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Abstract 

Symbolic reasoning in a logical framework becomes more and more important for com­
puter applications such as Natural Language Processing Systems or Expert Systems. 
These applications usually need specifically tailored logics. Therefore we are develop­
ing methods and algorithms for supporting the designer of an application system, who 
is usually not a logician, to develop his own application oriented logic. 

This paper gives an overview about our current state of these investigations. In 
particular we consider the correspondences between axiomatic and semantic specifica­
tions of a logic and the problem of finding one from the other. Correlated with this 
area are translation methods from the object logic into predicate logic, and methods 
for optimizing the translation. Other topics are investigations of the expressiveness of 
a logic and the axiomatizability of semantic conditions. 

The basic techniques underlying our approach, so called K-transformations and 
quantifier elimination, are briefly discussed. They are quite general mechanisms for 
manipulating predicate logic formulae, and the investigation of logics is only one of 
their applications. 

For the technical details of the methods and the proofs I refer to the original papers. 
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Symbolic reasoning in a logical framework becomes more and more important for computer appli­
cations such as Natural Language Processing Systems or Expert Systems. Unfortunately there is 
not just the universal logic as the basis for every application of logic. Of course, higher-order logic 
is expressive enough to emulate all other logics, but it has so many unpleasant features that it is 
useless for most practical applications. 

There is a tradeoff between expressiveness of a logic and the complexity of the reasoning algo­
rithms for this logic. For obtaining an optimal result in a particular application, one has therefore 
to find a compromise between these two features . However, not every designer of an application 
program, which needs logic in some of its components, is a logician and can develop the optimal 
logic for · his purposes, neither can he hire a trained logician to do this for him. In this situation 
we could either resign and live with non-optimal solutions, or we could try to make computers 
themselves expert logicians. 

Although this is a very ambitious goal , there is some evidence that it is in fact possible, at least 
to a certain extent. I just want to mention the MULTLOG system (BFOZ93]. This is a Prolog 
program that accepts as input the truth tables of a finitely many-valued logic, and produces as 
output a LaTeX document describing various calculi for this logic. The first MULTLOG generated 
paper has already been accepted at a conference. 

In this paper I give a survey on our main activities in this area. Problems we have investigated 
so far are: 

• reasoning in Hilbert systems, 

• finding model theoretic semantics for axiomatically specified logics, and vice versa 

• finding corresponding axioms for semantic properties, 

• investigating the expressiveness of logics, 

2 



• finding translations from the object logic to predicate logic. 

The procedures for solving these problems should of course guarantee soundness and completeness. 
Therefore we need a precisely defined meta theory and soundness and completeness results at this 
level. In most cases we use first-order predicate logic (PL1) as meta-logic for encoding and 
manipulating the object logics. The intention is to map the problems from the object logic level to 
the predicate logic level and to use the well established methods and results for PLl. As long as 
this is possible, there is therefore no need to use more expressive systems, higher order predicate 
logic, ,\-calculus or type theory for example. On the other hand, since PL1 has no variable binding 
mechanism at the term level, this means that we are restricted to the propositional versions of the 
object logic. 

The techniques we have developed, mainly transformations of logical formulae, are of a relatively 
general nature. Therefore, although our main interest was the development of logics, they are 
defined as general predicate logic methods, and some of them have already found other interesting 
applications. 

The problems we are investigating are explained in some detail in Section 2. In each case I 
demonstrate how these problems are mapped to problems at the PL1 level. In section 3 the key 
techniques we have developed, Killer Transformations and Quantifier Elimination, are introduced. 
Finally, in Section 4, the application of these techniques for finding model theoretic semantics for 
Hilbert systems is described. 

Due to space limitations, I cannot explain all the technical details and refer to the original 
papers. But I present the main ideas and results. 

2 Problems Asking for Computer Support 

Logics can be defined in various ways. The most abstract way is by means of a Hilbert system. 
A Hilbert system is a kind of grammar. It consists of axioms and rules. The axioms are actually 
axiom schemas because all instances of the axioms are considered as theorems. The rules specify 
how to derive new theorems from the initial theorems and the previously derived ones. For example 
the axiom 

together with Modus Ponens: 

(p-+ q)-+ r)-+ ((r-+ p)-+ (s-+ p)) 

from p -+ q and p infer q 

(1) 

(2) 

specify the implicational fragment of propositional logic [Luk70, p. 295]. For encoding vague 
notions, like "knows", "believes" and "wants", a Hilbert style axiomatization is usually the method 
of choice because in Hilbert systems their properties can be expressed in a very abstract and 
intuitive way. 

2.1 Reasoning in Hilbert Systems 

A Hilbert system is a forward calculus. Starting with the axioms as the initial theorems, the rules 
of the Hilbert system derive new theorems. Verifying that a formula is in fact a theorem in the 
system amounts to enumerating all theorems until the formula eventually appears. Computers can 
solve this problem with a well known technique. · 

Using first-order predicate logic as meta logic, the Hilbert system can be encoded as a Horn 
theory. The logical connectives are encoded as function symbols and formulae are encoded as terms. 
The propositional variables in Hilbert axioms are place holders for arbitrary formulae. Therefore 
they become universally quantified variables in the encoded axiomatization. For example the 
system consisting of (1) and (2) can be encoded as the predicate logic clauses 

'rip, q, r, s 

'Vp,q 

Th(i(i(i(p, q), r), i(i(r,p), i(s,p)))) 

Th(i(p,q)) 1\ Th(p) => Th(q) 

(3) 

(4) 

'Th' is the only predicate needed. Th(p) means 'p is a theorem'. 'i' denotes the implication 
connective. A PL1 encoding of a Hilbert system together with a theorem to be proved is now a 
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suitable input for an automated theorem prover. And in fact , these kinds of problems have been 
used for a long time as test problems in the automated theorem proving community [MW92]. 

Hilbert systems as you can find them in logic textbooks usually specify each aspect of the 
logic explicitly. The theorems proved from such systems in textbooks are in general so simple 
that for current days automated theorem provers there is absolutely no problem to prove them. 
However, if the Hilbert system is optimized by minimizing the number of axioms, the proof of 
quite simple theorems can already become extremely complicated. Proofs may require hundreds 
of rule applications , and finding them may need hours of CPU time. The technique of clause K­
transformations, presented in Section 3.3, improves the behaviour of automated theorem provers 
for these more complex systems. 

2.2 Finding Model Theoretic Semantics for Hilbert Systems 

A specification of a logic with a Hilbert system is quite intuitive, but for many purposes it is 
not adequate. One reason for developing an alternative to Hilbert systems is the desire to get 
more efficient calculi. Another reason is to understand the logic better by bringing properties to 
the surface which are sometimes very deeply hidden. An alternative way for describing a logic is 
by mapping the syntactic constructs to a (hopefully) simple and well understood mathematical 
structure. Typical examples for this semantical description of a logic are Tarski 's set theoretic 
semantics for predicate logic or Kripke's possible worlds semantics for modal logic [Kri59, Kri63]. 

