
MAX-PLANCK-INSTITUT
FOR

INFORMATIK

Computer Support for the Development and
Investigation of Logics

Hans J i.irgen 0 hl bach

MPI- I- 94- 228 July 94

0

mPD
________ IN F 0 R M AT I K _________ _

Im Stadtwald

66123 Saarbrucken

Germany

Computer Support for the Development and
Investigation of Logics

Hans Jiirgen Ohlbach

MPI- 1- 94- 228 July 94

Author's Address

Hans Jiirgen Ohlbach
Max-Planck- Institut fiir Informatik
Im Stadtwald
D-66123 Saarbriicken
F. R. Germany
email: ohlbach@mpi-sb.mpg.de

Acknowledgements

I would like to thank Dov Gabbay as well as my colleagues Andreas Nonnengart and Renate Schmidt for
very fruitful discussions.

This work was supported by the ESPRIT project 6471 MEDLAR and by the BMFT funded project
LOGO (ITS 9102).

Abstract

Symbolic reasoning in a logical framework becomes more and more important for com­
puter applications such as Natural Language Processing Systems or Expert Systems.
These applications usually need specifically tailored logics. Therefore we are develop­
ing methods and algorithms for supporting the designer of an application system, who
is usually not a logician, to develop his own application oriented logic.

This paper gives an overview about our current state of these investigations. In
particular we consider the correspondences between axiomatic and semantic specifica­
tions of a logic and the problem of finding one from the other. Correlated with this
area are translation methods from the object logic into predicate logic, and methods
for optimizing the translation. Other topics are investigations of the expressiveness of
a logic and the axiomatizability of semantic conditions.

The basic techniques underlying our approach, so called K-transformations and
quantifier elimination, are briefly discussed. They are quite general mechanisms for
manipulating predicate logic formulae, and the investigation of logics is only one of
their applications.

For the technical details of the methods and the proofs I refer to the original papers.

Contents

1 Introduction

2 Problems Asking for Computer Support
2.1 Reasoning in Hilbert Systems
2.2 Finding Model Theoretic Semantics for Hilbert Systems
2.3 Finding Hilbert Axioms from Semantic Properties
2.4 Simplifying Semantics

3 Basic Techniques
3.1 Automated Theorem Proving
3.2 Formula K-Transformations

3.2.1 The General Transformation Procedure
3.2.2 Optimizing Translations into Predicate Logic

3.3 Clause K-Transformations
3.3.1 Transforming the Modus Ponens Clause

3.4 Quantifier Elimination

4 Semantics for Extensions of Propositional Logics
4.1 From Unary to Binary Consequence Relations .
4.2 Transformers for Binary Consequence Relations
4.3 Simplification by Quantifier Elimination
4.4 The Semantics Generation Procedure .

5 Summary

1 Introduction

2

3
3
4
6
7

8
8
8

10
10
12
13
13

14
15
15
16
17

18

Symbolic reasoning in a logical framework becomes more and more important for computer appli­
cations such as Natural Language Processing Systems or Expert Systems. Unfortunately there is
not just the universal logic as the basis for every application of logic. Of course, higher-order logic
is expressive enough to emulate all other logics, but it has so many unpleasant features that it is
useless for most practical applications.

There is a tradeoff between expressiveness of a logic and the complexity of the reasoning algo­
rithms for this logic. For obtaining an optimal result in a particular application, one has therefore
to find a compromise between these two features . However, not every designer of an application
program, which needs logic in some of its components, is a logician and can develop the optimal
logic for · his purposes, neither can he hire a trained logician to do this for him. In this situation
we could either resign and live with non-optimal solutions, or we could try to make computers
themselves expert logicians.

Although this is a very ambitious goal , there is some evidence that it is in fact possible, at least
to a certain extent. I just want to mention the MULTLOG system (BFOZ93]. This is a Prolog
program that accepts as input the truth tables of a finitely many-valued logic, and produces as
output a LaTeX document describing various calculi for this logic. The first MULTLOG generated
paper has already been accepted at a conference.

In this paper I give a survey on our main activities in this area. Problems we have investigated
so far are:

• reasoning in Hilbert systems,

• finding model theoretic semantics for axiomatically specified logics, and vice versa

• finding corresponding axioms for semantic properties,

• investigating the expressiveness of logics,

2

• finding translations from the object logic to predicate logic.

The procedures for solving these problems should of course guarantee soundness and completeness.
Therefore we need a precisely defined meta theory and soundness and completeness results at this
level. In most cases we use first-order predicate logic (PL1) as meta-logic for encoding and
manipulating the object logics. The intention is to map the problems from the object logic level to
the predicate logic level and to use the well established methods and results for PLl. As long as
this is possible, there is therefore no need to use more expressive systems, higher order predicate
logic, ,\-calculus or type theory for example. On the other hand, since PL1 has no variable binding
mechanism at the term level, this means that we are restricted to the propositional versions of the
object logic.

The techniques we have developed, mainly transformations of logical formulae, are of a relatively
general nature. Therefore, although our main interest was the development of logics, they are
defined as general predicate logic methods, and some of them have already found other interesting
applications.

The problems we are investigating are explained in some detail in Section 2. In each case I
demonstrate how these problems are mapped to problems at the PL1 level. In section 3 the key
techniques we have developed, Killer Transformations and Quantifier Elimination, are introduced.
Finally, in Section 4, the application of these techniques for finding model theoretic semantics for
Hilbert systems is described.

Due to space limitations, I cannot explain all the technical details and refer to the original
papers. But I present the main ideas and results.

2 Problems Asking for Computer Support

Logics can be defined in various ways. The most abstract way is by means of a Hilbert system.
A Hilbert system is a kind of grammar. It consists of axioms and rules. The axioms are actually
axiom schemas because all instances of the axioms are considered as theorems. The rules specify
how to derive new theorems from the initial theorems and the previously derived ones. For example
the axiom

together with Modus Ponens:

(p-+ q)-+ r)-+ ((r-+ p)-+ (s-+ p))

from p -+ q and p infer q

(1)

(2)

specify the implicational fragment of propositional logic [Luk70, p. 295]. For encoding vague
notions, like "knows", "believes" and "wants", a Hilbert style axiomatization is usually the method
of choice because in Hilbert systems their properties can be expressed in a very abstract and
intuitive way.

2.1 Reasoning in Hilbert Systems

A Hilbert system is a forward calculus. Starting with the axioms as the initial theorems, the rules
of the Hilbert system derive new theorems. Verifying that a formula is in fact a theorem in the
system amounts to enumerating all theorems until the formula eventually appears. Computers can
solve this problem with a well known technique. ·

Using first-order predicate logic as meta logic, the Hilbert system can be encoded as a Horn
theory. The logical connectives are encoded as function symbols and formulae are encoded as terms.
The propositional variables in Hilbert axioms are place holders for arbitrary formulae. Therefore
they become universally quantified variables in the encoded axiomatization. For example the
system consisting of (1) and (2) can be encoded as the predicate logic clauses

'rip, q, r, s

'Vp,q

Th(i(i(i(p, q), r), i(i(r,p), i(s,p))))

Th(i(p,q)) 1\ Th(p) => Th(q)

(3)

(4)

'Th' is the only predicate needed. Th(p) means 'p is a theorem'. 'i' denotes the implication
connective. A PL1 encoding of a Hilbert system together with a theorem to be proved is now a

3

suitable input for an automated theorem prover. And in fact , these kinds of problems have been
used for a long time as test problems in the automated theorem proving community [MW92].

Hilbert systems as you can find them in logic textbooks usually specify each aspect of the
logic explicitly. The theorems proved from such systems in textbooks are in general so simple
that for current days automated theorem provers there is absolutely no problem to prove them.
However, if the Hilbert system is optimized by minimizing the number of axioms, the proof of
quite simple theorems can already become extremely complicated. Proofs may require hundreds
of rule applications , and finding them may need hours of CPU time. The technique of clause K­
transformations, presented in Section 3.3, improves the behaviour of automated theorem provers
for these more complex systems.

