
Symmetry Detection in Large
Scale City Scans

Jens Kerber, Martin Bokeloh,
Michael Wand, Hans-Peter Seidel

MPI-I-2012-4-001 April 2012

Authors’ Addresses

Jens Kerber
Max-Planck-Institut für Informatik
Campus E 1 4
D-66123 Saarbrücken

Michael Wand
Max-Planck-Institut für Informatik
Campus E 1 4
D-66123 Saarbrücken

Martin Bokeloh
Stanford University
353 Serra Mall
Stanford, CA 94305, USA

Hans-Peter Seidel
Max-Planck-Institut für Informatik
Campus E 1 4
D-66123 Saarbrücken

Abstract

In this report we present a novel method for detecting partial symmetries
in very large point clouds of 3D city scans. Unlike previous work, which
was limited to data sets of a few hundred megabytes maximum, our method
scales to very large scenes. We map the detection problem to a nearest-
neighbor search in a low-dimensional feature space, followed by a cascade of
tests for geometric clustering of potential matches. Our algorithm robustly
handles noisy real-world scanner data, obtaining a recognition performance
comparable to state-of-the-art methods. In practice, it scales linearly with
the scene size and achieves a high absolute throughput, processing half a
terabyte of raw scanner data over night on a dual socket commodity PC.

Keywords

symmetry detection, feature detection, large scene processing, clustering

Contents

1 Introduction 2

2 Symmetry Detection 5
2.1 Scalable Symmetry Detection 6

3 Implementation 8
3.1 Data Organization . 8
3.2 Line Features and Sample Points 9
3.3 Descriptor . 11

3.3.1 Line Feature Images 12
3.3.2 Orientation Histogram 12

3.4 Clustering . 13
3.4.1 Rapid Geometric Alignment 13
3.4.2 Geometric Clustering 14

3.5 Dynamic Area Queries . 15

4 Implementation and Results 16
4.1 Parameters and Performance 16
4.2 Full Hannover Data Set . 23
4.3 Discussion . 25

5 Conclusions and Future Work 26

1

1 Introduction

Symmetry detection [17, 36, 47, 50, 46, 41, 8, 26, 38] has become an important
tool for the analysis of digital 3D shape models. A symmetry detection
algorithm examines an input 3D model for global or partial self-similarities.
This means that portions of an object match back to itself under a constraint
class of mappings, such as rigid motions or similarity transforms. The output
is a list of parts and corresponding transformations that map these parts non-
trivially back onto the original surface.

In other words, symmetry detection discovers structural regularity and
redundancy in shapes. This information is essential for a large and grow-
ing number of applications: The discovered redundancy can for example be
utilized for compression [36] and data cleanup by averaging matching parts
[18, 46, 8, 56]. Furthermore, symmetry-based invariants have been exploited
for symmetry preserving editing [19, 9, 54, 57], for semi-automatic creation
of related shapes [37, 10, 25], and to reason about the functionality of shapes
[39].

Symmetry detection algorithms published so far all share an important
limitation: Current approaches do not scale to large quantities of geometry.
The largest scenes for which results have been reported in literature are in
the range of a few hundred megabytes in size [36, 46, 8]. However, there are
application scenarios where data has to be handle that is several orders of
magnitude larger. For example, there are ongoing large scale urban scanning
campaigns (such as Google street view, which includes 3D laser scanning),
producing enormous quantities of 3D point clouds depicting most urban ar-
eas. For such massive geometric data sets, discovering redundancy through
symmetry analysis is even more relevant than for small scenes. In addition to
the obvious need for identifying redundancy and obtaining a compact encod-
ing, applications such as non-local scan consolidation or structure learning
approaches would clearly benefit from a larger data base and could be ex-
pected to perform better. However, available symmetry detection algorithms
are fundamentally limited in the input size that can be handled.

2

Many previous techniques are based on transformation voting [36]. These
approaches consider pairs of points with matching local neighborhoods, com-
pute a canonical transformation between them, and vote for them in transfor-
mation space, disregarding the spatial location. For a large scene with many
symmetric elements, the transformation space is cluttered by the overlay of
simultaneous matches and the structured noise that comes with them. This is
why the discrimination of various symmetries becomes increasingly more dif-
ficult. Analyzing a city-scale scan in a single transformation space is clearly
infeasible; even larger buildings already require a hierarchical decomposition
for disambiguation [36].