The usual way, the correlations between the axiomatic description and the semantics are pre­
sented is: the axioms and the semantics are defined and soundness and completeness are proved. 
Soundness and completeness guarantee that a formula is a theorem in the axiomatic description 
if and only if it is a valid formula in the semantics. Finding an appropriate semantic structure, 
however, is nontrivial and requires experience and intuition. 

As examples for semantics of a logic consider the different versions of the semantics of modal 
logic. Common to all of them is the possible worlds framework as basic semantic structure. Each 
possible world determines the interpretation of the propositional variables and the classical con­
nectives in the usual way. The interpretation of formulae with non-classical operators is defined in 
terms of relations or functions connecting the worlds. The weakest semantics for modal logic is the 
(weak) neighbourhood semantics (also called minimal model semantics [Che80]) . Each world has 
sets of worlds as 'neighbourhoods'. A formula Dp is true in a world w iff the truth set of p, i.e. the 
set of worlds where pis true, is among w's neighbourhoods. This semantics satisfies the ME rule, 
p <:::} q implies Dp <:::} Dq, but no stronger axiom or rule. In strong neighbourhood semantics, Dp is 
true in a world w iff one of w's neighbourhoods is a subset of p's truth set. Strong neighbourhood 
semantics satisfies a monotonicity property: p =? q implies Dp =? Dq. The next stage is the well 
known Kripke semantics with a binary accessibility relation. But this is not the end of the story. 
For example, modal logic S5 has a semantics in terms of an accessibility relation with the extra 
condition that the accessibility condition is an equivalence relation. This condition guarantees that 
the S5 axioms hold. An alternative semantics for S5 has the truth condition for the 0-operator: 
Dp is true in a world iff p is true everywhere. In this semantics without accessibility relation, all 
S5 axioms are tautologies. 

Each version of the semantics consists of two parts. The basic semantics contains just the defi­
nition of the primitive notions, neighbourhood relations or accessibility relations for example, and 
the satisfiability relation. The possible worlds together with the relations and functions operating 
on them are usually called frames. 

The second part of the full specification of the semantics restricts the class of semantic structures 
by imposing constraints on the frames (so called frame conditions) and sometimes by restricting 
the assignment of truth values to the propositional variables. Modal logic T , for example is charac­
terized by restricting the class of frames to those with reflexive accessibility relations. Intuitionistic 
logic as another example has a restriction on the assignment of propositional variables: if p is true 
in a world w then it remains true in all words accessible from w. 

Each part of the semantics validates a certain part of the Hilbert axioms. The basic seman­
tics of normal modal logic with binary accessibility relation for example validates the K-axiom 
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D(p => q) => (Dp => Dq) and the Necessitation rule: from p infer Dp. The reflexivity condition on 
the accessibility relation validates the axiom Dp => p. Obviously, there is a hierarchy of semantics. 
A semantics S1 is stronger than a semantics S2 if the basic part of S1 validates more axioms than 
the basic part of S2 . A semantics is optimal for a Hilbert system if all axioms are validated in the 
basic part and no extra conditions are needed. 

In [Ohl94] I addressed the problem of finding the semantics for a given Hilbert system. In this 
paper I proceed as indicated in the following picture. 

Transformation 
HS- PL1(HS) 

Transformation 
rules T = 

semantics definitions 
of the connectives 

T(PL1(HS)) =frame conditions 

We begin with an arbitrary Hilbert system H S and encode it in first-order predicate logic. 
The key observation underlying my approach for systematically finding a semantics comes from 
automated theorem proving. In order to prove a conjecture from assumptions, one need not perform 
the proof directly, but we can transform assumptions and conjectures and prove the transformed 
conjectures from the transformed assumption, provided the transformation T guarantees 

assumptian => canjecture iff T(assumptian) => T(canjecture). 

The working hypothesis of my approach is therefore 

The semantics of an axiomatically defined logic is the result of a carefully designed 
transformation of predicate logic formulae. The transformation rules represent the in­
terpretation function and the non-tautologous transformed Hilbert axioms are the frame 
conditions. 

(5) 

An optimal transformation turns all axioms into tautologies. In this case, proving a theorem cp 
from H S reduces to proving T ( cp) without any additional assumptions. The guideline for finding 
a good transformation is thereforethe intention to turn axioms into tautologies, or to make them 
in some other way redundant . 

The problem of finding a semantics now reduces to two problems: 

• We must find transformations for Hilbert axioms which turn them into tautologies. Ideally 
one would like to have a procedure Trans_Gen which, given a formula cp as input , computes 
a transformation T 'l' with property (5) such that T'l'(cp) =true. If PL1(HS) consists of 
the formulae cp1 , ... ,cpn one would compute 1''1'1 = Trans_Gen(cpi), get cp~ = T'l' 1 (cpi) for 
i = 2, .. . , n, compute T 'I'~ = Trans_Gen(cp~), apply it to cp~ , . .. . , cp~ and repeat the process 
until all axioms are turned into tautologies. And, in fact, in [OGP94], we sketch such a 
procedure Trans_Gen . Unfortunately this idea does not work in general. The reason is that 
T may produce an infinite conjunction of formulae , and then the process does not terminate. 
But even if this method worked, it would not be very satisfactory because we do not want any 
transformation, but a transformation that gives some insight into the structure of the logic. 
I therefore proposed an approach which is restricted to a certain class of logics, but giv~s 
better results for them. The idea is to develop transformations for very concrete formulae 
or formula schemas. For each given Hilbert system, we then ·check which of the formulae 
out of our database of formulae with known transformations is a theorem. That means we 
decompose 

PL1(HS) {:::} 'Pl 1\ . .. I\ 'Pk 1\ rest 

and for the 'Pi we develop transformations once and for all. The transformations for 'Pl 
1\ . . . 1\ 'Pk specify the basic semantics and the transformation of the rest gives the frame 
conditions. 
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• The transformed Hilbert axioms usually still contain formula variables. But what we are 
after, are frame conditions, i.e. formulae describing properties of the semantics structures, 
accessibility relations and the like. It turns out that in many cases the transformed Hilbert 
axioms can be simplified by eliminating the formula variables with a quantifier elimination 
algorithm. The result is in fact the axiom for the frame condition. In Section 3.4 I sketch 
the algorithm we have developed for eliminating formula variables. 

After the introduction of the basic techniques, which are necessary to solve these problems, we 
come back to this discussion in Section 4. 