2.2 Finding Model Theoretic Semantics for Hilbert Systems

A specification of a logic with a Hilbert system is quite intuitive, but for many purposes it is
not adequate. One reason for developing an alternative to Hilbert systems is the desire to get
more efficient calculi. Another reason is to understand the logic better by bringing properties to
the surface which are sometimes very deeply hidden. An alternative way for describing a logic is
by mapping the syntactic constructs to a (hopefully) simple and well understood mathematical
structure. Typical examples for this semantical description of a logic are Tarski 's set theoretic
semantics for predicate logic or Kripke's possible worlds semantics for modal logic [Kri59, Kri63].

The usual way, the correlations between the axiomatic description and the semantics are pre­
sented is: the axioms and the semantics are defined and soundness and completeness are proved.
Soundness and completeness guarantee that a formula is a theorem in the axiomatic description
if and only if it is a valid formula in the semantics. Finding an appropriate semantic structure,
however, is nontrivial and requires experience and intuition.

As examples for semantics of a logic consider the different versions of the semantics of modal
logic. Common to all of them is the possible worlds framework as basic semantic structure. Each
possible world determines the interpretation of the propositional variables and the classical con­
nectives in the usual way. The interpretation of formulae with non-classical operators is defined in
terms of relations or functions connecting the worlds. The weakest semantics for modal logic is the
(weak) neighbourhood semantics (also called minimal model semantics [Che80]) . Each world has
sets of worlds as 'neighbourhoods'. A formula Dp is true in a world w iff the truth set of p, i.e. the
set of worlds where pis true, is among w's neighbourhoods. This semantics satisfies the ME rule,
p <:::} q implies Dp <:::} Dq, but no stronger axiom or rule. In strong neighbourhood semantics, Dp is
true in a world w iff one of w's neighbourhoods is a subset of p's truth set. Strong neighbourhood
semantics satisfies a monotonicity property: p =? q implies Dp =? Dq. The next stage is the well
known Kripke semantics with a binary accessibility relation. But this is not the end of the story.
For example, modal logic S5 has a semantics in terms of an accessibility relation with the extra
condition that the accessibility condition is an equivalence relation. This condition guarantees that
the S5 axioms hold. An alternative semantics for S5 has the truth condition for the 0-operator:
Dp is true in a world iff p is true everywhere. In this semantics without accessibility relation, all
S5 axioms are tautologies.

Each version of the semantics consists of two parts. The basic semantics contains just the defi­
nition of the primitive notions, neighbourhood relations or accessibility relations for example, and
the satisfiability relation. The possible worlds together with the relations and functions operating
on them are usually called frames.

The second part of the full specification of the semantics restricts the class of semantic structures
by imposing constraints on the frames (so called frame conditions) and sometimes by restricting
the assignment of truth values to the propositional variables. Modal logic T , for example is charac­
terized by restricting the class of frames to those with reflexive accessibility relations. Intuitionistic
logic as another example has a restriction on the assignment of propositional variables: if p is true
in a world w then it remains true in all words accessible from w.

Each part of the semantics validates a certain part of the Hilbert axioms. The basic seman­
tics of normal modal logic with binary accessibility relation for example validates the K-axiom

4

D(p => q) => (Dp => Dq) and the Necessitation rule: from p infer Dp. The reflexivity condition on
the accessibility relation validates the axiom Dp => p. Obviously, there is a hierarchy of semantics.
A semantics S1 is stronger than a semantics S2 if the basic part of S1 validates more axioms than
the basic part of S2 . A semantics is optimal for a Hilbert system if all axioms are validated in the
basic part and no extra conditions are needed.

In [Ohl94] I addressed the problem of finding the semantics for a given Hilbert system. In this
paper I proceed as indicated in the following picture.

Transformation
HS- PL1(HS)

Transformation
rules T =

semantics definitions
of the connectives

T(PL1(HS)) =frame conditions

We begin with an arbitrary Hilbert system H S and encode it in first-order predicate logic.
The key observation underlying my approach for systematically finding a semantics comes from
automated theorem proving. In order to prove a conjecture from assumptions, one need not perform
the proof directly, but we can transform assumptions and conjectures and prove the transformed
conjectures from the transformed assumption, provided the transformation T guarantees

assumptian => canjecture iff T(assumptian) => T(canjecture).

The working hypothesis of my approach is therefore

The semantics of an axiomatically defined logic is the result of a carefully designed
transformation of predicate logic formulae. The transformation rules represent the in­
terpretation function and the non-tautologous transformed Hilbert axioms are the frame
conditions.

(5)

An optimal transformation turns all axioms into tautologies. In this case, proving a theorem cp
from H S reduces to proving T (cp) without any additional assumptions. The guideline for finding
a good transformation is thereforethe intention to turn axioms into tautologies, or to make them
in some other way redundant .

The problem of finding a semantics now reduces to two problems:

• We must find transformations for Hilbert axioms which turn them into tautologies. Ideally
one would like to have a procedure Trans_Gen which, given a formula cp as input , computes
a transformation T 'l' with property (5) such that T'l'(cp) =true. If PL1(HS) consists of
the formulae cp1 , ... ,cpn one would compute 1''1'1 = Trans_Gen(cpi), get cp~ = T'l' 1 (cpi) for
i = 2, .. . , n, compute T 'I'~ = Trans_Gen(cp~), apply it to cp~ , , cp~ and repeat the process
until all axioms are turned into tautologies. And, in fact, in [OGP94], we sketch such a
procedure Trans_Gen . Unfortunately this idea does not work in general. The reason is that
T may produce an infinite conjunction of formulae , and then the process does not terminate.
But even if this method worked, it would not be very satisfactory because we do not want any
transformation, but a transformation that gives some insight into the structure of the logic.
I therefore proposed an approach which is restricted to a certain class of logics, but giv~s
better results for them. The idea is to develop transformations for very concrete formulae
or formula schemas. For each given Hilbert system, we then ·check which of the formulae
out of our database of formulae with known transformations is a theorem. That means we
decompose

PL1(HS) {:::} 'Pl 1\ . .. I\ 'Pk 1\ rest

and for the 'Pi we develop transformations once and for all. The transformations for 'Pl
1\ . . . 1\ 'Pk specify the basic semantics and the transformation of the rest gives the frame
conditions.

5

• The transformed Hilbert axioms usually still contain formula variables. But what we are
after, are frame conditions, i.e. formulae describing properties of the semantics structures,
accessibility relations and the like. It turns out that in many cases the transformed Hilbert
axioms can be simplified by eliminating the formula variables with a quantifier elimination
algorithm. The result is in fact the axiom for the frame condition. In Section 3.4 I sketch
the algorithm we have developed for eliminating formula variables.

After the introduction of the basic techniques, which are necessary to solve these problems, we
come back to this discussion in Section 4.

2.3 Finding Hilbert Axioms from Semantic Properties

For axiomatizing vague notions whose mathematical structure is not clear, Hilbert systems are a
good starting point. If, however, the semantic structure is clear, for example the time structure in
a temporal logic, we might want to go the other direction and, starting with a semantics, develop
a Hilbert system. For example we might want a linear and dense time structure and ask for the
corresponding Hilbert axioms.

In order to solve this problem, one can again use PLl as meta logic and encode the relevant
information as PLl axioms. In particular the interpretation of the connectives, which is known
in this case, is written as PLl equivalence with the binary satisfiability relation f= and the PLl
encoding of the semantic notions. For example the interpretation of the modal logic 0-operator
becomes

Vw,p w f= Op <=> 3v R(w, v) 1\ v f= p,

which is an ordinary PLl formula (in infix notation). We can encode the semantics of all relevant
connectives this way, add the frame property we want to translate into a Hilbert axiom, and ask
an automated theorem prover to enumerate all constructive proofs for a formula

3pVw w f=p.

That means we try to verify the existence of a tautology, a formula which is true in allworlds.
Of course there are lots of them. Therefore each answer of the theorem prover must be checked
by translating it back usinlg the methods we have developed for the 'Hilbert system -+ semantics'
direction. Hopefully the theorem prover eventually comes up with the right answer. In [BG094]
we have shown the details of this procedure and tested it with a lot of examples from modal and
relevance logic. One of the examples was to find the Hilbert axiom corresponding to the transitivity
of the accessibility relation in modal logic. In order to give an impression of the procedure, we
list the protocol of a typical proof run with the OTTER theorem prover [McC89, McC90] . s is the
satisfiability relation, d is the 0-operator, i is the standard implication. I is OTTERS symbol for
disjunction, $ans is a special literal for extracting variable bindings. It has no logical meaning.

