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Abstract

Procedure summaries are an approximation of the effect mi@egure call. They
have been used to prove partial correctness and safetyrpegpen this paper,
we introduce a generalized notion of procedure summaridgpegsent a frame-
work to verify total correctness and liveness properties géneral class of while
programs with recursion. We provide a fixpoint system for pating summaries,
and a proof rule for total correctness of a program given ansarp. With suit-
able abstraction methods and algorithms for efficient sumroemputation, the
results presented here can be used for the automatic veaficaf termination
and liveness properties for while programs with recursion.
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1 Introduction

Procedure summaries are a fundamental notion in the asaysli verification
of recursive programs [20, 18, 3]. They refer to the appration of the “func-
tional” effect of a procedure call. So far, they have showefuisfor deriving and
proving partial correctness, invariance and safety ptase(“nothing bad may
happen”). The results in this paper show that procedure saamasimay be use-
ful for deriving and proving termination and liveness prdjgs (“something good
will happen”).

More specifically, we present a notion of summaries thatiappb general
programs with arbitrary nesting of while loops and recursithe program vari-
ables range over possibly infinite data domains. A summapyuces the effect
of the unbounded unwinding of the body of procedure defingjas well as of
while loops. More generally, a summary may refer to any piarograms points
and captures the effect of computations that start and ethese program points.

We may use a pair of state assertions to express a summarnyyesggir(x >
0,x < 0) to describe that the program variaBiles first positive and then negative.
We also may use assertions on state pairs, e.g. the assértionx to describe
that the program variabbegets multiplied by-1.

It is obvious that partial correctness and invariance afehg@roperties can
be expressed in terms of summaries. This paper shows tloatiesiaination can
be expressed in terms of summaries. We here concentrateromagion; the
reduction of more general liveness properties to ternmonatiould follow the lines
of [22, 14, 15].

The two classical proof rules for partial correctness andit@ation use invari-
ants and variants (ranking functions) for the auxiliaryeagsn on the program.
We present a proof rule for total correctness that uses suiesifar the (one) aux-
iliary assertion on the program. Besides illustrating a fewet of total correct-
ness of recursive programs, the contribution of the prolaf kias in its potential
for automation via abstract interpretation [8, 9]. The ¢desable investment of
research into the efficient computation of summaries has dseccess; its payoff
through industrialized tools checking invariance andtygdeoperties of recursive
programs [3] may well extend to termination and livenespprties. We believe
that our paper may lead to several directions of follow-upknowards that goal.

2 Related Work

Among the vast amount of work on the analysis and verificatiorecursive pro-
grams, we will cover the part that seems most relevant fos.oun short, to
advance a sum-up of the comparison, none of that work carssal@otion of



summary as general as ours (which refers to arbitrarilyipeadescriptions of the
effect of computations between general pairs of programtpaf general while
programs), and none of that work exploits summaries for itetion.

Hierarchical State Machines (HSMs) [5], called Recursivate&s Machines
(RSMs) in [2], are a model of recursive programs over finitedbomains (and
hence with finitely manystates if state refers to the valuatiosmof the program
variables, i.e. without the stack contemtsin our technical exposition, we use
configurationto refer to the paits,y) and avoid the term ‘state’ altogether).

As a side remark, we note that while loops are irrelevant inefistate pro-
grams such as HSMs or RSMs, and can be eliminated in prograimsagursion.
Our exposition (for programs with while loops and recur$iparmits to compare
summaries for while loops with the summaries for recursieeedures replacing
them.

The model checking algorithms in [5] and in [2] account fanpeoral prop-
erties including termination and liveness. Hence, one magder whether one
can not prove those properties for general recursive pnogtay first abstracting
them to finite-state recursive programs (using e.g. prégighastraction as in [3])
and then applying those model checking algorithms. The angwy no, one can
not. Except for trivial cases, the termination or livenesgperty gets lost in the
abstraction step. In the automation of our proof rule by ralestinterpretation,
one may use the idea of transition predicate abstractigrt¢ldbtain abstractions
of summaries; a related idea, developed independentlgaappn [11].