2.3 Finding Hilbert Axioms from Semantic Properties 

For axiomatizing vague notions whose mathematical structure is not clear, Hilbert systems are a 
good starting point. If, however, the semantic structure is clear, for example the time structure in 
a temporal logic, we might want to go the other direction and, starting with a semantics, develop 
a Hilbert system. For example we might want a linear and dense time structure and ask for the 
corresponding Hilbert axioms. 

In order to solve this problem, one can again use PLl as meta logic and encode the relevant 
information as PLl axioms. In particular the interpretation of the connectives, which is known 
in this case, is written as PLl equivalence with the binary satisfiability relation f= and the PLl 
encoding of the semantic notions. For example the interpretation of the modal logic 0-operator 
becomes 

Vw,p w f= Op <=> 3v R(w, v) 1\ v f= p, 

which is an ordinary PLl formula (in infix notation). We can encode the semantics of all relevant 
connectives this way, add the frame property we want to translate into a Hilbert axiom, and ask 
an automated theorem prover to enumerate all constructive proofs for a formula 

3pVw w f=p. 

That means we try to verify the existence of a tautology, a formula which is true in allworlds. 
Of course there are lots of them. Therefore each answer of the theorem prover must be checked 
by translating it back usinlg the methods we have developed for the 'Hilbert system -+ semantics' 
direction. Hopefully the theorem prover eventually comes up with the right answer. In [BG094] 
we have shown the details of this procedure and tested it with a lot of examples from modal and 
relevance logic. One of the examples was to find the Hilbert axiom corresponding to the transitivity 
of the accessibility relation in modal logic. In order to give an impression of the procedure, we 
list the protocol of a typical proof run with the OTTER theorem prover [McC89, McC90] . s is the 
satisfiability relation, d is the 0-operator, i is the standard implication. I is OTTERS symbol for 
disjunction, $ans is a special literal for extracting variable bindings. It has no logical meaning. 

%Interpretation of the connectives d and i. 
(all z X (s(z,d(X)) <-> (exists x (R(z,x) & s(x,X))))). 
(all z X {allY (s(z,i(X,Y)) <-> (s(z,X) -> s(z,Y))))). 
%Property to be translated. 
(all x y z ((R(x,y) & R(y,z)) -> R(x,z))) . 
%Negated theorem. 
-(exists fall z (s(z,f) & -$ans(f))). 
end_of_list. 

---------------- PROOF ----------------
1 -s(z,d(x1))1R(z,f1(z,x1)). 
2 -s(z,d(x1))1s(f1(z,x1),x1). 
3 s(z,d(x1))1 -R(z,x)l -s(x,x1). 
5 s(z,i(x2,x3))1s(z,x2). 
6 s(z,i(x2,x3))1 -s(z,x3). 
7 -R(x,y) I -R(y,z)IR(x,z). 
8 -s(f2(x4),x4)l$ans(x4). 
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12 [8,5] 
15 [12' 2] 
16 [12,1] 
19 [15 '2] 
20 [15' 1] 

$ans(i(x,y))ls(f2(i(x,y)),x). 
$ans(i(d(x),y))ls(f1(f2(i(d(x),y)),x),x). 
$ans(i(d(x),y))IR(f2(i(d(x),y)),f1(f2(i(d(x),y)),x)). 
$ans(i(d(d(x)),y))ls(f1(f1(f2(i(d(d(x)),y)),d(x)),x),x). 
$ans(i(d(d(x)),y))l 
R(f1(f2(i(d(d(x)),y)),d(x)),f1(f1(f2(i(d(d(x)),y)),d(x)),x)). 

115 [20,7,16] $ans(i(d(d(x)),y))l 
R(f2(i(d(d(x)),y)),f1(f1(f2(i(d(d(x)),y)),d(x)),x)). 

171 [115,3,19] $ans(i(d(d(x)) ,y)) ls(f2(i(d(d(x)) ,y)) ,d(x)). 
174 [171,6] $ans(i(d(d(x)),y))ls(f2(i(d(d(x)),y)),i(z,d(x))). 
175 [binary,174,8] $ans(i(d(d(x)),d(x))). 

------------ end of proof -------------

In the usual notation, this answer is OOx =>Ox, which is in fact the corresponding Hilbert axiom. 
In principle we can reduce the problem of finding corresponding Hilbert axioms to a theorem 

proving problem. The search space, however, is in general very large. Therefore this is not yet a 
really satisfactory solution. 

2.4 Simplifying Semantics 

The semantics of a logic is usually formulated in mathematical notation. This is the most expressive 
formal(?) language we have. Therefore it is very easy to formulate in this mathematical language 
conditions on the semantic structure of our logic which have no counterpart on the syntactic side. 
But even if we do not exploit the full mathematical language and restrict ourselves to fragments 
of predicate logic, this effect may happen. For example it is well known that conditions like the 
irreflexivity or antisymmetry of the accessibility relation in modal logic are not axiomatizable in 
the corresponding Hilbert system. This means that the syntax of modal logic is so restricted that 
one cannot distinguish irreflexive frames from arbitrary frames. Thus, requiring irreflexivity has 
no effect at all on the theorems provable in modal logic. In other cases it may turn out that the 
syntactic side o,f a logic supports only weaker versions of semantic conditions as initially intended. 
It is of course very important to know the expressiveness of the logic, because otherwise the effects 
of semantic conditions are unpredictable. 

A general technique for investigating the expressiveness of the logic .C is the following: We 
formulate the semantics of .C in a suitable meta logic .Ct, usually predicate logic, take a translation 
T : .C -t .Ct which ensures certain syntactic invariants on the translated formulae, and use these 
invariants to investigate the effect of the given semantic condition C on theorem proving search 
attempts for translated £ - formulae. It may for example turn out that C can never contribute 
to a proof search, or that parts of C are always redundant and do not contribute to proof search 
attempts. If the target logic .Ct is PLl, all the results about proof search strategies and redundancy 
criteria can be used for this purpose. What predicate logic theorem provers usually do in order 
to get rid of irrelevant parts of the search space, now becomes valuable information about the 
expressiveness of .C. 

A technique recently developed by Andreas Nonnengart supports these kind of investigations 
for modal logic. He has developed the so called semi- functional translation [Non93] from multi­
modal logic to many-sorted predicate logic which produces clauses where the accessibility relation 
literals occur only with negative sign. The translation rules for the modal part are 

1r((p)c, w) 

1r([p]c, w) 

3-rAFp 1r(c,w: -y ) 

'Vv p(w,v) => 1r(c,v) 

For example a formula [p](q)c is translated into 'Vv p(w,v) => 3-rAFq c(v:-y). Intuitively one can 
understand the sort AFp as a set of functions mapping worlds to p-accessible worlds. The colon : 
is an infix function symbol which can be understood as application function, a:-y '!,g -y(a) (cf. Sec. 
3.2.2). Only formulae in negation normal form can be translated this way. It is not necessary 
to understand the details of this translation technique here. The only fact we need is that the 
translated clauses contain only negative accessibility relation literals. From the translation there is 
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only one positive clause per accessibility relation, namely 'Vx 'V')' :AFp p(x, x:')'). It relates the sort 
AFp with the predicate p. If we do theorem proving by refutation with resolution (see below), we 
immediately see that there is no resolution partner at all for the irreftexivity clause -.p( X ' X). This 
clause is redundant and cannot contribute to a proof. Thus, irreftexive accessibility relations are 
not characterizable in modal logic. 