An alternative are approaches that match local feature constellations
[6, 8]. These techniques are more restricted as they require the presence
of suitable features in the model. However, they can handle large amounts of
partial symmetries with arbitrary structure. Nevertheless, the feature-based
approaches essentially work by comparing all pairs of feature constellations
explicitly. Some speedup is obtained by randomized sampling but the scaling
behavior is quadratic in the size of the scene. Furthermore, all of the pro-
cessing is performed in-core and with random access to the data so that the
potential scene size is limited by available main memory. At moderate scene
sizes, this is not yet an issue, but handling very large data sets is not possible.
Other techniques, such as computing robust pairwise auto-alignments [50] or
moment analysis [32] are also not applicable to large scenes.

In this paper, we make a first step towards symmetry detection in very
large scenes. We present a new, scalable symmetry detection algorithm that
is designed to handle large amounts of input geometry. In order to obtain a
scalable algorithm, we need to avoid explicit pairwise comparisons of match-
ing geometry, which leads to (unacceptable) quadratic complexity. Rather
than that, we find descriptors of local geometry that are directly mapped
into a feature space such that similar geometry coincides. By aggregating
information in an appearance rather than a transformation space, it is easier
to discriminate a large number of symmetric parts.

Algorithmically, our approach is in line with several recent algorithms that
aim at finding similarity in very large quantities of data through clustering
(such as clustering of images [27, 15]). The mapping can be done in a single,
linear scan, allowing for external data storage on hard drive. Afterwards,
a clustering step is performed to match nearby descriptors. The efficiency
of this step strongly depends on the design of the descriptor space. The
trade-off is to find a low-dimensional representation that retains as much
characteristic information of the shape as possible and is robust to noise and
missing data.

3

The reason for seeking a low-dimensional representation is the “curse
of dimensionality”: Clustering requires retrieving similar descriptors, i.e.,
proximity queries in descriptor space. For high dimensions of this space,
most traditional exact and even approximate range query techniques be-
come inefficient. There are approaches like locality sensitive hashing that can
achieve sub-linear query times in high dimensions [3], relying on the Johnsen-
Lindenstrauss Lemma [14]. However, these techniques come at considerable
costs in terms of runtime constants and super-linear memory requirements
that again impede scalability [22]. In summary, the more we are able to
discriminate geometry by descriptors with few degrees of freedom, the easier
and more efficient the search problem (and thereby the clustering) becomes.

We propose a descriptor of local geometry that has been designed with
these goals in mind: We combine the idea of gradient histograms [29, 13] with
local crease-line detection [40, 8], both of which have been proven to be very
effective in characterizing local geometry. We cluster the resulting descriptors
using an additional geometric verification step. This step performs a linear
number of pairwise comparisons to disambiguate different pieces of geometry
with similar descriptors. In order to keep absolute processing times small
as well, we introduce for this task a novel, very efficient geometry matching
algorithm, based on ideas of real-time viewfinder alignment [1]. As a result,
we obtain an algorithm that can detect partial symmetries in very large data
sets efficiently both in terms of asymptotic scaling behavior as well as in
terms of absolute performance.

We evaluate the accuracy and performance of our proposal on real-world
3D scans, suffering from noise, outliers, and incomplete acquisition. For ex-
ample, for the well known “Hannover” city scans, by Brenner et al. [11], with
12GB of raw data size, we can find the partial symmetries within the whole
scene in less than 70 minutes on dual-socket commodity PC. Nevertheless,
we maintain a recognition accuracy comparable to the previous technique
by Bokeloh et al. [8], which is probably the most scalable technique for this
task but still is not able to compute a result on the full data set. In order
to study scalability further, we create a larger scene by replicating parts of
the Hannover scan, creating up to 500GB of raw data. Even in this case,
symmetry detection can be performed over night on a single PC.

4

2 Symmetry Detection

Before discussing our approach in more detail, we would first like to formalize
the notion of partial symmetry detection so that it becomes clear what we
are aiming at computing and why it is possible to speed this computation
up.