The model checking algorithms in [5] and in [2] are based @ahtomata-
theoretic approach. In [5], the construction of a monitoe&u automaton for the
LTL or CTL* property is followed by a reachability analysierfthe monitored
HSM in two phases. First, summary edges from call to retura ofodule and
path edges from entry nodes of a module to an arbitrary notteisame module
are constructed. Additionally, it is indicated whetherda@aths pass an accepting
state of the monitor. Second, the graph of a Kripke strucaugmented with
summary and path edges is checked for cycles. If a cycle giwvam accepting
path exists the Buechi acceptance condition is satisfiedrenproperty fails.

In [5], the construction of summary edges follows the fundatal graph-
theoretic set-up of [18]. In [2], a (closely related) setd@atalog rules is used.
The fixpoint system that we use (in our proof rule in order tlidede a summary
for a given program) are reminiscent of those Datalog ruiesa rough com-
parison one may say that we generalize the Datalog rules prampositional to
first-order logic. This is needed for the incorporation dinite data types, which
in fact is mentioned as a problem for future work in [2].

The CaRet logic in [1] expresses properties of recursivie steachines, such
as non-regular properties concerning the call stack, thateyond the proper-
ties considered in this paper (which refer to program véegmbnly). The model
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checking algorithm for CaRet presented in [1] uses sumnmdggefor procedures
as in [2] and is again restricted to finite data types.

The model checker Bebob [4], a part of the SLAM model checkowd [3],
is based on the construction of procedure summaries ad#oied[18] using
CFL-reachability. The applied algorithm is again a two stpgocess. First, path
and summary edges are constructed and then, the actuabbdaghanalysis is
carried out by using summary and path edges. Bebop appl@dike structured
programs with procedures and recursion and no other thaleBowariables.

The work presented here is related to the work on programneition in [13,
14, 15] in the following way. The notion of transition invanits introduced in [14]
for characterizing termination can be instantiated fourswe programs in either
of two ways, by referring to program valuations (i.e. withetack contents) or by
referring to configurations (i.e. pairs of program valuai@and stack contents).
Either case does not lead to useful proof rules for totaleminess. The notion of
summaries, and its putting to use for termination proofsréaursive programs,
are contributions proper to this paper. The work in [14] anfllb] is relevant for
the automation of our proof rule in two different ways. Thgalthm presented
in [13] can be used to efficiently check the third conditiortlué proof rule. As
mentioned above, the abstraction investigated in [15] eanded to approximate
summaries (and thus automate their construction by legstifit iteration).

As pointed out by an anonymous referee, it is possible to defitmmaries
using the formalism of so-called weighted pushdown sys{én9]. This would
be useful in order to give an alternative view on our resulthis framework.

3 Examples

We consider the prograffactorial below. We will construct a summary for the
program and use the summary for proving total correctnesshékeby informally
instantiate the proof rule that we will introduce in Secti®n The semantics of
procedure calls is call by reference.

factorial(x,y) =

entry : if x>0
{X: X—1; factorial
l1: factorial(X,y);
05 X=X+1;
y=X-y,
} X<OAX =xAY =y
exit :




In the abstract notation used in this paper, the programistsref one modul®g
given by a seCmdsg of threecommandsind a seCallsy of onecall.

Cmdsp={ (entry, X<OAX=XAY =Yy, exit),
(entry, x>0 A X =x—1AY =Yy, l),
(b, X=x+1AYy =Xy, exit) }

Ca”So = { (fl, 0, £2> }

The one-step transition relatidhover program valuations is specified by the as-
sertionsR1 to R5 below. The assertioriRl to R3 correspond to the execution of
the commands i@mdsg (and are obtained by their direct translation). The asser-
tions R4 andR5 correspond to the execution of a call; we will see furthdowe
how we can obtaif4 andR5.