The semi-functional translation with the strong syntactic invariant that no positive accessibility 
literals ever occur in transla,ted modal formulae , turned out to be an excellent basis for applying 
all kinds of redundancy criteria to eliminate or simplify frame conditions. Here we can exploit 
the results about resolution strategies with deletion operations (BG90], and the technique is really 
easy to apply. 

3 Basic Techniques 

3.1 Automated Theorem Proving 

Some notions and notations are needed in this paper which are taken from the theorem proving 
literature. 

A clause is a disjunction of literals. If Ai are the negative literals and Bj are the positive literals, 
we can write clauses in three different ways, either as a disjunction, -.At V ... V -.An V B1 V . .. V Bm 
or as an implication At 1\ ... I\ An => B1 V . . . V Bm or as a set {-.At, . . . , -.An , B1, . .. , Bm}· The 
variables in clauses are always considered universally quantified. Two different clauses are always 
considered as variable disjoint . A ground clause is a clause without variable symbols. 

A substitution u is an endomorphisrp. in the free term algebra which changes only finitely many 
variables. We write substitutions as sets u = { x 1 t-t s1 , x 2 t-t s2 , .. • } • su denotes the application 
of the substitution u to the term s . ur denotes the composition of the two substitutions u and r . 

mgu(s , t) is the most general unifier for the two terms or atoms s and t. That means if 
u = mgu(s , t) then su = tu . Since we do not consider theory unification, there is, up to variable 
re_naming, at most one most general unifier for two terms. Two literals are complementary unifiable 
if they have different signs and the atoms are unifiable. 

Resolution is the standard inference rule for many theorem provers (Rob65]. The definition of 
the resolution rule is 

C1: L1 V L2 V .. . V Ln 
C2 : Kt V K2 V ... V Km 

u(L2 V . .. V Ln V K2 V .. . V Km) 

L 1 and K 1 are complementary unifiable. 
u is the most general unifier 

L 1 and K 1 are the resolution literals. We say that we resolve the clauses C1 and C2 upon the 
resolution literals L1 and K 1 · 

Self resolution is a resolution operation between two variable renamed copies of the same clause. 
For example a self resolution with the transitivity clause is 

-.P(x, y) V -.P(y,z) V P(x,z ) 

I 
-.P(x' , y') V -.P(y' , z') V P(x' , z') 

-.P(x, y) V -.P(y , z) V -.P(z, z') V P(x , z') 

3.2 Formula K-Transformations 

A formula K-transformation for a formula <p is a mapping 1 "' from PLl formulae to PLl formulae 
such that 

• for all formulae~ and '1./J: ~ => 'ljJ iff 1,(~) => 1 , ('!/J) 
(faithfulness = soundness and completeness) 

• 1 ,(cp) is a tautology 
(cp is 'killed' by 1 ,, therefore the name 'K(iller)-Transfomation') 
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To illustrate the basic idea of formula K-transformations, suppose we have some set <I> of axioms 
which, among other things, axiomatize a reflexive and transitive relation R, i.e. 

Vx R(x,x ) 

Vx, y, z R(x , y) 1\ R(y, z ) => R(x , z ) 

(6) 

(7) 

are either contained in <I> or derivable from <I> , and we want to get rid of the reflexivity and 
transitivity of R. 

In order to show that a formula '!jJ is entailed by <I> , one usually tries to refute <I> 1\ -,'!j; . Before 
the refutation is actually started, every transformation on <I> 1\ -,'!j; which preserves satisfiability 
and unsatisfiability is allowed. Skolemization of existential quantifiers is a typical example of a 
routinely applied transformation which preserves satisfiability and unsatisfiability, but not logical 
equivalence. 

The translation we propose for eliminating reflexivity and transitivity of R exploits that these 
two properties together imply 

Vx, y R(x , y) <=? (Vw R(w, x) => R(w, y)). (8) 

To see this, suppose R(x, y) and R(w, x) hold. By transitivity, R(w, y) also holds, i.e. the "=>"-part 
is shown. For the "{::"-part, take w =X and use the reflexivity of R to derive R(x, y). 

Since (8) is entailed by <I> , we could add it to <I> 1\ -,'!j; without loosing satisfiability or unsatisfi­
ability. However, instead of (8) , we add 

Vx , y R(x , y) <=? (Vw R'(w, x) => R'(w,y)) . (9) 

to <I> 1\ -,'!j; where R' is a new predicate symbol. We can even go one step further and introduce a 
new sort symbol W for the variable w and add 

Vx ,y R(x,y) <=? (Vw:W R'(w, x) => R'(w, y)) (10) 

to <I> 1\ -,'!j;. 
Clearly, if <1>. 1\ -,'!j; is satisfiable then <I> 1\ -,'!j; 1\ (10) is also satisfiable: the interpretation of R' 

can be chosen to be the same as the interpretation of R. In this case (10) is equivalent to (8), 
which follows from <1>. Thus, (10) is also true in the extended interpretation. On the other hand, 
if <I> 1\ -,'!j; 1\ ( 10) is satisfiable then certainly <I> 1\ -,'!j; is satisfiable as well. 

But now we have a definition of R in terms of R' where R' is an uninterpreted new predicate 
symbol. In the next step, (10) is used as a rewrite rule from left to right, replacing all occurrences 
of R in <I> 1\ -,'!j; by the formula with R'. We obtain the transformed formula <I>' 1\ -,'!j;' 1\ (10) with 
R' in place of R . This is a terminating equivalence preserving transformation. 

What happens to the reflexivity and transitivity of R? Vx R(x, x) becomes 't:/x Vw R'(w, x) => 
R'(w,x) which is a tautology (by the reflexivity of"=>"). The transitivity (7) becomes 
Vx , y, z (Vw R'(w,x) => R'(w, y)) 1\ (Vw R'(w,y) => R'(w,z)) => (Vw R'(w,x) => R'(w ,z)) which 
is also a tautology (by the transitivity of => ) . Thus, R' need neither be reflexive nor transitive. 