A symmetry detection algorithm takes a piece of geometry S ⊂ R3 as
input and considers a group of transformations T acting on it, which is a
subgroup of the bijections of R3. Most frequently, these are rigid motions
T = E(3) [8], or similarity transforms [36]. In our paper, we consider a
restricted class of true rigid motions SE(3) (excluding reflections) that keep
a global upward direction u of the scene invariant, i.e., Tu = u for all T ∈ T .
This is only a minor restriction for architectural models but simplifies the
construction of our descriptors substantially.

We now consider all subsets of S that are mapped back to S under trans-
formations T ∈ T : The set of pairwise correspondences C with respect to
input S and a transformation group T is defined as:

C(S, T) = {(P ,T)|P ⊆ S,T ∈ T ,T(P) ⊆ S}

A single correspondence consists of a subset P of the scene S and a transfor-
mation T ∈ T that matches this piece to an alternative location. Obviously,
there are a large number of such correspondences: For example, each subset
of P itself is again a valid correspondence under T. We can remove the am-
biguity by considering only maximal sets P . Another issue are continuous
symmetries: For example, a plane has an infinite set of symmetry transfor-
mations that map portions of it back to itself. To avoid computational costs,
such continuous symmetries are usually computed a priori using a differen-
tial analysis [20] and can be excluded from the further detection [10]. Our
algorithm follows this idea and excludes continuous symmetries by only com-
puting matches at non-slippable features [8]. Finally, we also do not want
to enumerate spurious matches that lead to very small subsets P ; a minimal
requirement should be that the detected parts P have a certain minimum

5

(a) input (b) pairwise cliques (c) descr. graph

Figure 2.1: Utilizing the structure of partial symmetries: (a) An input scene
containing partial symmetries. (b) Symmetric subsets form cliques with a
quadratic number of partial correspondences. In the exact case, only a linear
number of comparisons is required to retrieve them. (c) We use approximate
descriptor matches and walk a neighborhood graph to find the symmetry
cliques of feature points.

extend. Our method implements this filter by demanding a match of local
neighborhoods for matching points.

Making all of the mentioned restrictions still does not solve the complexity
problem of symmetry detection: We still obtain a large number of overlapping
subsets P that map back to S under various transformations T. Explicitly
computing all of these sets by a pairwise matching of geometry is possible
for small scenes [10] but prohibitively expensive for large inputs.

However, a computation of all pairwise matches is not required, as illus-
trated in Figure 2.1: Quadratic complexity is caused by overlapping matches.
If we consider a single point on the model, the set of all points reached by
a symmetry transformation forms a clique [26]. This is because correspon-
dence, as we have defined it, is an equivalence relation. Consequently, it is
sufficient to only walk a linear-sized subgraph of the full clique to discover
all symmetric points.

2.1 Scalable Symmetry Detection

In our paper, we implement this idea in an approximate setting: First, we
restrict the scene to feature points F ⊆ S that are non-slippable, i.e., not
part of a continuous symmetry. Then, for each feature point x ∈ F , we
compute a descriptor vector descr(x) ∈ Rd. The descriptor maps the local
r-neighborhood Nr(x) := {y ∈ S|dist(x,y) < r} of points x ∈ S to a
short vector that summarizes the local geometry. This mapping is of course
not injective, but we will construct a descriptor that ensures that similar
geometry maps to similar descriptor values while dissimilar geometry with
high likelihood obtains dissimilar descriptors.

6

In this descriptor space, we build a k-nearest-neighbor graph (typically
k = 10..50). By walking along this graph (Figure 2.1c), we will with high
likelihood encounter matching geometry. Using k nearest neighbors ensures
that both approximate matches and overlaps in descriptor space are han-
dled correctly: As long as k is large enough, we will be able to retrieve the
whole fully connected clique by only performing a linear number of compar-
isons. We will show empirically that our choice of descriptor is discriminative
enough to ensure high recall rates at small values of k. The actual pairwise
comparisons are performed on geometry rather than descriptors: We use a
two-step cascaded test to compare surface crease lines; the first step of the
cascade is almost as accurate as matching the full point sets but up to four
orders of magnitude faster.

Our algorithm outputs for each feature point its clique of matching points.
This information is only linear in size and encodes all correspondences C(S, T)
of the whole scene implicitly. Unlike traditional approaches (such as [36, 8]),
we do not segment the scene into symmetric pieces, but output the matching
for each point [10]. This representation provides more information than an
ad-hoc partitioning [38] as it encodes all overlapping symmetries.