As usual, we express a binary relation over program valna@s a set of val-
uations of the program variables and the primed versioneptbgram variables.
The program variables include the program coupterhich ranges over the four
locations éntry, exit, /1 and/») of the program.

R1 pc=entry AXSOAX =XAY =Yy A pcd =exit

R2 pc=entry AX>0AX =x—1Apcd =1

R3 pc=l AX =x+1AY =Xy A pd =exit

R4 pc=l1 AXSOAX=XAY =yYApd=1{

RS pc=l1 AX>0AX=XAY =(X=1)Ixy A pc =/

We next consider execution sequences that contain finishedrecursive calls
(where the final stack of the execution sequence is againatme ss the initial
one). The corresponding transition relatibms specified by the assertions below
in addition to the relation®1 — R5. The assertion$1 andT2 apply to pairs of
program valuations aintry andexit. The assertionR4 andR5 apply to pairs of
program valuations at and/,. We obtainR4 andR5 by replacing inT1 andT2
the conjunctgc = entryandpc’ = exit by the conjunctec = ¢1 andpc’ = /.

T1 pc=entry AXSOAX =XAY =y A pcd =exit

T2 pc=entry AX>0AX=XAY =(X—1)!xy A pc’ =exit

T3 pc=entry AX>0AX =x—1<0Apd =4,

T4  pc=entry AX>O0AX =Xx-1>0AY =(X=2)!(x=1)y A pc’ =/
T5 pc=01 AXSOAX=X+1AY =(X+1)y A pc’ =exit

T5 pc=l1 AX>0AX =x+1AY =X (x+1)y A pc’ =exit



Finally, we consider multiple-step execution sequencels wifinishedrecursive
calls (i.e. where the final stack of the execution sequenséntaecased by at least
one item). The corresponding transition relat®is specified by assertions such
asSl and2 below (we omit the othe$-assertions).

Sl pc=entry A X>0 A X <X
R pc=li AX>0AX <X

The disjunction oR-, S andT-assertions is aummaryof thefactorial program.
The total correctness, specified by the pair of the precmmdénd the postcondi-
tion

pre = pc=entry AX>0Ay=1
post = pd=exit Ay =x

follows, by the proof rule presented in Section 6, from twods of basic obser-
vation on the summary.

(1) The assertionT1V T2 in conjunction with the assertiopre entails the
assertiorpost. (2) Each assertion denotes a well-founded relation. TEhisue

for the assertiotsl by a classical argument, and it is trivially true for eachhud
other assertions presented here (since a relation with padifferent locationg
and/’ admits only chains of length 1).

Second Example: Insertion Sort. In this example, reasoning over termination
must account for the nesting of recursive calls and whilg$ooGiven an array
A and a positive integan the ins_sort program sortA. The procedurénsert is
applied to an array of sizeand uses a while loop to insert itth elemen®\[n— 1]

in its proper place, assuming that the finst 1 elements are sorted.

ins_sort(A,n) = insert(A,n) =
entryg : if n<1 thenA entry; . i=n;
else ly: while (n>1 &
{ An—1] <An-2)
n=n-1, {

(1 ins_sort(A,n); swap(A[n—2],Aln—1));
2% n=n+1, n=n-—1;
l3: insert(A,n); }

} ls5: n=i;
exito - exitq .

A summary of theins_sort program must account for execution sequences with
nested recursion and unfolding of while loops. Again, weegivsummary for the
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program in the form of a disjunction &, S andT-assertions; see below for the
ones that are most interesting for the total correctnessf pro

T1 pc =entryg A N< 1 A pc = exitg

T2  pc=entryg A A0 <AL <... <A n—1 A pc’ =exitg
T3 pc=lsAN>0AN<nApd =4y

Sl pc=entryg AN>0 AN <nA pc =entryg

R pc=liAn>0AN<nApd =0

Total correctness follows from the same two kinds of praperof the summary
as in the previous example. The assertibhandT2 imply partial correctness if
is equal to the length of the array. Termination follows frtima well-foundedness
of T3 (which accounts for computation sequences in the whilp)lendSL and
S (which account for the recursive descend). Note that thikfaxendedness
argument is itself detached from the account for (possiklsted) recursion and
loops; it is applied to each assertion in isolation.