Nothing would have been gained if the definition (10) of R could not be removed afterwards. 
That means we have to show that <I>' 1\ -,'!j;' 1\ (10) is satisfiable if and only if <I>' 1\ -,'!j; ' is satisfiable. 
Since <I>' 1\ -,'!j;' does not contain R any more, we can always find an interpretation for R, using (10) 
as definition. Therefore each model for <I>' 1\ -,'!j;' can be extended to a model for <I>' 1\ -,'!j;' 1\ (10). 
Thus, (10) can be eliminated. <I>' 1\ -,'!j;' is the final result of our transformation. 

What has actually happened is that the role of the reflexivity and transitivity of R has been 
taken over by the reflexivity and transitivity of the implication connective. Many other examples 
of K-transformations are of a similar kind. The built-in properties of predicate logic take over the 
role df special properties of non-logical symbols. 

The new symbols R' and W we introduced in our reflexivity and transitivity example can 
havesome well known interpretations. If for example R is the subset relation ~ then R' is the 
membership relation E and (9) is the definition of subset in terms of membership. If R is a binary 
consequence relation 12 of a logic, then R' can be interpreted as the satisfiability relation f=, and 
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the sort W denotes the set of worlds. (10) becomes the definition of the consequence relation in 
terms of the satisfiability relation. 

'Vx,y x Fy {:::} ('Vw:W w f= x => w f= y) (11) 

3.2.1 The General Transformation Procedure 

The general procedure for transforming formulae 4> in a consistent way, i.e. without loosing satis­
fiability or unsatisfiability, consists of the following sequence of steps 

extension transformation elimination 
4> -+ 4> 1\ transformer -+ 4>' 1\ transformer -+ 4>' 

where 'transformer' is a formula of the kind 

Left{::} Right. (12) 

(9) is an example for (12) . The 'extension' step involves finding the transformer. In general this 
is still a creative step. In [OGP94], however, we describe methods for automating this step to a 
certain extent. The actual transformation is done in the 'transformation ' step. In the simplest case 
the transformation strategy is just definitional replacement where (12) is used as rewrite rule from 
left to right. It can, however, also be a much more complex combination of rewriting, inferencing 
and deleting formulae. In the elimination step we delete the transformer. Since removing formulae 
can turn unsatisfiable formula sets into satisfiable sets, this is also a nontrivial step which has to 
be justified. To ensure that the transformation is satisfiability preserving, which is sufficient to do 
theorem proving by refutation, the following translation lemmas have to be proved. 

• The extension lemma proves that satisfiability of 4> implies satisfiability of 4> 1\ transformer. 

• The transformation lemma proves that 4> 1\ transformer is satisfiable if and only if 4>' 1\ 
transformer is satisfiable, Where 4>' is the transformed version of 4> . 

• The elimination lemma proves that satisfiability of 4>' implies satisfiability of 4>' 1\ transformer. 

The structure offormula K-transformations is investigated in more detail in [OGP94]. They can 
be classified according to certain syntactic criteria such that some of the transformation lemmas 
can be proved once and for all. The simple schema we have used for the reflexivity and transitivity 
example turned out to be quite often applicable. The schema is: in order to find a formula K­
transformation T ..,, choose1 an equivalence Left{::} Right0 which is provable from t.p, and then 
rename some of the symbols and literals in Right0 to obtain the final transformer Left{::} Right. 

3.2.2 Optimizing Translations into Predicate Logic 

As a non- trivial application of formula K-transformations, I show how translations from noncla.S­
sical logics into predicate logic can be manipulated and hopefully optimized. I illustrate the idea 
with modal logic, but the principles are applicable to other systems as well. 

Via their possible worlds semantics, a number of non-classical logics can be translated into 
predicate logic. For example the semantics of the modal operators 

x f= DP iff 'Vy R(x, y) => y f= P 

x f= OP iff 3y R(x, y) 1\y f= P 

gives rise to the relational translation of propositional modal logic. 

trr(P,w) 
trr(Dt.p,w) 
trr(Ot.p,w) 

= P' ( w) P a predicate symbol 
= 'Vv R(w,v ) => trr(t.p,v) 
= 3v R(w,v) 1\ trr (cp,v ). 

(13) 

(14) 

1Choosing the right equivalence is still a creative step . In [OGP94] we give some heuristics for finding the 
equivalences. 
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The relation R occurs only in the typical patterns 

\fv R(w,v) => trr(r.p,v) 
3v R(w, v) 1\ trr(r.p, v) 

in the translated formulae. Additionaly it may occur in some characteristic axioms axiorp.atizing 
properties of R itself. Since this is a quite typical pattern which appears not only in this application, 
it is worthwhile to look for a K-transformation which eliminates this relation. The transformation 
we need depends on whether the relation is serial (i.e. \fx3y R(x, y) holds) or not . For the serial 
case the transformer is 

'Vx ,y R(x ,y) {::} 3-y:AF y = apply("y,x). (15) 

For the non-serial case it is a bit more complicated (see [OGP94)). Intuitively, the sort AF denotes 
the set of accessibility functions, i.e. functions mapping worlds to accessible worlds. apply is the 
application function. Therefore we usually write -y (x) instead of apply("y,x). With this idea in 
mind all transformation lemmas can be proved very easily. 

From (15) we can prove 

\fw \fv R( w, v) => r.p( v) {::} \f-y:AF r.p("y( w)) 

\fw 3v R( w, v) 1\ r.p( v) {::} 3-y:AF r.p("y( w)) 

(16) 

(17) 

The transformation strategy is now not just simple definitional replacement with (15). Instead 
we use the derived equivalences (16) and (17) wherever possible first for rewriting quantifications 
as a whole. 

Applied ~o the modal logic case, our K-transformation turns the relational translation of modal 
logic into predicate logic into the functional translation (c.f. [Wal87, Ohl88a, JR88, Her89, AE92, 
Ohl90, Gas92, Ohl93, Zam89]): 

tr,(Dr.p,w) 
tr t( Or.p , w) 

= \f-y:AF tr,(r.p, -y(w)) 
= 3-y:AF tr,(r.p , -y (w)) 

The transformer (15) can be used in exactly the same way for optimizing the treatment of 
varying-domains in the translation of quantified modal logics. The normal translation rules for 
the quantifiers in the varying-domain case are 

trr('Vx r.p(x ), w) = \fx Exists( w, x) => trr( r.p(x ), w) 

trr(3x r.p(x),w) = 3x Exists(w,x) 1\ trr(r.p(x),w) 

where Exists(w,x) intuitively means that xis in the domain of the world w. Since each domain 
contains at least one element, Exists is serial. The transformer (15) now yields an optimized 
translation 

tr,(\fx r.p(x) ,w) 

tr,(3x r.p(x) ,w) 

= \f-y:M tr,(r.p("y(w)) ,w) 

= 3-y:M tr,(r.p("y(w)) ,w). 