%Interpretation of the connectives d and i.
(all z X (s(z,d(X)) <-> (exists x (R(z,x) & s(x,X))))).
(all z X {allY (s(z,i(X,Y)) <-> (s(z,X) -> s(z,Y))))).
%Property to be translated.
(all x y z ((R(x,y) & R(y,z)) -> R(x,z))) .
%Negated theorem.
-(exists fall z (s(z,f) & -$ans(f))).
end_of_list.

---------------- PROOF ----------------
1 -s(z,d(x1))1R(z,f1(z,x1)).
2 -s(z,d(x1))1s(f1(z,x1),x1).
3 s(z,d(x1))1 -R(z,x)l -s(x,x1).
5 s(z,i(x2,x3))1s(z,x2).
6 s(z,i(x2,x3))1 -s(z,x3).
7 -R(x,y) I -R(y,z)IR(x,z).
8 -s(f2(x4),x4)l$ans(x4).

6

12 [8,5]
15 [12' 2]
16 [12,1]
19 [15 '2]
20 [15' 1]

$ans(i(x,y))ls(f2(i(x,y)),x).
$ans(i(d(x),y))ls(f1(f2(i(d(x),y)),x),x).
$ans(i(d(x),y))IR(f2(i(d(x),y)),f1(f2(i(d(x),y)),x)).
$ans(i(d(d(x)),y))ls(f1(f1(f2(i(d(d(x)),y)),d(x)),x),x).
$ans(i(d(d(x)),y))l
R(f1(f2(i(d(d(x)),y)),d(x)),f1(f1(f2(i(d(d(x)),y)),d(x)),x)).

115 [20,7,16] $ans(i(d(d(x)),y))l
R(f2(i(d(d(x)),y)),f1(f1(f2(i(d(d(x)),y)),d(x)),x)).

171 [115,3,19] $ans(i(d(d(x)) ,y)) ls(f2(i(d(d(x)) ,y)) ,d(x)).
174 [171,6] $ans(i(d(d(x)),y))ls(f2(i(d(d(x)),y)),i(z,d(x))).
175 [binary,174,8] $ans(i(d(d(x)),d(x))).

------------ end of proof -------------

In the usual notation, this answer is OOx =>Ox, which is in fact the corresponding Hilbert axiom.
In principle we can reduce the problem of finding corresponding Hilbert axioms to a theorem

proving problem. The search space, however, is in general very large. Therefore this is not yet a
really satisfactory solution.

2.4 Simplifying Semantics

The semantics of a logic is usually formulated in mathematical notation. This is the most expressive
formal(?) language we have. Therefore it is very easy to formulate in this mathematical language
conditions on the semantic structure of our logic which have no counterpart on the syntactic side.
But even if we do not exploit the full mathematical language and restrict ourselves to fragments
of predicate logic, this effect may happen. For example it is well known that conditions like the
irreflexivity or antisymmetry of the accessibility relation in modal logic are not axiomatizable in
the corresponding Hilbert system. This means that the syntax of modal logic is so restricted that
one cannot distinguish irreflexive frames from arbitrary frames. Thus, requiring irreflexivity has
no effect at all on the theorems provable in modal logic. In other cases it may turn out that the
syntactic side o,f a logic supports only weaker versions of semantic conditions as initially intended.
It is of course very important to know the expressiveness of the logic, because otherwise the effects
of semantic conditions are unpredictable.

A general technique for investigating the expressiveness of the logic .C is the following: We
formulate the semantics of .C in a suitable meta logic .Ct, usually predicate logic, take a translation
T : .C -t .Ct which ensures certain syntactic invariants on the translated formulae, and use these
invariants to investigate the effect of the given semantic condition C on theorem proving search
attempts for translated £ - formulae. It may for example turn out that C can never contribute
to a proof search, or that parts of C are always redundant and do not contribute to proof search
attempts. If the target logic .Ct is PLl, all the results about proof search strategies and redundancy
criteria can be used for this purpose. What predicate logic theorem provers usually do in order
to get rid of irrelevant parts of the search space, now becomes valuable information about the
expressiveness of .C.

A technique recently developed by Andreas Nonnengart supports these kind of investigations
for modal logic. He has developed the so called semi- functional translation [Non93] from multi­
modal logic to many-sorted predicate logic which produces clauses where the accessibility relation
literals occur only with negative sign. The translation rules for the modal part are

1r((p)c, w)

1r([p]c, w)

3-rAFp 1r(c,w: -y)

'Vv p(w,v) => 1r(c,v)

For example a formula [p](q)c is translated into 'Vv p(w,v) => 3-rAFq c(v:-y). Intuitively one can
understand the sort AFp as a set of functions mapping worlds to p-accessible worlds. The colon :
is an infix function symbol which can be understood as application function, a:-y '!,g -y(a) (cf. Sec.
3.2.2). Only formulae in negation normal form can be translated this way. It is not necessary
to understand the details of this translation technique here. The only fact we need is that the
translated clauses contain only negative accessibility relation literals. From the translation there is

7

only one positive clause per accessibility relation, namely 'Vx 'V')' :AFp p(x, x:')'). It relates the sort
AFp with the predicate p. If we do theorem proving by refutation with resolution (see below), we
immediately see that there is no resolution partner at all for the irreftexivity clause -.p(X ' X). This
clause is redundant and cannot contribute to a proof. Thus, irreftexive accessibility relations are
not characterizable in modal logic.

The semi-functional translation with the strong syntactic invariant that no positive accessibility
literals ever occur in transla,ted modal formulae , turned out to be an excellent basis for applying
all kinds of redundancy criteria to eliminate or simplify frame conditions. Here we can exploit
the results about resolution strategies with deletion operations (BG90], and the technique is really
easy to apply.

3 Basic Techniques

3.1 Automated Theorem Proving

Some notions and notations are needed in this paper which are taken from the theorem proving
literature.

A clause is a disjunction of literals. If Ai are the negative literals and Bj are the positive literals,
we can write clauses in three different ways, either as a disjunction, -.At V ... V -.An V B1 V . .. V Bm
or as an implication At 1\ ... I\ An => B1 V . . . V Bm or as a set {-.At, . . . , -.An , B1, . .. , Bm}· The
variables in clauses are always considered universally quantified. Two different clauses are always
considered as variable disjoint . A ground clause is a clause without variable symbols.

A substitution u is an endomorphisrp. in the free term algebra which changes only finitely many
variables. We write substitutions as sets u = { x 1 t-t s1 , x 2 t-t s2 , .. • } • su denotes the application
of the substitution u to the term s . ur denotes the composition of the two substitutions u and r .

mgu(s , t) is the most general unifier for the two terms or atoms s and t. That means if
u = mgu(s , t) then su = tu . Since we do not consider theory unification, there is, up to variable
re_naming, at most one most general unifier for two terms. Two literals are complementary unifiable
if they have different signs and the atoms are unifiable.

Resolution is the standard inference rule for many theorem provers (Rob65]. The definition of
the resolution rule is

C1: L1 V L2 V .. . V Ln
C2 : Kt V K2 V ... V Km

u(L2 V . .. V Ln V K2 V .. . V Km)

L 1 and K 1 are complementary unifiable.
u is the most general unifier

L 1 and K 1 are the resolution literals. We say that we resolve the clauses C1 and C2 upon the
resolution literals L1 and K 1 ·

Self resolution is a resolution operation between two variable renamed copies of the same clause.
For example a self resolution with the transitivity clause is

-.P(x, y) V -.P(y,z) V P(x,z)

I
-.P(x' , y') V -.P(y' , z') V P(x' , z')

-.P(x, y) V -.P(y , z) V -.P(z, z') V P(x , z')

3.2 Formula K-Transformations

A formula K-transformation for a formula <p is a mapping 1 "' from PLl formulae to PLl formulae
such that

• for all formulae~ and '1./J: ~ => 'ljJ iff 1,(~) => 1 , ('!/J)
(faithfulness = soundness and completeness)

• 1 ,(cp) is a tautology
(cp is 'killed' by 1 ,, therefore the name 'K(iller)-Transfomation')

8

To illustrate the basic idea of formula K-transformations, suppose we have some set <I> of axioms
which, among other things, axiomatize a reflexive and transitive relation R, i.e.