4 Recursive Programs

In this section we fix the abstract notation for general wpilegrams with re-
cursion. It should be straightforward to map the concretgasyof an imperative
programming language into this notation. In the remainde¢he paper, we as-
sume to have an arbitrary but fixed progrém

e The program consists of a setrabdules{Mo, . ..,Mn}.
e The set ofocationsof the moduleM; is denoted by oc;.

e Each moduledf; has two distinguished locations noteekry; and exit;
which are its uniquentry pointand its uniqueexit point

e Each command of a module is a triple (¢1,c,¢2) consist-
ing of the locations /4 and /¢ of the module (the be-
fore and the after location) and the transition constraint.
A transition constraint is a formula over primed and unpdmeao-
gram variables.

e Eachcall of a module is a triplé/1,k, ¢2) consisting of the locationg and
/2 of the module (theall location and theeturnlocation) and the indek
of the module being called (i.&.€ {0,...,m}).



The setCmds and Calls consist of the commands and calls, respectively, of all
modules of the program. The dedc consists of its locations, i.d.oc = LocgU
...ULocm.

The setVar consists of the program variables, which usually range awer
bounded data domains. The $&t’ contains the primed versions of the program
variables. We use an auxiliary variable, the program coustewhich ranges
over the finite setoc of locations of all modules.

A program valuation(“state”) s is a valuation for the program variables and
the program counter, i.&.is a mapping fronmVar U {pc} into the union of data
domains. We not& the set of all program valuations.

A configuration g= (s,y) is a pair of a program valuatisand a wordy (the
stack) over the alphabébc of program locations of all modules. We nd@ethe
set of configurations; formallQ) = Z x Loc*.

In assertions we usg as a “stack variable”, i.e. a variable that ranges over
Loc*. An assertion (e.g. afirst-order formula) over the set ag@esVarU{pc}U
{y} denotes a set of configurations. For example, the set adlicbinfigurations
is denoted by the assertipa = entryg A Y = € whereentry, is the entry location
of the designated ‘main’ moduly ande is the empty stack. An assertion over
the set of variableSar U{pc} U{y} UVar'U{pc’} U{y’} denotes a binary relation
over configurations.

We note~ thetransition relation over configurations.e.~ C Q x Q. The
three different types of transitions are: local transifizgide a single module, call
of another module and return from a module. The transititatio~- is denoted
by the disjunction of the assertions below.

pc=/f1 A pd =/lp A c AY =y where(/1,c,¢2) € Cmds
pc=/{1 A pcd =entry; A Var'=Var Ay =/2y where(/1,],/2) € Calls
pc =exitj A pc’ = {2 A Var'=Var A y=/2y where({q,],{2) € Calls

According to the three kinds of assertions, we distinguiskée kinds of transi-
tions.

A local transition g~ ¢’ is induced by a comman(ds, c, /») of the module. It
is enabled in the configuratiaqif the values of the program variables satisfy the
guard formula in the transition constrambf the command at the corresponding
location/;. The program counter and the program variables are updated i
accordingly; the stack remains unchanged.

Both, acall and areturn transition g~ ¢, are induced by a call command
(41, ],¢2) calling a moduleM;. In both, the stacly is updated and the program
variables remain unchangedaf’ = Var stands for the conjunction of = x over
all program variableg).



In a call transition the stack is increased by the return locafio(by apush
operation). The value of the program counter is updated ¢oetitry location
entry; of the moduleM; being called.

When the exit location of the called modu\ is reached, the control flow
returns to the return locatiofy of the calling module, which is the top value of
the return stack. Thus, inraturn transition, the value of the program counter is
updated by the top value of the stack, and the stack is up8gtegmoving its top
element (by popoperation).