The sort M 2 denotes the set of functions mapping worlds to their domain elements, i.e. -y( w) E 
domain(w). Quantification over all')' exhausts the domain of w. 

Using formula K-transformations, with a minimum of effort we reconstructed the functional 
translation for modal logic and extended it to an optimized translation of varying-domain systems. 
We composed an existing translation, namely ·the relational translation from modal to predicate 
logic with the newly defined K-transformation. This is an example for a general method to modify 
translations. The pattern is: 

2 We choose M to distinguish it from AF in case both transformers are applied simultaneously. 
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test. 
In order to check the faithfulness condition, suppose R( a, b) 1\ R( b, c) => R( a, c) is a ground 

instance of C. 

becomes 

V1c(R(a, b)) 1\ V1c(R(b,c)) => V1c(R(a,c)) 

(R(a, b) 1\ Vx R(x, a)=> R(x, b)) 
1\ (R(b, c) 1\ Vx R(x , b)=> R(x , c)) 
=> (R(a , c) 1\ Vx R(x, a)=> R(x , c)) 

which is in fact a tautology. The transformation is independent of the structure of a, b and c. 
Therefore the condition holds for all ground instances of C. Thus, 1 c is sound and complete and 
no self resolvent of the transitivity clause needs to be considered at all. 

Compared to the transformer (9) which transformes both, positive and negative literals, we got 
a considerable improvement: only the positive literals need to be transformed (of course without 
renaming R). 

In general 1 c can be obtained by successively computing self resolvents and choosing selected 
literals until the faithfulness test succeeds. 

3.3.1 Transforming the Modus Ponens Clause 

In the context of investigating logics, it is interesting to see whether clause K-transformations 
can improve the performance of automated theorem provers for Hilbert systems. To this end 
I developed a clause K-transformation for the Modus Ponens clause (4) (also called condensed 
detachment). Unfortunately a faithful transformer for Modus Ponens consists of all self resolvents 
between the first and third literal. 

Sr = {Th(i(x, y)) 1\ Th(x) => Th(y), 
Th(i(x, i(z1 , z2))) 1\ Th(x) 1\ Th(z1) => Th(z2) , 
... , 
Th(i(x, i(z1, i( ... zi))) 1\ Th(x) 1\ Th(zl) 1\ ... 1\ Th(zi_l) => Th(zi), 
... } 

The first literal Th(i(x,i(z1,i ( ... z;))) is the selected literal in all clauses. Transforming a clause 
like (3) yields infinitely many clauses. Fortunately, one can find a finite encoding of these infinitely 
many clauses with some well known predicate logic tricks. It turned out that in the case of (3) the 
transformation revealed some significant redundancies caused by the lonely variables in (3). After 
removing these redundencies I proved with Otter 3.0 some of the challenging problems discussed 
in the Automated Reasoning literature. I got the following results [OGP94]. 

theorem original transformed improvement 
1 Th(i(x,x)) 1.91 0.11 17.3 
2 Th(i(x, i(y, x))) 1.94 0.13 14.9 
3 Th(i(i(i(x, y) , x), x)) 4.77 0.52 9.2 
4 Th(i(i(x, y), i(i(y, z), i(x, z)))) 2520.77 49.51 50.9 
5 Th(i(x, i(i(x, y), y))) 35.07 13.75 2.5 

The numbers in the third and fourth column give the total CPU time in seconds, Otter 3.0 
needed to prove the theorem (on a Solburn machine with Super Spare processors), once from the 
original two axioms, and then from the transformed axioms. Not for all the examples I tried, I got 
these impressive improvements, but the improvement is in general better for complicated theorems 
than for easy ones. 

3.4 Quantifier Elimination 

In [G092a] we have developed an algorithm which can compute for second- order formulae of the 
kind 3P1 , ... , Pk q> where q> is a first-order formula, an equivalent first-order formula - if there 
is one. Since V P1 , ... , Pk q> {::} -.3P1 , ... , Pk --,q>, this algorithm can also be applied to universally 
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quantified predicate variables. Related methods can also be found in [Ack35a, Ack35b, Ack54, 
Sza92, BGW92, Sim94) . 

The definition of the algorithm is: 

Definition 3.1 (The SCAN Algorithm) 
Input to SCAN is a formula a = 3P1 , ... , Pn <I> with predicate variables P1 , ... , P, and an arbitrary 
first-order formula <I>. 
Output of the SCAN - if it terminates - is a formula '{)01 which is logically equivalent to o:, but 
not containing the predicate variables P1 , .... , Pn. 
SCAN performs the following three steps: 

1. <I> is transformed into clause form. 

2. All C-resolvents and C- factors with the predicate variables P1, . .. , Pn have to be generated. 
C-resolution ('C ' for constraint) is defined as follows: 

P(s1, ... , sn) VC P( .. . ) and -,P( .. . ) 
...,p( h, ... , tn) V D are the resolution literals 
C V D V S1 ~ t1 V . .. V Sn ~ tn 

and the C-factorization rule is defined analogously: 

P(sl, ... ' Sn) v' P(tl , . .. 'tn) V c 

Notice that only C-resolutions between different clauses are allowed (no self resolution). A 
C-resolution or C-factorization can be optimized by destructively resolving literals x I t 
where the variable x does not occur in t with the reflexivity equation. C-resolution and 
C-factorization takes into account that second-order quantifiers may well impose conditions 
on the interpretations which must be formulated in terms of equations and inequations. 

As soon as all resolvents and factors between a particular literal and the rest of the clause set 
have been generated (the literal is 'resolved away ') , the clause containing this literal must be 
deleted (purity deletion). If all clauses are deleted this way, this means that a is a tautology. 

All equivalence preserving simplifications may be applied freely. If an empty clause is gener­
ated, this means that a is contradictory. 

3. If the previous step terminates and there are still clauses left then reverse the Skolemization. 
<l 

The SCAN algorithm is correct in the sense that its result is logically equivalent to the input 
formula. It cannot be complete, i.e. there may be second- order formulae which have a first-order 
equivalent, but SCAN cannot find it. An algorithm which is complete in this sense cannot exists , 
otherwise the theory of arithmetic would be enumerable. 

The points where SCAN can fail to compute a first-order equivalent for a are (i) the resolution 
does not terminate and (ii) reversing Skolemization is not possible. In the second case there is a 
(again second-order) solution with existentially quantified Skolem functions. 

4 Semantics for Extensions of Propositional Logics 

Now we come back to the discussion we started in Section 2.2. We show how K-transformations 
and quantifier elmination can be used for finding a model theoretic semantics. 
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4.1 From Unary to Binary Consequence Relations 

There are different possbilities for axiomatizing a logic in terms of consequence relations. A unary 
'consequence relation ' fl , which is actually not a consequence relation, but a theoremhood relation 
is the simplest possibility. Alternatively one can specify a logic via a binary consequence relation 
r. t.p r ~ means that ~ is derivable from t.p , derivable in the so specified logic. If each argument of 
r is not a single formula but a list or a set we have a sequent system. It turned out that a binary 
consequence relation is the most natural starting point for finding a semantics. 