In the subsequent section, we discuss in detail how we implement this
concept in practice.

7

3 Implementation

We now discuss the processing pipeline of our symmetry detection algorithm.
Figure 3.1 depicts the interplay of the different stages. Before anything else,
we need to prepare and organize the raw data, as detailed in Section 3.1.
After that, the first processing stage of the pipeline extracts a crease-line
abstraction of the geometry and sample points for the later matching step.
This process is explained in Section 3.2. In order to match these keypoints by
direct mapping, we compute a suitable descriptor for each sample point, as
summarized in Section 3.3. The detection of symmetries is then reduced to
a clustering problem that uses descriptor information in conjunction with
a rapid, approximate geometry matching algorithm for verification (Sec-
tion 3.4).

3.1 Data Organization

The input to our algorithm is a raw point cloud from a 3D scanner, stored
as a long list of 3D points, potentially amounting to several hundreds of
gigabytes of data. Our first task is to organize this data for efficient further
processing. We use the data structure of Wand et al. [53], who provide an
open source implementation on the web. For completeness, we briefly discuss
the main steps.

The first task is to partition the data into blocks that fit into main mem-
ory. This is done by a hashing scheme: The scene is overlayed with a regular
grid and each grid cell is associated to a file on the hard disc. Then, in a
single scan through the input data, the point set is split up into manageable
parts. After that, an octree is build to organize the pieces hierarchically, with
the leave nodes storing the subsets of the input data. Each leave contains at
most 64K points, which is the block size for the further processing.

8

Figure 3.1: Overview: First, we extract line features (a) and a set of sparse
samples (b) from the input. Then, we compute a high-dimensional descrip-
tor (orientation histograms) for each sample (c) and project all descriptors
to a low-dimensional space (d). Now, we use the k-nearest-neighbor topol-
ogy in descriptor space and cluster samples by region growing (e), which is
performed by a pairwise alignment and comparison of the line feature repre-
sentation. Distances in descriptor space serve only as a filter to reduce the
complexity, not as a final matching criterion.

The employed system in addition also builds a multi-resolution rendering
data structure that is not necessary for the processing but which we use
for visualizing the results. We also use the provided processing system to
estimate normals by local PCA fitting and orient them according to the
(assumed to be) known scanner positions, giving us an unambiguous surface
orientation everywhere.

3.2 Line Features and Sample Points

The first goal of our processing pipeline is to reduce the amount of data to
a more manageable set while maintaining most of the important shape in-
formation. We follow the previous work of Bokeloh et al. [8] and compute
a line-feature representation that extracts the salient crease lines from the
input geometry as an abstraction of the full point cloud. Crease lines can
capture the most important part of the shape structure at small represen-
tational costs: From only sparse crease lines, a surprisingly exact surface
representation can be reconstructed [40].

In practice, slippage-based line features [8] yield a storage reduction of
about a factor of 170 (from 12GB down to 72MB for the “Hannover” data
set). Assuming that at least 8GB of main memory are available in most of-
the-shelf PCs today, this implies that this representation can compress the
original input data of more than a Terabyte to still fit into main memory,
where more flexible processing is possible.

9

We implement a parallel out-of-core algorithm for computing the line
features efficiently: The feature extraction method in [8] retrieves points with
linear slippability [20], corresponding to a general notion of line features.
Afterwards, a projection operator is used that draws surface points onto
the closest point of maximal curvature in direction orthogonal to the line
direction. To compute the set of line features from the input, sample points
are randomly distributed over the surface using Poisson disk sampling with
spacing σ and each sample is projected individually onto a line segment,
never moving by more than σ. Since every projection is independent from
other samples we can process many sample points in parallel.

Parallel out-of-core implementation: We implement this strategy
in a data-parallel, out-of-core fashion: From the octree, we extract all child
nodes, which we subsequently treat as processing blocks. For each child node,
we retrieve the direct neighbors to provide context at the boundaries and
cut out an extended region, as follows: The projection operator requires a
small local neighborhood of surface points (a sphere with radius σ) in order
to compute surface properties such as curvature or slippage analysis [21].
Furthermore, a projection can move a point up to σ away from its original
position. This means for each process block we need to add all points within a
2σ boundary to the processing block in order to compute correct projections.
Further, in order to maintain a uniform sampling density of line features that
is not affected by process block boundaries, we remove all line features outside
their initial process block boundary.