A (possibly infinite)computatioris a sequence of configuratiogg gz, d, - - -
that starts with an initial configuration and that is congireyi.e. g ~ g1 for
alli > 0.

5 Summaries

In its generalized form that we introduce in this sectionyamary captures the
effect of computations that start and end at any pair of @nogooints (and not just
to the pair of the entry and exit points of a module). The cotaons in questions
may contain calls that are not yet returned; i.e., in gertet don’t obey to the
‘each call is matched by a subsequent retutiscipline. We first introduce the
correspondingransition relation over program valuatiortee descendselation,

noted—>.
Definition 1 (Intraleads (—-), Strictly Descends (=), Descends {=+)) The
pair (s,s) of program valuations lies in thiatraleadsrelation if a configuration

(s,y) can go to the configuratiofs,y) (with the same stack) vialacal transition
or via thefinishedexecution of a call statement.

s—9d if (sy)~ (3,y) or
(S.Y) ~ (S1,£.Y) ~ (S2,¥2) ~ -~ (Sn-1,Yn-1) - .-~ (Sn, £.Y) ~ (S,Y)
where y € Loc*, £ € Loc, andys, . ..,yn_1 containf.y as suffix

The pair(s,s) of program valuations lies in thstrictly descendselation if a
configuration(s,y) can go to a configuratiofs’, £.y) via acall transition.

s—=d if (sy)~ (,Ly)
where y € Loc* and/ € Loc

The descendselationi is the union of the two relations above.

< = <
_ = — U —



We can now define summaries.

Definition 2 (Summary) A summarys is a binary relation over program valua-
tions that contains the transitive closure of its descealddion.

+
s 2 =

In other words, a summary contains a paifs,s’) of program valuations if there
exists a computation from a configurati¢sy) to a configurations’,y’) such
that the initial stacky is a suffix not only of the final stack’ but also of every
intermediate stack.

Summaries as Fixpoints. The fixpoint system belohis a conjunction of inclu-
sions between relations over valuations.

Fixpoint System®(R,S,T)

11 R 2 (pc=/{1AcCApd=1{) (¢1,c,42) € Cmds
12 T O RUToR

13 R DO (pczfl/\C/\pclzfz) if

T 2 (pc=entryj A CA pc’ = exit)) (£1,],02) € Calls

14 S 2O (pc=4{1 A Var'=Var A pc’ =entryj) (41, ],02) € Calls
I5 S O So(pc=4{1 A Var'=Var A pc’ =entryj) (01, ],02) € Calls
16 S DO SoTUToS

A fixpoint is a triple (R,S, T) that satisfies all inclusions of the forii to |6.

It can be computed by least fixpoint iteration of (an absioacof) the operator

defined by the fixpoint system. The operator induced®takes a set of pairs of
valuations, restricts it to pairs at entry and exit locagi@md replaces them with
the corresponding pairs at call and return locations.

In our notation, we identify an assertion with the relatibattit denotes. We use the operator
for relational composition. That is, for binary relatiohsndB,

AoB={(ss") |35 :(s,d) e AN (s,d) eB}.



Theorem 1 If the three relations over program valuations R, S and T f@am
fixpoint for the fixpoint system, their unions = RU T U S is a summary for the
program.

The theorem follows from Lemmas 1 and 2 below.

Lemmal The relation T is a superset of the transitive closure of the
intraleads relation.

T > =" 1)

Proof: Itis sufficient to show the statement below, which refersaofigurations
whose stack is empty.

If (s,€) is~ -reachable frongs,€), thenT contains(s,s).
We proceed by induction over the computation that leads fi®g) to (s, €).

Base Step(s, &) ~ (5, €)
The only one-step transition that does not change the ssaakoral
transition, i.e. the valuatiofs, s') satisfies an assertion of the fopra=
01 A pc’ =02 A cwhere(ly,¢,f2) is acommand ittmds. By inclusions
11 andl 2, Rand thus alsd@ contains(s,s).