Vx R(x,x)

Vx, y, z R(x , y) 1\ R(y, z) => R(x , z)

(6)

(7)

are either contained in <I> or derivable from <I> , and we want to get rid of the reflexivity and
transitivity of R.

In order to show that a formula '!jJ is entailed by <I> , one usually tries to refute <I> 1\ -,'!j; . Before
the refutation is actually started, every transformation on <I> 1\ -,'!j; which preserves satisfiability
and unsatisfiability is allowed. Skolemization of existential quantifiers is a typical example of a
routinely applied transformation which preserves satisfiability and unsatisfiability, but not logical
equivalence.

The translation we propose for eliminating reflexivity and transitivity of R exploits that these
two properties together imply

Vx, y R(x , y) <=? (Vw R(w, x) => R(w, y)). (8)

To see this, suppose R(x, y) and R(w, x) hold. By transitivity, R(w, y) also holds, i.e. the "=>"-part
is shown. For the "{::"-part, take w =X and use the reflexivity of R to derive R(x, y).

Since (8) is entailed by <I> , we could add it to <I> 1\ -,'!j; without loosing satisfiability or unsatisfi­
ability. However, instead of (8) , we add

Vx , y R(x , y) <=? (Vw R'(w, x) => R'(w,y)) . (9)

to <I> 1\ -,'!j; where R' is a new predicate symbol. We can even go one step further and introduce a
new sort symbol W for the variable w and add

Vx ,y R(x,y) <=? (Vw:W R'(w, x) => R'(w, y)) (10)

to <I> 1\ -,'!j;.
Clearly, if <1>. 1\ -,'!j; is satisfiable then <I> 1\ -,'!j; 1\ (10) is also satisfiable: the interpretation of R'

can be chosen to be the same as the interpretation of R. In this case (10) is equivalent to (8),
which follows from <1>. Thus, (10) is also true in the extended interpretation. On the other hand,
if <I> 1\ -,'!j; 1\ (10) is satisfiable then certainly <I> 1\ -,'!j; is satisfiable as well.

But now we have a definition of R in terms of R' where R' is an uninterpreted new predicate
symbol. In the next step, (10) is used as a rewrite rule from left to right, replacing all occurrences
of R in <I> 1\ -,'!j; by the formula with R'. We obtain the transformed formula <I>' 1\ -,'!j;' 1\ (10) with
R' in place of R . This is a terminating equivalence preserving transformation.

What happens to the reflexivity and transitivity of R? Vx R(x, x) becomes 't:/x Vw R'(w, x) =>
R'(w,x) which is a tautology (by the reflexivity of"=>"). The transitivity (7) becomes
Vx , y, z (Vw R'(w,x) => R'(w, y)) 1\ (Vw R'(w,y) => R'(w,z)) => (Vw R'(w,x) => R'(w ,z)) which
is also a tautology (by the transitivity of =>) . Thus, R' need neither be reflexive nor transitive.

Nothing would have been gained if the definition (10) of R could not be removed afterwards.
That means we have to show that <I>' 1\ -,'!j;' 1\ (10) is satisfiable if and only if <I>' 1\ -,'!j; ' is satisfiable.
Since <I>' 1\ -,'!j;' does not contain R any more, we can always find an interpretation for R, using (10)
as definition. Therefore each model for <I>' 1\ -,'!j;' can be extended to a model for <I>' 1\ -,'!j;' 1\ (10).
Thus, (10) can be eliminated. <I>' 1\ -,'!j;' is the final result of our transformation.

What has actually happened is that the role of the reflexivity and transitivity of R has been
taken over by the reflexivity and transitivity of the implication connective. Many other examples
of K-transformations are of a similar kind. The built-in properties of predicate logic take over the
role df special properties of non-logical symbols.

The new symbols R' and W we introduced in our reflexivity and transitivity example can
havesome well known interpretations. If for example R is the subset relation ~ then R' is the
membership relation E and (9) is the definition of subset in terms of membership. If R is a binary
consequence relation 12 of a logic, then R' can be interpreted as the satisfiability relation f=, and

9

the sort W denotes the set of worlds. (10) becomes the definition of the consequence relation in
terms of the satisfiability relation.

'Vx,y x Fy {:::} ('Vw:W w f= x => w f= y) (11)

3.2.1 The General Transformation Procedure

The general procedure for transforming formulae 4> in a consistent way, i.e. without loosing satis­
fiability or unsatisfiability, consists of the following sequence of steps

extension transformation elimination
4> -+ 4> 1\ transformer -+ 4>' 1\ transformer -+ 4>'

where 'transformer' is a formula of the kind

Left{::} Right. (12)

(9) is an example for (12) . The 'extension' step involves finding the transformer. In general this
is still a creative step. In [OGP94], however, we describe methods for automating this step to a
certain extent. The actual transformation is done in the 'transformation ' step. In the simplest case
the transformation strategy is just definitional replacement where (12) is used as rewrite rule from
left to right. It can, however, also be a much more complex combination of rewriting, inferencing
and deleting formulae. In the elimination step we delete the transformer. Since removing formulae
can turn unsatisfiable formula sets into satisfiable sets, this is also a nontrivial step which has to
be justified. To ensure that the transformation is satisfiability preserving, which is sufficient to do
theorem proving by refutation, the following translation lemmas have to be proved.

• The extension lemma proves that satisfiability of 4> implies satisfiability of 4> 1\ transformer.

• The transformation lemma proves that 4> 1\ transformer is satisfiable if and only if 4>' 1\
transformer is satisfiable, Where 4>' is the transformed version of 4> .

• The elimination lemma proves that satisfiability of 4>' implies satisfiability of 4>' 1\ transformer.

The structure offormula K-transformations is investigated in more detail in [OGP94]. They can
be classified according to certain syntactic criteria such that some of the transformation lemmas
can be proved once and for all. The simple schema we have used for the reflexivity and transitivity
example turned out to be quite often applicable. The schema is: in order to find a formula K­
transformation T ..,, choose1 an equivalence Left{::} Right0 which is provable from t.p, and then
rename some of the symbols and literals in Right0 to obtain the final transformer Left{::} Right.

3.2.2 Optimizing Translations into Predicate Logic

As a non- trivial application of formula K-transformations, I show how translations from noncla.S­
sical logics into predicate logic can be manipulated and hopefully optimized. I illustrate the idea
with modal logic, but the principles are applicable to other systems as well.

Via their possible worlds semantics, a number of non-classical logics can be translated into
predicate logic. For example the semantics of the modal operators

x f= DP iff 'Vy R(x, y) => y f= P

x f= OP iff 3y R(x, y) 1\y f= P

gives rise to the relational translation of propositional modal logic.

trr(P,w)
trr(Dt.p,w)
trr(Ot.p,w)

= P' (w) P a predicate symbol
= 'Vv R(w,v) => trr(t.p,v)
= 3v R(w,v) 1\ trr (cp,v).

(13)

(14)

1Choosing the right equivalence is still a creative step . In [OGP94] we give some heuristics for finding the
equivalences.

10

The relation R occurs only in the typical patterns

\fv R(w,v) => trr(r.p,v)
3v R(w, v) 1\ trr(r.p, v)

in the translated formulae. Additionaly it may occur in some characteristic axioms axiorp.atizing
properties of R itself. Since this is a quite typical pattern which appears not only in this application,
it is worthwhile to look for a K-transformation which eliminates this relation. The transformation
we need depends on whether the relation is serial (i.e. \fx3y R(x, y) holds) or not . For the serial
case the transformer is

'Vx ,y R(x ,y) {::} 3-y:AF y = apply("y,x). (15)

For the non-serial case it is a bit more complicated (see [OGP94)). Intuitively, the sort AF denotes
the set of accessibility functions, i.e. functions mapping worlds to accessible worlds. apply is the
application function. Therefore we usually write -y (x) instead of apply("y,x). With this idea in
mind all transformation lemmas can be proved very easily.

