) such that the stack of all sub-
sequent configurations is not empty.

The transition from(sik,ε) to (sik+1, ℓ) is a call transition. Hence the

pair of valuations(sik,sik+1) is in
<

−→.

We repeat the above construction step with(sik+1, ℓ) instead of(s0,ε).
Inductively we get an infinite sequences0,s1,s2, . . . of valuations such

that pairs of consecutive valuations are in
≤

−→ and hence inS .

We now use the assumption thatS is a finite union of well-founded
relations, say2

S = S1∪ . . .∪Sm.

We define a functionf with finite range that maps an ordered pair of
indices of elements of the sequences0,s1,s2 . . . to the index j of the
relationS j that contains the corresponding pair of valuations.

f (k, l)
def.
= j where(sk,sl) ∈ S j

The functionf induces an equivalence relation∼ on pairs of indices of
s0,s1,s2,

(k1, l1) ∼ (k2, l2)
def.
⇔ f (k1, l1) = f (k2, l2).

The index of∼ is finite since the range off is finite. By Ramsey’s
theorem [17], there exists an infinite set of indicesK such that all pairs
from K belong to the same equivalence class. Thus, there existsm and
n in K, with m< n, such that for everyk andl in K, with k < l , we have

2The assumption implies that one of the relationsS j occurs infinitely often in the sequence
s0,s1,s2, This is, however, not yet a contradiction to the well-foundedness ofS j , which needs
a consecutiveS j -sequence.

14

(k, l) ∼ (m,n). Let k1,k2, . . . be the ascending sequence of elements of
K. Hence, for the infinite sequencesk1,sk2, . . . we have(sk1,ski)∈ S j for
all i ≥ 1. But this is a contradiction to the fact thatS j is well-founded.

only if-direction: Let S be the summary defined in the proof of Theorem 2.
Assume thatS is not a union of well-founded relations and letς be the
subrelation ofS that is not well-founded. This means that there exists
an infinite sequences1,s2, . . . such that(si,si+1) is in ς for all i ≥ 1.

Sinces1 is accessible, and for alli ≥ 1 there is a non-empty computation
sequence from(si ,γi) to (si+1,γi+1) wrt. ;, there exists an infinite
computation(s1,ε), . . . ,(s1,γ1), . . . ,(s2,γ2), . . . of the program. This is
a contradiction to our assumption that the program is terminating. 2

Corollary 2 The program is terminating if and only if there exist three relations
over program valuations R,S and T that form a solution of the of the fixpoint
systemΦ and that are finite unions of well-founded relations.

Deductive Verification Below we give a proof rule for the total correctness of
general while programs with recursion. The proof rule is sound and complete by
Theorem 1 and Corollaries 1 and 2.

Deductive verification according to the proof rule proceedsin three steps, for
three given relationsR, S andT over program valuations. The first step checks
that the triple(R,S,T) is a fixpoint, i.e. that the relationsR, S andT satisfy the
inclusions given underI1− I6 of the fixpoint system of Section 5. The second step
checks that the restriction of the relationT to the precondition and the entry and
exit points of the ‘main’ module entails the postcondition.The third step checks
thatR∪S∪T is a finite union of well-founded relations.

P : program
R,T,S : assertions over pairs of valuations

pre,post : pre- and postconditions forP

1. R, SandT form a fixpoint ofΦ.

2. T ∧ pre ∧ pc = entry0 ∧ pc′ = exit0 |= post

3. T and S are finite unions of well-founded rela-
tions.

Total correctness ofP : {pre} P {post}

15

An informal description of an application of the above proofrule has been given
in Section 3. It is now straightforward to instantiate the proof rule also formally
for the presented examples.

Automatic Verification The inclusionsI1− I6 of the fixpoint system and the
condition for partial correctness amounts to checking entailment between asser-
tions. Checking the well-foundedness of the finitely many member-relations ofS
andT can be established automatically in many cases; see [13, 21,12, 7]. The
synthesis of the relationsR, S andT is possible by least fixpoint iteration (over
the domain of relations over program valuations) in combination with abstract
interpretation methods [8, 9].

7 Conclusion

We have introduced a generalization of the fundamental notion of procedure sum-
maries. Our summaries refer to arbitrarily precise descriptions of the effect of
computations between general pairs of program points of general while programs
(over in general infinite data domains). We have shown how onecan put them
to work for the verification of termination and total correctness of general while
programs with recursion.

We have presented a proof rule for total correctness that uses summaries as the
auxiliary assertion on the program. As already mentioned, the proof rule has an
obvious potential for automation via abstract interpretation. We believe that our
paper may lead to several directions of follow-up work to realize this potential,
with a choice of abstraction methods (see e.g. [8, 9, 15, 11])and techniques for
the efficient construction of summaries (see e.g. [18, 2]). Other lines of future
work are the extension to concurrent threads (see e.g. [10, 16]) and the account of
correctness properties expressed in the CaRet logic [1].

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A temporal logicof nested calls
and returns. InProceedings of TACAS’04, 2004.

[2] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state ma-
chines. InProceedings of CAV’00, 2000.

[3] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate
abstraction of C programs. InProceedings of PLDI’2001, 2001.

16

[4] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean
programs.In SPIN Workshop on Model Checking of Software, 2000.

[5] M. Benedikt, P. Godefroid, and T. Reps. Model checking ofunrestrcited
hierachical state machines. InProceedings of ICALP 2001, 2001.

[6] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static anal-
ysis of concurrent programs with procedures.In Proceedings of POPL’03.

[7] M. Colón and H. Sipma. Synthesis of linear ranking functions. InProceed-
ings of TACAS’01, 2001.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.In
Proceedings of POPL’77, 1977.

[9] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. InProceedings of POPL’1979, 1979.

[10] C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN03:
SPIN Workshop. Spiegel-Verlag, 2003.

[11] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to
interprocedural shape analysis. InIn Proceedings of SAS’04, 2004.

[12] D. A. McAllester and K. Arkoudas. Walther recursion. InCADE’96, 1996.

[13] A. Podelski and A. Rybalchenko. A complete method for the synthesis of
linear ranking functions. InProceedings of VMCAI’04, 2004.

[14] A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings of
LICS’04, 2004.

[15] A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair
termination. InProceedings of POPL’05, 2005.

[16] S. Qadeer, S.Rajamani, and J. Rehof. Summarizing procedures in concurrent
programs. InProceedings of POPL’04, 2004.

[17] F. P. Ramsey. On a problem of formal logic. InProceedings London Math.
Soc., 1930.

[18] T. Reps, M. Sagiv, and S. Horwitz. Precise interprocedural dataflow analysis
via graph reachability.Proceedings of POPL’95, 1995.

17

[19] T.W. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their
application to interprocedural dataflow analysis.Proceedings of SAS’03,
2003.

[20] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow anal-
ysis. Program Flow Analysis: Theory and Applications, 1981.

[21] A. Tiwari. Termination of linear programs. InProceedings of CAV’04, 2004.

[22] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. InProceedings of LICS’86, 1986.

18