Induction Step (s,€) ~» (S1,Y1) ~ ...~ (Sn,Yn) ~ (5, €).

Case 1. The computation frongs,€) to (s,€) contains no intermedi-
ate configuration with empty stack.

The stacky; of the second configuration consists of one locatign.e.
y1 = /1, and it is equal to the stagj of the last but one configuration.

The transition(s,e) ~ (s1,¢1) is a call transition induced by, say, the
call (¢1,k, ¢2). This means that the value of the program counte is
the entry locatiorentry, of the called module/.

The transition(sy, /1) ~ (S, €) is a return transition. This means that
the value of the program counter g7 is the exit locatiorexity of the
called moduleM .

The computation fronfsy, 1) to (sn, ¢1) is an execution (irM) from
entryy to exitx. Since no intermediate configuration has an empty stack,
every intermediate stack hasas its first element. Hendegy, €) is~ -
reachable from(s;,€). By induction hypothesisT contains the pair
(s1,5n). By inclusionsl 2 andl 3, Rand thus als@ contain(s,s).
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Case 2. The computation fronis,€) to (s, €) contains at least one
intermediate configuration with empty stack.

We consider the subsequence of all configurations with estpigk in
the computation.

(s,€)~T (s5,8)~T ...~ (5,,6)~T (8¢

For each part of the computation frofs, ,€) to (s, ,,€), we can ap-
ply the first case (none of the intermediate configuratiorssameempty
stack) and obtain th& contains all pairs of valuations in consecutive
configurations of the subsequence. By includignT is the transitive
closure ofR and thus containés, s).

O

The proof of Lemma 1 exhibits th&is a superset of the intraleads relation.
R O — (2)

SinceT D R' holds byl 2, inclusion (1) is a direct consequence of inclusion (2).
It seems, however, impossible to show (2) without showing (1

Lemma 2 The relation S is a superset of the transitive closure of thecdnds
relation minus the transitive closure of the intraleadsatein.
+ _
S > =\ =7

Proof: Since N

s, \;+ = (;*oéo;*fr
it is sufficient to show the statement below, which refers dafigurations
whose stack is empty.

If (,y’) with non-empty stacl/’ is ~ -reachable fron{s,€), thenS
contains(s,s).

We proceed by induction over the sidef y’.

Base Stepd = 1) The computation leading frorfs,€) to (s,y’) is of the
form
(57 8) ~" (Slva> ~ (527€> ~* (517@

The transition(sy, €) ~ (s,/¢) is a call transition. By inclusioh4, S
contains(sy,sp). If sis different froms; or ' is different froms;:
by Lemma 1,T contains(s,s1) resp.(s,s), and by inclusion 6, S
contains(s, ).
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Induction Step (d = d+1) The computation is of the form

(5,€) T (S Vi) ~ (S, £-Yk) ~* (S, £.%k).

By induction hypothesisS contains(s, s). The transition from(sg, Yk)
to (sci1,%.Yk) is a call transition. By inclusioh5 of the fixpoint sys-
tem, Scontains(sy, Sci1)- If S1 is different froms’: by Lemma 1,T
contains(sq;1,S), and by inclusiori6, Scontains(s, s).

O

6 Total Correctness

We assume that the correctness of the program is specifidtelpair of pre- and
postconditiongre andpost wherepre is an assertion over the Séir of unprimed
program variables anpbst is an assertion over the séir U Var’ of primed and
unprimed program variables. The assertions are assoeutethe entry and exit
points of the ‘main” moduléVo.

Partial correctness is the following property: if a compiotastarts in a con-
figurationq = (s,€) with the empty stack and the valuatigrsatisfying the as-
sertionpc = entryy A pre and terminates in a configurati@h= (s, €) with the
empty stack and the valuatighsatisfying the assertiost = entryg, then the pair
of valuations(s,s) satisfies the assertigrst.

Theorem 2 The program is partially correct if and only if there existsammary
S whose restriction to the precondition and the entry and jggints of the ‘main’
module M entails the postcondition.