From (15) we can prove

\fw \fv R(w, v) => r.p(v) {::} \f-y:AF r.p("y(w))

\fw 3v R(w, v) 1\ r.p(v) {::} 3-y:AF r.p("y(w))

(16)

(17)

The transformation strategy is now not just simple definitional replacement with (15). Instead
we use the derived equivalences (16) and (17) wherever possible first for rewriting quantifications
as a whole.

Applied ~o the modal logic case, our K-transformation turns the relational translation of modal
logic into predicate logic into the functional translation (c.f. [Wal87, Ohl88a, JR88, Her89, AE92,
Ohl90, Gas92, Ohl93, Zam89]):

tr,(Dr.p,w)
tr t(Or.p , w)

= \f-y:AF tr,(r.p, -y(w))
= 3-y:AF tr,(r.p , -y (w))

The transformer (15) can be used in exactly the same way for optimizing the treatment of
varying-domains in the translation of quantified modal logics. The normal translation rules for
the quantifiers in the varying-domain case are

trr('Vx r.p(x), w) = \fx Exists(w, x) => trr(r.p(x), w)

trr(3x r.p(x),w) = 3x Exists(w,x) 1\ trr(r.p(x),w)

where Exists(w,x) intuitively means that xis in the domain of the world w. Since each domain
contains at least one element, Exists is serial. The transformer (15) now yields an optimized
translation

tr,(\fx r.p(x) ,w)

tr,(3x r.p(x) ,w)

= \f-y:M tr,(r.p("y(w)) ,w)

= 3-y:M tr,(r.p("y(w)) ,w).

The sort M 2 denotes the set of functions mapping worlds to their domain elements, i.e. -y(w) E
domain(w). Quantification over all')' exhausts the domain of w.

Using formula K-transformations, with a minimum of effort we reconstructed the functional
translation for modal logic and extended it to an optimized translation of varying-domain systems.
We composed an existing translation, namely ·the relational translation from modal to predicate
logic with the newly defined K-transformation. This is an example for a general method to modify
translations. The pattern is:

2 We choose M to distinguish it from AF in case both transformers are applied simultaneously.

11

test.
In order to check the faithfulness condition, suppose R(a, b) 1\ R(b, c) => R(a, c) is a ground

instance of C.

becomes

V1c(R(a, b)) 1\ V1c(R(b,c)) => V1c(R(a,c))

(R(a, b) 1\ Vx R(x, a)=> R(x, b))
1\ (R(b, c) 1\ Vx R(x , b)=> R(x , c))
=> (R(a , c) 1\ Vx R(x, a)=> R(x , c))

which is in fact a tautology. The transformation is independent of the structure of a, b and c.
Therefore the condition holds for all ground instances of C. Thus, 1 c is sound and complete and
no self resolvent of the transitivity clause needs to be considered at all.

Compared to the transformer (9) which transformes both, positive and negative literals, we got
a considerable improvement: only the positive literals need to be transformed (of course without
renaming R).

In general 1 c can be obtained by successively computing self resolvents and choosing selected
literals until the faithfulness test succeeds.

3.3.1 Transforming the Modus Ponens Clause

In the context of investigating logics, it is interesting to see whether clause K-transformations
can improve the performance of automated theorem provers for Hilbert systems. To this end
I developed a clause K-transformation for the Modus Ponens clause (4) (also called condensed
detachment). Unfortunately a faithful transformer for Modus Ponens consists of all self resolvents
between the first and third literal.

Sr = {Th(i(x, y)) 1\ Th(x) => Th(y),
Th(i(x, i(z1 , z2))) 1\ Th(x) 1\ Th(z1) => Th(z2) ,
... ,
Th(i(x, i(z1, i(... zi))) 1\ Th(x) 1\ Th(zl) 1\ ... 1\ Th(zi_l) => Th(zi),
... }

The first literal Th(i(x,i(z1,i (... z;))) is the selected literal in all clauses. Transforming a clause
like (3) yields infinitely many clauses. Fortunately, one can find a finite encoding of these infinitely
many clauses with some well known predicate logic tricks. It turned out that in the case of (3) the
transformation revealed some significant redundancies caused by the lonely variables in (3). After
removing these redundencies I proved with Otter 3.0 some of the challenging problems discussed
in the Automated Reasoning literature. I got the following results [OGP94].

theorem original transformed improvement
1 Th(i(x,x)) 1.91 0.11 17.3
2 Th(i(x, i(y, x))) 1.94 0.13 14.9
3 Th(i(i(i(x, y) , x), x)) 4.77 0.52 9.2
4 Th(i(i(x, y), i(i(y, z), i(x, z)))) 2520.77 49.51 50.9
5 Th(i(x, i(i(x, y), y))) 35.07 13.75 2.5

The numbers in the third and fourth column give the total CPU time in seconds, Otter 3.0
needed to prove the theorem (on a Solburn machine with Super Spare processors), once from the
original two axioms, and then from the transformed axioms. Not for all the examples I tried, I got
these impressive improvements, but the improvement is in general better for complicated theorems
than for easy ones.

3.4 Quantifier Elimination

In [G092a] we have developed an algorithm which can compute for second- order formulae of the
kind 3P1 , ... , Pk q> where q> is a first-order formula, an equivalent first-order formula - if there
is one. Since V P1 , ... , Pk q> {::} -.3P1 , ... , Pk --,q>, this algorithm can also be applied to universally

13

quantified predicate variables. Related methods can also be found in [Ack35a, Ack35b, Ack54,
Sza92, BGW92, Sim94) .

The definition of the algorithm is:

Definition 3.1 (The SCAN Algorithm)
Input to SCAN is a formula a = 3P1 , ... , Pn <I> with predicate variables P1 , ... , P, and an arbitrary
first-order formula <I>.
Output of the SCAN - if it terminates - is a formula '{)01 which is logically equivalent to o:, but
not containing the predicate variables P1 , , Pn.
SCAN performs the following three steps:

1. <I> is transformed into clause form.

2. All C-resolvents and C- factors with the predicate variables P1, . .. , Pn have to be generated.
C-resolution ('C ' for constraint) is defined as follows:

P(s1, ... , sn) VC P(.. .) and -,P(.. .)
...,p(h, ... , tn) V D are the resolution literals
C V D V S1 ~ t1 V . .. V Sn ~ tn

and the C-factorization rule is defined analogously:

P(sl, ... ' Sn) v' P(tl , . .. 'tn) V c

Notice that only C-resolutions between different clauses are allowed (no self resolution). A
C-resolution or C-factorization can be optimized by destructively resolving literals x I t
where the variable x does not occur in t with the reflexivity equation. C-resolution and
C-factorization takes into account that second-order quantifiers may well impose conditions
on the interpretations which must be formulated in terms of equations and inequations.

As soon as all resolvents and factors between a particular literal and the rest of the clause set
have been generated (the literal is 'resolved away ') , the clause containing this literal must be
deleted (purity deletion). If all clauses are deleted this way, this means that a is a tautology.

All equivalence preserving simplifications may be applied freely. If an empty clause is gener­
ated, this means that a is contradictory.

3. If the previous step terminates and there are still clauses left then reverse the Skolemization.
<l

The SCAN algorithm is correct in the sense that its result is logically equivalent to the input
formula. It cannot be complete, i.e. there may be second- order formulae which have a first-order
equivalent, but SCAN cannot find it. An algorithm which is complete in this sense cannot exists ,
otherwise the theory of arithmetic would be enumerable.

The points where SCAN can fail to compute a first-order equivalent for a are (i) the resolution
does not terminate and (ii) reversing Skolemization is not possible. In the second case there is a
(again second-order) solution with existentially quantified Skolem functions.

4 Semantics for Extensions of Propositional Logics

Now we come back to the discussion we started in Section 2.2. We show how K-transformations
and quantifier elmination can be used for finding a model theoretic semantics.