If Ao is a predicate logic (as meta logic) axiomatization of a logic .C in terms of a unary 
consequence relation fl, we can use K-transformations to find a corresponding axiomatization with 
a binary consequence relation. There must be a distinguished term t(x, y) in A0 which is some sort 
of implication. The term is distinguished in the sense that all theorems of the form fl .. . provable 
from Ao are actually of the form flt( . .. , . .. ) . Moreover, the ground proof of these theorems must 
contain also only atoms of the form flt( . . . , .. . ) . In the Lukasiewicz example this distinguished 
term is just i(x , y) denoting x -+ y. Only atoms of the form fli( ... , . . . ) occur in proofs of the 
theorems we are interested in. In general , t need not be a function symbol. It can for example be 
a term o(n(x) , y) encoding ....,x V y . In most cases, however it will be just an implication symbol. 

The following transformer turns unary into binary consequence relations: 

flt(x ,y){:}xry. (18) 

This is actually a kind of deduction theorem. In [OGP94] we prove the faithfulness of this trans­
former. 

For example the clauses (3) and (4) become 

Vr, p,q,s 

Vp ,q,r,s 

i(i(p, q), r) ri(i(r,p), i(s,p)) 

prql\i(p,q)ri(r,s) =>rrs . 

4.2 Transformers for Binary Consequence Relations 

(19) 

(20) 

In [Ohl94], I have developed a sequence of K-transformations which generate possible worlds se­
mantics from axiomatizations of logics in terms of a reflexive and transitive binary consequence 
relation and arbitrary n-place connectives. 

To start with, we eliminate reflexivity and transitivity of the consequence relation r. The 
method for eliminating reflexivity and transitivity has been explained in Section 3.2. The trans­
former is 

Ti: prq {:} (Vw:W w f= p=> w f= q). (21) 

We interpret the sort W as the set of 'worlds ' in a possible worlds semantics and the predicate 
f= as the satisfiability relation. All further transformations start from the transformed system 
Ti (Al) where A1 is the initial Hilbert system. For three further properties of logical connectives 
f I developed faithful K-transformations. The general schema is almost always the same. The 
property to be transformed is translated with Ti, corresponding equivalences Left{:} Right0 are 
derived and then the non- recursive parts in Righto , these are the parts without the original formula 
variables, are renamed. Sometimes alternative formulations in terms of sets of worlds instead of 
worlds were possible. The following results were obtained. 

Congruence Properties 

v-p, ii A(Pi r q; A q; rpi) => f(PJ r J(rf) 

There are two alternative transformers: 
72 : w f= f(jf) {:} 3x:S Nt(w, x) 1\ /\; Vv:W R}(x; , v) {:} v f= p; 

13 : w f= f(jf) {:} 3X Nj(w , X) 1\ /\;X; = \p;\ 

where X; = \p;\ is an abbreviation for Vv v E X; {:} v f= p;. 
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Monotonicity Properties 

Upward monotonicity: Vp, q p P.q =>Vs, S' f(s,p, S') P. f(s, q, S') 
Downward monotonicity: Vp, q pP. q =>Vs, S' f(s, q, S') P. f(s,p, S') 

(23) 
(24) 

If pare the downward monotonic argument positions and if are the upward monotonic argument 
positions in f then the two alternative transformers for monotonicity are 

74: w I= f(p, if)* Vx:S 1\i (Vv:W R}(xi, v) =>vI= Pi)=> 
3y:S 1\i(Vv:W R}(Yi ,v) => v 1= qi) 1\ N1(w,x,Y'J and 

Ts: w I= J(f, if>* vi x ~ IPI => 3YY ~ I~ A N.f(w , x, Y). 

Closure Properties 

For each upward monotonic argument position of f 
(to simplify notation we assume this is the last argument position): 
Vp,q1,Q2,w w P. f(p,qi) 1\ w P. j(P,q2) => 3s s P.q1 1\ s P.q2 1\ w P. f(p,s) , (25) 
and for each downward monotonic argument position of f 
(to simplify notation we assume this is the first argument position): 
Vp1 , P2, if, w w P. f(p1 , q1) 1\ w P. f(P2, if)=> 3s P1 P. s 1\ P2 P. s 1\ w P. f(s, if) . (26) 
If again p are the downward monotonic argument pdsitions and if are the upward monotonic 
argument positions in f then the transformer is 

76: w 1= f(f, if>* vx, ff nJ(w, x , Y> => (1\i xi 1= Pi)=> <V j Yi 1= qj) 
N1 and N.f are the neighbourhood relations and 'RJ is the accessibility relation between worlds. 

We got these new relation symbols by renaming literals v I= f(x) into N1(v, x) during the con­
struction of the transformer. 

There are some preconditions for the transformer for the closure properties. The original axiom 
set must consist of definite Horn clauses, and the neighbourhood relation N.f introduced by 73 must 
not be empty for at least one argument position. These conditions are needed to prove that there 
is always a model where the closure properties also hold for infinitely many Qi 's, and to construct 
the accessibility relation from the neighbourhood relation. 

It is no coincidence that these equivalences look like semantics definitions for the connectives 
f. In our framework, there is actually no difference between these transformers and what we could 
call a semantics for a connective. The transformers are translation rules and semantics definitions 
at the same time. 

If this general scheme is instantiated for the unary D-operator in modal logic, we reconstructed 
in fact the different versions of neighbourhood semantics (minimal model semantics) and Kripke 
semantics as you can find them in logic textbooks (Che80] . (The details , which are not so simple 
as it may appear here, can be found in (Ohl94] .) 

Truth Value Semantics 

For a connective f with a semantics defined in terms of the accessibility relation we can prove that 
f is actually a classical connective by proving that the accessibility relation collapses to a point 
relation. 

A point relation is one where general reflexivity Vx 'R(x , . . . , x) holds and all arguments of n 
'collapse' in the following sense: Vx 'R(x) => 1\i,i Xi = x1 holds. This is a standard predicate logic 
theorem proving problem which can be solved with an automated theorem prover. 