S A pre A\ pc =entryg A pc' =exitg = post

Proof: if-direction: Assume that there exists a summarfor the program that
fulfills the condition of the theorem, but the program is nattlly
correct. l.e. there exists a computation from an initialfguration
(s,€) that terminates in a configuratidis’,€) such thats satisfies the
precondition ofMg but (s,s') does not fulfill the postcondition.

Sinces is a summary for the program, reachability(ef €) from (s, €)
wrt. ~* implies that thafs,s') isin . But this is a contradiction, since
S implies the postcondition d¥lo.

only if-direction: We defineS as the conjunction of the following relations
R T andS

R = —= n (Accx Acd),
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< +
T = — nN (Accx Aco),
< +
S = — nN (Accx Aco),
whereAccdenotes the set of all accessible states. Cle&rig,a sum-
mary of the program.

If the program is partially correct, each execution from mitial con-
figuration(s,€) to a configuratior(s’,€) on termination whers fulfills
the preconditiorpre implies that(s, s') satisfies the postconditiqrost;
furthermore, the paifs,s) is in T and thus inS. This means tha$
satisfies the condition of the theorem.

O

In the formulation above, the only-if direction of the theor requires an as-
sumption on the program syntax, namely that the ‘main’ medy does not get
called, i.e. no call is of the forn¥1,0, ¢2). The assumption can always be made
fulfilled by a small syntactic transformation of the program

To see why the assumption is needed, consider the exampgjeapnéactorial
which, in the syntax given in Section 3, does not satisfy ssumption. Th&
assertior2 (which refers to the precondition and the entry and exih{soof the
‘main’ moduleMg) doesnot entail the postconditioy = x! and neither does the
refinement o2 of the form

An>0: pc=entryg AX>0AX =x—nAY = (x—n)ly A pc’ =exitg

which is contained in every summary of the program.
The assumption on the program syntax is not required in thrautation of
the corollary below, which refers to the relatidn

Corollary 1 The program is partially correct if and only if there existsedation

T over program valuations that is a solution in the fixpoirgteynd® and whose
restriction of T to the precondition and the entry and exitnp® of the ‘main’
module entails the postcondition.

T A pre A pc =entryg A pc’ =exitgp = post

Obviously only the inclusions of the forihd — 13 of ® are relevant for a solution
forT.

Termination is the property that every computation of thegpam, i.e. every
sequence of configuratiogg~> gy ~ 2. .. is finite. The next theorem states that
one can characterize termination in terms of summaries.

Theorem 3 The program is terminating if and only if there exists a sumymga
that is a finite union of well-founded relations.
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Proof: if-direction: For a proof by contradiction, we assume that there ex-
ists an infinite computatiolisy, €), (s1,Y1), (S2,Y2), ... Starting in the
empty stack. We now construct an infinite subsequence of gionfi
rations(s2,y9), (st,y1), (s%,y?),... such that the corresponding valua-
tions form a descending sequence.

L ==L =

The first part of the subsequence of configurations consisti con-
figurations with an empty stack, i.&%,y¥) = (s,,€). If there are in-
finitely many configurations with empty stacks, then we aneedwith
the construction and we obtain an infinite intraleads secglen
Otherwise, there is a configurati¢s, , €) such that the stack of all sub-
sequent configurations is not empty.

The transition from(s;,,€) to (s, +1,¢) is a call transition. Hence the
pair of valuationgs,, s, 1) is in —.

We repeat the above construction step Wih, 1,/) instead of(sp, €).
Inductively we get an infinite sequens st,s?, ... of valuations such

that pairs of consecutive valuations are-in and hence irs.
We now use the assumption thatis a finite union of well-founded

relations, say/
S=5U...USn.

We define a functiorf with finite range that maps an ordered pair of
indices of elements of the sequersdes!,s?. .. to the indexj of the
relationSj that contains the corresponding pair of valuations.

f(k,1) £ j where(s,d) e

The functionf induces an equivalence relatienon pairs of indices of

Pt
(ki,l1) ~ (ka,l2) & f(kg,l1) = f(ka,l2).