14

4.1 From Unary to Binary Consequence Relations

There are different possbilities for axiomatizing a logic in terms of consequence relations. A unary
'consequence relation ' fl , which is actually not a consequence relation, but a theoremhood relation
is the simplest possibility. Alternatively one can specify a logic via a binary consequence relation
r. t.p r ~ means that ~ is derivable from t.p , derivable in the so specified logic. If each argument of
r is not a single formula but a list or a set we have a sequent system. It turned out that a binary
consequence relation is the most natural starting point for finding a semantics.

If Ao is a predicate logic (as meta logic) axiomatization of a logic .C in terms of a unary
consequence relation fl, we can use K-transformations to find a corresponding axiomatization with
a binary consequence relation. There must be a distinguished term t(x, y) in A0 which is some sort
of implication. The term is distinguished in the sense that all theorems of the form fl .. . provable
from Ao are actually of the form flt(. .. , . ..) . Moreover, the ground proof of these theorems must
contain also only atoms of the form flt(. . . , .. .) . In the Lukasiewicz example this distinguished
term is just i(x , y) denoting x -+ y. Only atoms of the form fli(... , . . .) occur in proofs of the
theorems we are interested in. In general , t need not be a function symbol. It can for example be
a term o(n(x) , y) encoding,x V y . In most cases, however it will be just an implication symbol.

The following transformer turns unary into binary consequence relations:

flt(x ,y){:}xry. (18)

This is actually a kind of deduction theorem. In [OGP94] we prove the faithfulness of this trans­
former.

For example the clauses (3) and (4) become

Vr, p,q,s

Vp ,q,r,s

i(i(p, q), r) ri(i(r,p), i(s,p))

prql\i(p,q)ri(r,s) =>rrs .

4.2 Transformers for Binary Consequence Relations

(19)

(20)

In [Ohl94], I have developed a sequence of K-transformations which generate possible worlds se­
mantics from axiomatizations of logics in terms of a reflexive and transitive binary consequence
relation and arbitrary n-place connectives.

To start with, we eliminate reflexivity and transitivity of the consequence relation r. The
method for eliminating reflexivity and transitivity has been explained in Section 3.2. The trans­
former is

Ti: prq {:} (Vw:W w f= p=> w f= q). (21)

We interpret the sort W as the set of 'worlds ' in a possible worlds semantics and the predicate
f= as the satisfiability relation. All further transformations start from the transformed system
Ti (Al) where A1 is the initial Hilbert system. For three further properties of logical connectives
f I developed faithful K-transformations. The general schema is almost always the same. The
property to be transformed is translated with Ti, corresponding equivalences Left{:} Right0 are
derived and then the non- recursive parts in Righto , these are the parts without the original formula
variables, are renamed. Sometimes alternative formulations in terms of sets of worlds instead of
worlds were possible. The following results were obtained.

Congruence Properties

v-p, ii A(Pi r q; A q; rpi) => f(PJ r J(rf)

There are two alternative transformers:
72 : w f= f(jf) {:} 3x:S Nt(w, x) 1\ /\; Vv:W R}(x; , v) {:} v f= p;

13 : w f= f(jf) {:} 3X Nj(w , X) 1\ /\;X; = \p;\

where X; = \p;\ is an abbreviation for Vv v E X; {:} v f= p;.

15

(22)

and

Monotonicity Properties

Upward monotonicity: Vp, q p P.q =>Vs, S' f(s,p, S') P. f(s, q, S')
Downward monotonicity: Vp, q pP. q =>Vs, S' f(s, q, S') P. f(s,p, S')

(23)
(24)

If pare the downward monotonic argument positions and if are the upward monotonic argument
positions in f then the two alternative transformers for monotonicity are

74: w I= f(p, if)* Vx:S 1\i (Vv:W R}(xi, v) =>vI= Pi)=>
3y:S 1\i(Vv:W R}(Yi ,v) => v 1= qi) 1\ N1(w,x,Y'J and

Ts: w I= J(f, if>* vi x ~ IPI => 3YY ~ I~ A N.f(w , x, Y).

Closure Properties

For each upward monotonic argument position of f
(to simplify notation we assume this is the last argument position):
Vp,q1,Q2,w w P. f(p,qi) 1\ w P. j(P,q2) => 3s s P.q1 1\ s P.q2 1\ w P. f(p,s) , (25)
and for each downward monotonic argument position of f
(to simplify notation we assume this is the first argument position):
Vp1 , P2, if, w w P. f(p1 , q1) 1\ w P. f(P2, if)=> 3s P1 P. s 1\ P2 P. s 1\ w P. f(s, if) . (26)
If again p are the downward monotonic argument pdsitions and if are the upward monotonic
argument positions in f then the transformer is

76: w 1= f(f, if>* vx, ff nJ(w, x , Y> => (1\i xi 1= Pi)=> <V j Yi 1= qj)
N1 and N.f are the neighbourhood relations and 'RJ is the accessibility relation between worlds.

We got these new relation symbols by renaming literals v I= f(x) into N1(v, x) during the con­
struction of the transformer.

There are some preconditions for the transformer for the closure properties. The original axiom
set must consist of definite Horn clauses, and the neighbourhood relation N.f introduced by 73 must
not be empty for at least one argument position. These conditions are needed to prove that there
is always a model where the closure properties also hold for infinitely many Qi 's, and to construct
the accessibility relation from the neighbourhood relation.

It is no coincidence that these equivalences look like semantics definitions for the connectives
f. In our framework, there is actually no difference between these transformers and what we could
call a semantics for a connective. The transformers are translation rules and semantics definitions
at the same time.

If this general scheme is instantiated for the unary D-operator in modal logic, we reconstructed
in fact the different versions of neighbourhood semantics (minimal model semantics) and Kripke
semantics as you can find them in logic textbooks (Che80] . (The details , which are not so simple
as it may appear here, can be found in (Ohl94] .)

Truth Value Semantics

For a connective f with a semantics defined in terms of the accessibility relation we can prove that
f is actually a classical connective by proving that the accessibility relation collapses to a point
relation.

A point relation is one where general reflexivity Vx 'R(x , . . . , x) holds and all arguments of n
'collapse' in the following sense: Vx 'R(x) => 1\i,i Xi = x1 holds. This is a standard predicate logic
theorem proving problem which can be solved with an automated theorem prover.

4.3 Simplification by Quantifier Elimination

If the original Hilbert system entails the reflexivity and transitivity of I= and the congruence
properties (22) hold for all connectives f then the relation p ~ q '!:!! (A1 entails (pP. q 1\ q P.p)) , is a
congruence relation on £ - terms. For a terms let (s] be its ~-congruence class . .Cl""~ {[s]l s is an
.C-term} is called the Lindenbaum algebra of .C. If .C contains propositionallogic, its Lindenbaum
algebra is a Boolean algebra. We have pP. q iff (p] ~ [q] where ~ is the lattice theoretic smaller

16

relation of Boolean algebras. By Stone's representation theorem, this Boolean algebra is isomorphic
to a field of sets [Sto36). Each element [p] can therefore be identified with a set P([p]) and we have
p ~ q iff [p] ~ [q) iff P([p)) ~ P([q]) iff Vw w E P([p)) ::} w E P([q)). By the construction in the
proof of Stone's theorem, P([p)) is the set of prime ideals containing [p] . (In our case these prime
ideals correspond to the mru,dmally consistent sets in the usual canonical model constructions.)

Now we have an alternative interpretation of the 'world sort' W: The worlds are the set of
prime ideals of .Cl::::: and the literals w f= p can be interpreted as w E P([p)) . In [Ohl94) I show
that one can even go a step further and interpret literals w f= p as w E p where p is quantified
over the full powerset of the set of prime ideals. That means formula variables p can in fact be
taken as second-order predicate variables and instead of w ~ p we can write p(w). Transformed
Hilbert axioms can now be simplified by negating them first , applying SCAN and negating the
result again.

As an example, let us transform and simplify the Hilbert axiom Dp P. DDp in normal modal
logic (the axiom '4'). The transformer 'fJ_ translates this axiom into

Vp Vw w f= Dp::} w f= DDp.
We apply the instance of 16 for the D-operator to this formula.