4.3 Simplification by Quantifier Elimination 

If the original Hilbert system entails the reflexivity and transitivity of I= and the congruence 
properties (22) hold for all connectives f then the relation p ~ q '!:!! (A1 entails (pP. q 1\ q P.p)) , is a 
congruence relation on £ - terms. For a terms let (s] be its ~-congruence class . .Cl""~ {[s]l s is an 
.C-term} is called the Lindenbaum algebra of .C. If .C contains propositionallogic, its Lindenbaum 
algebra is a Boolean algebra. We have pP. q iff (p] ~ [q] where ~ is the lattice theoretic smaller 
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relation of Boolean algebras. By Stone's representation theorem, this Boolean algebra is isomorphic 
to a field of sets [Sto36). Each element [p] can therefore be identified with a set P([p]) and we have 
p ~ q iff [p] ~ [q) iff P([p)) ~ P([q]) iff Vw w E P([p)) ::} w E P([q)). By the construction in the 
proof of Stone's theorem, P([p)) is the set of prime ideals containing [p] . (In our case these prime 
ideals correspond to the mru,dmally consistent sets in the usual canonical model constructions.) 

Now we have an alternative interpretation of the 'world sort' W: The worlds are the set of 
prime ideals of .Cl::::: and the literals w f= p can be interpreted as w E P([p)) . In [Ohl94) I show 
that one can even go a step further and interpret literals w f= p as w E p where p is quantified 
over the full powerset of the set of prime ideals. That means formula variables p can in fact be 
taken as second-order predicate variables and instead of w ~ p we can write p(w). Transformed 
Hilbert axioms can now be simplified by negating them first , applying SCAN and negating the 
result again. 

As an example, let us transform and simplify the Hilbert axiom Dp P. DDp in normal modal 
logic (the axiom '4'). The transformer 'fJ_ translates this axiom into 

Vp Vw w f= Dp::} w f= DDp. 
We apply the instance of 16 for the D-operator to this formula. 

Vp Vw w(Vu R(w, u)::} p(u))::} (Vu R(w, u)::} (Vv R(u, v)::} p(v)) 
In order to simplify this formula we apply the SCAN algorithm. Since p is universally quantified, 
we have to negate the formula first . The result 

3p 3w w(Vu R(w, u)::} p(u)) 1\ (3u R(w, u) 1\ (3v R(u, v) 1\ ....,p(v)) 
is the input for SCAN. The clause from of this formula is: 

C1 ....,R(w,u)Vp(u) 
c4 ....,p(v) 

C2 R(w,u) 
C3 R(u,v) 

u is the only universally quantified variable. There is one resolution possible with literals containg 
p. The resolvent is ....,1(_( w, v) . If the existential quantifiers are reconstructed for this clause together 
with C2 and C3 , and the formula is negated again, we obtain, as expected, the transitivity of R : 
Vu, v, w R(w, u) 1\ R(u, v) ::} R(w, v). 

4.4 The Semantics Generation Procedure 

We define a procedure for developing the semantics for Hilbert systems. 
We start with an arbitrary formula set A1 containing the P.-predicate. Naturally A1 should be 

consistent, otherwise the following steps have no meaning. 

Step 1 Prove that P. is reflexive and transitive. 

Step 2 Prove the congruence properties, (22) for all connectives. If there are connectives where 
-- this is not possible, the logic is outside the scope of the current theory. If the congruence 

properties hold for all connectives and P. is the only predicate in A1, and all formula 
variables are universally quantified then both transformers 12 and 73 define a sound and 
complete semantics. 

Step 3 Try proving for each connective f the monotonicity properties (23) and (24) from A1. In 
-- this step we determine for each argument position of f, whether it is upward or downward 

monotonic. We assume that each argument position is monotonic. 

The actual semantics is now determined by one of the transformers T4 or 75 , for each mono­
tonic connective, and one of the previous transformers for the non- monotonic connectives. 
All can be mixed freely. 

Step 4 Check whether A1 contains an axiomatization of standard propositional logic. Find a 
-- model for A1 1\ (3p, q ....,(pP. q)) to ensure that the next transformations do not produce 

inconsistencies. If both conditions are fulfilled , one can simplify the previously transformed 
axioms with the quantifier elimination algorithm SCAN. Notice that this is an optional 
simplification step. If the quantifier elimination algorithm does not succeed, then the 
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original translated formula is the final result of the transformation. In this way we can 
also deal with so--called incomplete systems. The transformed axioms specify restrictions 
on the assignment of predicate variables. 

Step 5 If the conditions of the previous step are fulfilled, and A1 consists of definite Horn clauses 
only, and the neighbourhood relation is not empty for at least one argument position, then 
check for the closure properties. For the connectives which are either upward or down­
ward monotonic for each argument position, try proving (25) for each upward monotonic 
argument position and (26) for each downward monotonic argument position. If this is 
successful then the transformer T6 yields the classical relational possible worlds semantics. 
Translate A1 again using the strongest possible transformer for each connective. As in the 
previous step, these translated axioms can be simplified using quantifier elimination. 

Notice that this step and the corresponding completeness proof subsumes the Sahlquist 
technique frequently used in modal logic to get frame properties from Hilbert axioms 
[Sah75, vB84]. 

Step 6 For connectives with relational semantics (the previous step was successful) try proving 
that the accessibility relation collapses to a point relation. If this is provable then the 
connective has a standard truth value semantics. 

The completeness results for the K-transformation technique guarantee that a theorem can be 
proved from the original Hilbert axioms A1 if and only if the translated theorem can be proved 
from the resulting translated axiom system. 

All steps in this procedure can be fully automated by using automated theorem provers for 
PLl, model generation algorithms like John Slaney's FINDER [PS90], and the SCAN algorithm. 

5 Summary 

I have sketched methods for supporting the development and investigation of application oriented 
logics with computers. In particular we have considered the problems of 

• reasoning in Hilbert systems. 

• finding model theoretic semantics for axiomatically specified logics, and vice versa 

• finding corresponding axioms for semantic properties, 

• investigating the expressiveness of logics, 

• finding translations from the object logic to predicate logic. 

Using predicate logic as meta logic, we were able to map these problems to formula manipulation 
'problems in PLl. With automated theorem provers, a quantifier elimination algorithm, and the 
special technique of K-transformations we found partially automatable solutions of these prob­
lems. As an example, we were able to reconstruct the various semantics versions for modal logic, 
but for arbitrary n-place connectives, and with very general completeness results for computing 
corresponding frame conditions for Hilbert axioms. 

This work can, and needs to be extended in so many directions, that it is impossible to name 
them all here. Of course, automated support for the development of calculi for a given logic 
would be very welcome. Serious limitations, which have to be overcome, are the restriction to 
propositionallogics. What we have not yet considered at all are many-valued logics, probabilistic 
logics and nonmonotonic logics. Conditional logics, however should be within the scope of the 
current techniques. 

Although in this paper we considered only specifications of logics, the basic ideas and techniques 
are independent of this particular application. There might be other areas where similar manipula­
tions of logical specifications also yield interesting results. In particular, the area of representation 
theorems for algebraic systems is related. Transferring the ideas and methods to algebraic logic 
and to general algebra seems promising. 
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