The index of~ is finite since the range of is finite. By Ramsey’s
theorem [17], there exists an infinite set of indiéesuch that all pairs
from K belong to the same equivalence class. Thus, there eniatsl

nin K, with m< n, such that for everitandl in K, with k < |, we have

2The assumption implies that one of the relatigihsoccurs infinitely often in the sequence
s, ... Thisis, however, not yet a contradiction to the well-foaddess of;, which needs
a consecutivgsj -sequence.
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(k,1) ~ (m,n). Letky,ko,... be the ascending sequence of elements of
K. Hence, for the infinite sequens®, s, ... we have(s, §4) € s for
alli > 1. But this is a contradiction to the fact thgtis well-founded.

only if-direction: LetS be the summary defined in the proof of Theorem 2.
Assume thafs is not a union of well-founded relations and ¢gbe the
subrelation ofS that is not well-founded. This means that there exists
an infinite sequence', s, ... such thats,s*1) isin¢forall i > 1.
Sinces! is accessible, and for alf> 1 there is a non-empty computation
sequence fronts,y) to (871 y*1) wrt. ~, there exists an infinite
computation(sy, €),..., (sL,y),...,(s%y?),... of the program. This is
a contradiction to our assumption that the program is teatmg. O

Corollary 2 The program is terminating if and only if there exist threatens
over program valuations F& and T that form a solution of the of the fixpoint
systentb and that are finite unions of well-founded relations.

Deductive Verification Below we give a proof rule for the total correctness of
general while programs with recursion. The proof rule isrband complete by
Theorem 1 and Corollaries 1 and 2.

Deductive verification according to the proof rule proceeddree steps, for
three given relation®, SandT over program valuations. The first step checks
that the triple(R, S, T) is a fixpoint, i.e. that the relatior?, Sand T satisfy the
inclusions given unddrl — | 6 of the fixpoint system of Section 5. The second step
checks that the restriction of the relatidrto the precondition and the entry and
exit points of the ‘main’ module entails the postconditidrne third step checks
thatRUSUT is a finite union of well-founded relations.

P program
RT,S: assertions over pairs of valuations
pre, post : pre- and postconditions faP

1. R, SandT form a fixpoint of®.

2. T A pre A pc=entryg A pc’ =exitg = post

3. T andS are finite unions of well-founded rela
tions.

Total correctness af : {pre} P {post}
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An informal description of an application of the above progk has been given
in Section 3. It is now straightforward to instantiate thegdrrule also formally
for the presented examples.

Automatic Verification The inclusiond 1 — 16 of the fixpoint system and the
condition for partial correctness amounts to checkingibnét between asser-
tions. Checking the well-foundedness of the finitely manyrher-relations o5
andT can be established automatically in many cases; see [13,2%]. The
synthesis of the relationR, SandT is possible by least fixpoint iteration (over
the domain of relations over program valuations) in comiiamawith abstract
interpretation methods [8, 9].

7 Conclusion

We have introduced a generalization of the fundamentabnatf procedure sum-
maries. Our summaries refer to arbitrarily precise desiong of the effect of
computations between general pairs of program points cfrgévhile programs
(over in general infinite data domains). We have shown howaameput them
to work for the verification of termination and total cormeess of general while
programs with recursion.

We have presented a proof rule for total correctness thatsisemaries as the
auxiliary assertion on the program. As already mentioneel proof rule has an
obvious potential for automation via abstract interpretat We believe that our
paper may lead to several directions of follow-up work tdireathis potential,
with a choice of abstraction methods (see e.qg. [8, 9, 15, drid)techniques for
the efficient construction of summaries (see e.g. [18, 2heDlines of future
work are the extension to concurrent threads (see e.g. flpadd the account of
correctness properties expressed in the CaRet logic [1].
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