We now use a single thread to load these blocks from disc and extract
the neighborhoods. We traverse the tree coherently (depth first) and use an
LRU cache for blocks. The extraction thread then dispatches work packages
to several processing threads that perform the line feature extraction for
several blocks in parallel. To speed-up the range queries of the projection
algorithm, local spatial hierarchies are used. As the computational costs for
the projection are much higher than for just loading and clipping the data,
we usually obtain full CPU utilization on a our reference machine (12 cores
with 24 threads); only for small scenes, we sometimes observe a suboptimal
CPU utilization because the load-balancing is quantized to whole blocks.

Feature points: In addition to line features, we extract a relatively
sparse set of sample points from the input that we will equip with descriptors
later on, and for which we will actually compute symmetry information. We
call these points feature points in the following. We use junctions of crossing
line features (called “bases” in [8]) as samples and remove points that are
too close to each other, again by Poisson disc sampling.

10

Our descriptors will cover a radius r, which is typically 20σ. The descrip-
tors are designed with robustness towards local shifts so that we can rather
aggressively thin out the sample set; we currently use a sample spacing of
20% of the descriptor radius r .

3.3 Descriptor

From the construction of the feature point, we can assume that matching
pairs of symmetric instances will contain sample points that are nearby with
respect to the symmetry transformation but vary in their exact position.
Therefore, we have to ensure that the descriptor is invariant under transla-
tions up to a tolerance of at least the sample spacing (0.2r).

Such invariance is a common problem in computer vision, where ro-
bustness towards small transformations as well as local distortions is cru-
cial for effective image descriptors. A widely employed and well-performing
standard solution to this problem is the use of gradient orientation his-
tograms [29, 13, 33]. If we were comparing images by simple template
matching, the robustness against local distortions and shifts can be improved
by low-pass filtering. However, comparing blurred images destroys a large
amount of information and therefore significantly impacts the precision of the
results. In order to have good recall under distortions without compromising
discrimination, histograms of oriented gradients (HoG) are used. Instead of
averaging color, a histogram of the orientation of local image gradients is
build, which itself already gives a remarkably discriminative descriptor [16].
In other words, spatial averaging is necessary for robustness, and HoG-type
descriptors perform this averaging by building orientation histograms rather
than averaging color, which retains much more information while still pro-
viding the same local shift invariance.

This idea can be transferred to the geometric domain by using crease lines
on the geometry as the analogon of image gradients, both of which contain the
most important information about the data. This idea has been examined for
mesh data as “mesh SIFT” [31], leading to favorable results. Our situation
is different as we are dealing with noisy and partial point cloud data; and
we targeting large data sets and thus aiming at high throughput. We build
our algorithm upon the previously computed sparsely sampled line feature
representation. We examine the distribution and constellations of line feature
directions in local neighborhoods to build orientation histograms. Figure 3.2
illustrates the concept.

11

Figure 3.2: Examples of 6 different line feature images from the Hannover
data set. Directions are indicated by different colors. Orientation histograms
capture the distribution of line directions without considering spatial loca-
tion.

3.3.1 Line Feature Images

As motivated in Section 2, we assume that we have an urban scene with
a consistent upward orientation u. Mappings between symmetric instances
cannot change this upward direction. To build descriptors, we consider all
line features in a sphere of radius r around each sample point. For this set of
features, we fix a local coordinate frame aligned with the upward orientation
and the average surface normal that we approximate by performing principal
component analysis on the line features. From our experience, it is sufficient
to consider the projection of line features onto the plane orthogonal to the
average surface normal because architectural facades mostly resemble reliefs
with relatively small depth. As the projection of matching feature points is
consistent, our descriptor will still work for objects with arbitrary depth, but
the overlay of features might be a bit less discriminative. The 2D projections
of the line features form line feature images, from which we derive the de-
scriptors. We use 128× 128 pixel images, in which we render the computed
line samples by drawing short segments of length σ.