Vp Vw w(Vu R(w, u)::} p(u))::} (Vu R(w, u)::} (Vv R(u, v)::} p(v))
In order to simplify this formula we apply the SCAN algorithm. Since p is universally quantified,
we have to negate the formula first . The result

3p 3w w(Vu R(w, u)::} p(u)) 1\ (3u R(w, u) 1\ (3v R(u, v) 1\,p(v))
is the input for SCAN. The clause from of this formula is:

C1,R(w,u)Vp(u)
c4,p(v)

C2 R(w,u)
C3 R(u,v)

u is the only universally quantified variable. There is one resolution possible with literals containg
p. The resolvent is,1(_(w, v) . If the existential quantifiers are reconstructed for this clause together
with C2 and C3 , and the formula is negated again, we obtain, as expected, the transitivity of R :
Vu, v, w R(w, u) 1\ R(u, v) ::} R(w, v).

4.4 The Semantics Generation Procedure

We define a procedure for developing the semantics for Hilbert systems.
We start with an arbitrary formula set A1 containing the P.-predicate. Naturally A1 should be

consistent, otherwise the following steps have no meaning.

Step 1 Prove that P. is reflexive and transitive.

Step 2 Prove the congruence properties, (22) for all connectives. If there are connectives where
-- this is not possible, the logic is outside the scope of the current theory. If the congruence

properties hold for all connectives and P. is the only predicate in A1, and all formula
variables are universally quantified then both transformers 12 and 73 define a sound and
complete semantics.

Step 3 Try proving for each connective f the monotonicity properties (23) and (24) from A1. In
-- this step we determine for each argument position of f, whether it is upward or downward

monotonic. We assume that each argument position is monotonic.

The actual semantics is now determined by one of the transformers T4 or 75 , for each mono­
tonic connective, and one of the previous transformers for the non- monotonic connectives.
All can be mixed freely.

Step 4 Check whether A1 contains an axiomatization of standard propositional logic. Find a
-- model for A1 1\ (3p, q,(pP. q)) to ensure that the next transformations do not produce

inconsistencies. If both conditions are fulfilled , one can simplify the previously transformed
axioms with the quantifier elimination algorithm SCAN. Notice that this is an optional
simplification step. If the quantifier elimination algorithm does not succeed, then the

17

original translated formula is the final result of the transformation. In this way we can
also deal with so--called incomplete systems. The transformed axioms specify restrictions
on the assignment of predicate variables.

Step 5 If the conditions of the previous step are fulfilled, and A1 consists of definite Horn clauses
only, and the neighbourhood relation is not empty for at least one argument position, then
check for the closure properties. For the connectives which are either upward or down­
ward monotonic for each argument position, try proving (25) for each upward monotonic
argument position and (26) for each downward monotonic argument position. If this is
successful then the transformer T6 yields the classical relational possible worlds semantics.
Translate A1 again using the strongest possible transformer for each connective. As in the
previous step, these translated axioms can be simplified using quantifier elimination.

Notice that this step and the corresponding completeness proof subsumes the Sahlquist
technique frequently used in modal logic to get frame properties from Hilbert axioms
[Sah75, vB84].

Step 6 For connectives with relational semantics (the previous step was successful) try proving
that the accessibility relation collapses to a point relation. If this is provable then the
connective has a standard truth value semantics.

The completeness results for the K-transformation technique guarantee that a theorem can be
proved from the original Hilbert axioms A1 if and only if the translated theorem can be proved
from the resulting translated axiom system.

All steps in this procedure can be fully automated by using automated theorem provers for
PLl, model generation algorithms like John Slaney's FINDER [PS90], and the SCAN algorithm.

5 Summary

I have sketched methods for supporting the development and investigation of application oriented
logics with computers. In particular we have considered the problems of

• reasoning in Hilbert systems.

• finding model theoretic semantics for axiomatically specified logics, and vice versa

• finding corresponding axioms for semantic properties,

• investigating the expressiveness of logics,

• finding translations from the object logic to predicate logic.

Using predicate logic as meta logic, we were able to map these problems to formula manipulation
'problems in PLl. With automated theorem provers, a quantifier elimination algorithm, and the
special technique of K-transformations we found partially automatable solutions of these prob­
lems. As an example, we were able to reconstruct the various semantics versions for modal logic,
but for arbitrary n-place connectives, and with very general completeness results for computing
corresponding frame conditions for Hilbert axioms.

This work can, and needs to be extended in so many directions, that it is impossible to name
them all here. Of course, automated support for the development of calculi for a given logic
would be very welcome. Serious limitations, which have to be overcome, are the restriction to
propositionallogics. What we have not yet considered at all are many-valued logics, probabilistic
logics and nonmonotonic logics. Conditional logics, however should be within the scope of the
current techniques.

Although in this paper we considered only specifications of logics, the basic ideas and techniques
are independent of this particular application. There might be other areas where similar manipula­
tions of logical specifications also yield interesting results. In particular, the area of representation
theorems for algebraic systems is related. Transferring the ideas and methods to algebraic logic
and to general algebra seems promising.

18

References

[Ack35a] Wilhelm Ackermann. Untersuchung iiber das Eliminationsproblem der mathematischen
Logik. Mathematische Annalen, 110:390-413, 1935.

[Ack35b] Wilhelm Ackermann. Zum Eliminationsproblem der mathematischen Logik. Mathema­
tische Annalen, 111:61-63, 1935.

[Ack54] Wilhelm Ackermann. Solvable Cases of the Decision Problem. North-Holland Pu. Co.,
1954.

[AE92] Yves Auffray and Patrice Enjalbert. Modal theorem proving: An equational viewpoint.
Journal of Logic and Computation, 2(3):247~297, 1992.

[BFOZ93] Matthias Baaz, Christian G. Fermiiller, Arie Ovrutcki, and Richard Zach. MULTLOG:
A system for axiomatizing many-valued logics. In Andrei Voronkov, editor, Logic Pro­
gramming and Automated Reasoning, Proceedings of LPAR 93, Lecture Notes in AI
698, pages 345- 347. Springer Verlag, 1993.

[BG90] Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with
simplification. In CADE-10: 10th International Conference on Automated Deduction,
Lecture Notes in Artificial Intelligence, pages 427-441, Kaiserslautern, FRG, 1990.
Springer-Verlag. Copy filed.

[BG094] Chris Brink, Dov Gabbay, and Hans Jiirgen Ohlbach. Towards automating duality.
Journal of Computers and Mathematics with Applications, 1994. Forthcoming in a
special issue. A longer version appeared as a technical report MPI-I-93-220 of the Max­
Planck-Institut fiir Informatik, Saarbriicken, Germany.

[BGW92] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Theorem proving for hierarchic
first-order theories. In G. Levi and H. Kirchner, editors, Algebraic and Logic Pro­
gramming, Third International Conference, pages 420-434. Springer-Verlag, LNCS 632,
September 1992.

[Bra75] Daniel Brand. Proving theorems with the modification method. SIAM Journal on
Computing, 4(4):412-430, 1975.

[Che80] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge,
1980.

[Gas92] Olivier Gasquet. Deduction for multimodallogics. In Proc. of Applied Logic Conference
(Logic at Work). Amsterdam, December 1992.

[G092a] Dov M. Gabbay and Hans Jiirgen Ohlbach. Quantifier elimination in second-order
predicate logic. South African Computer Journal, 7:35-43, July 1992. also published in
[G092b] .

[G092b] Dov M. Gabbay and Hans Jiirgen Ohlbach. Quantifier elimination in second-order
predicate logic. In Bernhard Nebel, Charles Rich, and William Swartout, editors, Prin­
ciples of Knowledge Representation and Reasoning (KR92), pages 425-435. Morgan
Kaufmann, 1992. also published as a technical report MPI-I-92-231 of the Max-Planck­
Institut fiir Informatik, Saarbriicken and in the South African Computer Journal, 1992.

[Her89] Andreas Herzig. Raisonriement automatique en logique modale et algorithmes
d'unification. PhD thesis, Universite Paul-Sabatier, Toulouse, 1989.

[JR88] Peter Jackson and Han Reichgelt. A general proof method for modal predicate logic
without the Barcan Formula or its converse. DAI Research Report 370, Department of
Artificial Intelligence, University of Edinburgh, 1988.

19

[Kri59]

[Kri63]

[Luk70]

[McC89]

[McC90]

[MW92]

[Non93]

(OGP94]

[Ohl88a]

[Ohl88b]

[Ohl90]

[Ohl91]

[Ohl93]

(Ohl94]

(PS90]

[Rob65]

S. A. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic,
24:1-14, 1959.

S. A. Kripke. Semantical analysis of modal logic i, normal propositional calculi.
Zeitschrift fur mathematische Logik und Grundlagen der Mathemat~k, 9:67-96, 1963.

J. Lukasiewicz. Selected Works. North Holland, 1970. Edited by L. Borkowski.

William W. McCune. OTTER User's Guide. Mathematical and Computer Science
Devision, Argonne National Laboratory, april1989.

William McCune. OTTER 2.0. In: Mark Stickel, editor, Proc. of lOth Internation Con­
ference on Automated Deduction, LNAI 449, pages 663-664. Springer Verlag, 1990.

Williman McCune and Larry Wos. Experiments in automated deduction with condensed
detachment. In Deepak Kapur, editor, Autmated Deduction - CADE 11, Lecture Notes
in AI, vol. 607, pages 209-223. Springer Verlag, 1992.

Andreas Nonnengart. First-order modal logic theorem proving and functional simula­
tion. In Ruzena Bajcsy, editor, Proceedings of the 13th IJCAI, volume 1, pages 80- 85.
Morgan Kaufmann Publishers, 1993.

Hans Jiirgen Ohlbach, Dov Gabbay, and David Plaisted. Killer transformations. Tech­
nical Report MPI-I-94-226, Max-Planck-Institut fiir Informatik, Saarbriickerr, Germany,
1994. To be published in Proc. of the 1993 Workshop on Proof Theory in Modal Logic,
Hamburg.

Hans Jiirgen Ohlbach. A resolution calculus for modal logics. In Ewing Lusk and
Ross Overbeek, editors, Proc. of 9th International Conference on Automated Deduction,
CADE-88 Argonne, IL, volume 310 of Lecture Notes in Computer Science, pages 500-
516, Berlin, Heidelberg, New York, 1988. Springer-Verlag. Extended version appeared
in [Ohl88b].

Hans Jiirgen Ohlbach. A resolution calculus for modal logics. SEKI Report SR-88-08,
FB Informatik, Universitat Kaiserslautern, Germany, 1988. PhD Thesis, short version
appeared in [Ohl88&].

Hans Jiirgen Ohlbach. Semantics based translation methods for modal logics. SEKI
Report SR-90-11, FB. Informatik, Univ. of Kaiserslautern, 1990. Finally published in
(Ohl91].

Hans Jiirgen Ohlbach. Semantics based translation methods for modal logics. Journal
of Logic and Computation, 1(5):691-746, 1991.

Hans Jiirgen Ohlbach. Optimized translation of multi modal logic into predicate logic.
In Andrei Voronkov, editor, Proc. of Logic Programming and Automated Reasoning
(LPAR), volume 698 of Lecture Notes in Artificial Intelligence, pages 253-264. Springer
Verlag, 1993.

Hans Jiirgen Ohlbach. Synthesizing semantics for extensions of propositional logic.
Technical Report MPI-I-94-225, Max-Planck-Institut fiir Informatik, Saarbriicken, Ger­
many, 1994.

P. Pritchard and J. Slaney. Computing models of propositionallogics. In 1Oth Interna­
tional Conference on Automated Deduction, CADE-10, LNCS 449, page 685. Springer
Verlag, 1990.

John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal
of the Association for Computing Machinery (JACM), 12(1):23-41, 1965.

20

[Sah75]

[Sim94]

[Sto36]

H. Sahlqvist . Completeness and correspondence in the first and second order seman­
tics for modal logics. In S. Kanger , editor, Proceedings of the 3rd Scandinavian Logic
Symposium, 1973, pages 110-143, Amsterdam, 1975. North Holland.

Harold Simmons. The monotonous elimination of predicate variables. Journal of Logic
and Computation, 4(1), 1994.

M. H. Stone. The theory of representations for boolean algebras. Transactions of
American Mathematical Society, 40:37-111, 1936.

[Sza92] Andrzej Szalas. On correspondence between modal and classical logic: Automated
approach. Technical Report MPI-I-92-209, Max-Planck-Institut fiir Informatik,
Saarbriicken, March 1992.

[vB84) Johan van Benthem. Correspondence theory. In Gabbay Dov M and Franz Guenthner,
editors, Handbook of Philosophical Logic, Vol. II, Extensions of Classical Logic, Synthese
Library Vo. 165, pages 167-248. D. Reidel Publishing Company, Dordrecht, 1984.

[Wal87) Lincoln A. Wallen. Matrix proof methods for modal logics. In Proc. of lOth IJCAI,
pages 917- 923. IJCAI, Morgan Kaufmann Publishers, 1987.

[Zam89) N.K. Zamov. Modal resolutions. Izvestiya VUZ. Mathematika, 33(9):22-29, 1989. Also
published in Soviet Mathematics, Allerton Press.

0

mPD
------------I N F 0 R M A T I K ------------

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut fiir Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. If you have any questions concerning ftp
access, please contact reportsCimpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

MPI-1-94-226

MPI-1-94-225

MPI-1-94-224

MPI-1-94-223

MPI-1-94-218

MPI-1-94-216

MPI-1-94-209

MPI-1-94-208

MPI-1-94-207

MPI-1-94-201

Max-Planck-Institut fiir Informatik
Library
attn. Regina Kraemer
Im Stadtwald
D-66123 Saarbriicken
GERMANY
e-mail: ltraemerGI!Ipi -sb. mpg. de

H. J. Ohlbach, D. Gabbay, D. Plaisted

H. J. Ohlbach

H. t\.lt-Kaci, M. Hanus, J. J. M. Navarro

D. M. Gabbay

D. A. Basin

P. Barth

D. A. Basin, T. Walsh

M. Jager

A. Bockmayr

M. Hanus

MPI-1-93-267 L. Bachmair, H. Ganzinger

MPI-1-93-265 W. Charatonik, L. Pacholski

MPI-1-93-264 Y. Dimopoulos, A. Torres

MPI-1-93-260 D. Cvetkovic

MPI-1-93-257 J. Stuber

MPI-I-93-256 P. Johann, R. Socher

MPI-1-93-250 L. Bachmair, H. Ganzinger

MPI-1-93-249 L. Bachmair, H. Ganzinger

MPI-1-93-243 S. Antoy, R. Echahed, M. Hanus

MPI-1-93-237 R. Socher-Ambrosius

Killer Transformations

Synthesizing Semantics for Extensions of
Prepositional Logic

Integration of Declarative Paradigms Proceedings of
the ICLP'94 Post-Conference Workshop Santa
Margherita Ligure, Italy

LDS - Labelled Deductive Systems Volume 1 -
Foundations

Logic Frameworks for Logic Programs

Linear 0-1 Inequalities and Extended Clauses

Termination Orderings for Rippling

A probabilistic extension of terminological logics

Cutting planes in constraint logic programming

The Integration of Functions into Logic
Programming: A Survey

Associative-Commutative Superposition

Negativ set constraints: an easy proof of decidability

Graph theoretical structures in logic programs and
default theories

The logic of preference and decision supporting
systems

Computing Stable Models by Program
Transformation

Solving simplifications ordering constraints

Ordered Chaining for Total Orderings

Rewrite Techniques for Transitive Relations

A needed narrowing strategy

A Refined Version of General E-Unification

	94-228_Cover
	94-2280002
	94-2280003
	94-2280004
	94-2280005
	94-2280006
	94-2280007
	94-2280008
	94-2280009
	94-2280010
	94-2280011
	94-2280012
	94-2280013
	94-2280014
	94-2280016
	94-2280017
	94-2280018
	94-2280019
	94-2280020
	94-2280021
	94-2280022
	94-2280023
	94-2280024
	94-2280025