3.3.2 Orientation Histogram

The orientation histograms encode the distribution of orientations discretized
into a set of orientational bins. In this work, we use a relatively low resolution
of typically B = 8 different (undirected) angles which has the advantage
of compactness and also acts as a low pass filter of orientations under the
assumption of random noise in the line feature orientations.

12

In order to increase the expressiveness of our descriptors, we compute
multiple orientation histograms with overlapping but different spatial regions,
on a H×H grid. In practice, we have used 4×4 histograms to achieve all the
results shown within this paper. Our evaluation in the upcoming section will
justify this parameter setting. To avoid aliasing, we use a Gaussian Window
function with standard deviation r/H in the spatial domain and 180◦/B
degree in the orientation domain and distribute contributions to overlapping
bins correspondingly. As shown by Dalal et al. [13], such a proper filtering
is instrumental to good results.

The number of dimensions increases with spatial and orientational bin-
ning. We therefore use principal component analysis to project to a lower
dimensional basis with D dimensions. We will later show experimentally that
D = 8 is a good choice where the dimensionality reduction has only minimal
impact on recognition performance.

3.4 Clustering

We now use the computed descriptors to cluster matching geometry, thereby
computing the symmetry transformation of each feature point. Two points
x,y ∈ F are considered symmetric, if there exist a T ∈ T such that
T(Nr(x)) = Nr(y). By construction of the descriptors, we know that this
implies descr(x) = descr(y), but not the other way round. Similar geometry
will have similar descriptors, but multiple different pieces of geometry can
still map to the same descriptor. Therefore, we need an additional verification
step for effective clustering. The key idea is to consider nearby descriptors
as matching candidates and verify the quality of the match by an explicit
geometric alignment.

3.4.1 Rapid Geometric Alignment

At this point, we need a fast algorithm to align two feature line images.
Obviously, we could use the iterative clostest lines (ICL) algorithm originally
employed in [8]; however, the absolute costs are high. We therefore propose
an efficient approximation that is at least two orders of magnitude faster
(in a practical experiment, the run time of rapid alignment decreased to 4
minutes from 480 minutes for standard ICL). The new technique also has
the advantage of a larger convergence radius, as it performs a global search
(versus the local search of ICL).

13

We adapt the technique from Adams and co-workers [1] for rapid image
alignment: We project all line features with a horizontal orientation on the
vertical axis and compute the distribution of line features along that axis.
We call the result an alignment histogram. In order to align two images in the
vertical direction, we compute the correlation between both alignment his-
tograms and take the maximum correlation as alignment. Horizontal align-
ment is achieved accordingly. Rotational alignment is given a priori by the
coordinate frame defined by upward direction and mean normal (which is
robust as it has been averaged over a large area). In contrast to the original
approach, we perform the correlation in the Fourier domain using FFT, for
further speed-up.

With the estimated alignment we now compare the line feature images
by comparing shifted images, which we compute on the fly to save memory.
Comparison is done by normalized cross-corellation (NCC), and after blurring
with a small Gaussian kernel that again avoids aliasing and sensitivity to
alignment errors that are expected to be in the range of one or two pixels.
Please not that the images are gray-scale for NCC starting from binary lines
before blurring.

3.4.2 Geometric Clustering

Our clustering algorithm is a simple region growing technique: We consider
a graph with feature points as nodes and edges connecting the k-nearest-
neighbors in descriptor space (using Euclidean distance). The edges connect
different candidates of matching geometry, which we now verify during the
clustering: We traverse the graph breadth first. For each new node encoun-
tered, we compute an alignment of the feature line images of the new node
to that of the original start node using the rapid alignment technique. If and
only if the images match (i.e., the NCC score is above a user chosen threshold
ε), we continue the search towards the unprocessed neighbors of this node.
Please note that we always compare to the start node to avoid drift. It is also
important to stress that we utilize two comparison measures at this point:
On the one hand, similarity of descriptors serves as initial filter to obtain
candidate matches. On the other hand, the actual match of geometry is used
as criterion to steer and stop the traversal of the descriptor graph.

Filtering by descriptors reduces the number of pairwise comparisons from
naive O(n2) to O(kn) for n samples. If the descriptor is effective, k is a
small number. We will show empirically that small values of k = 10..50 are
sufficient to obtain good results on complex scenes with a large amount of
geometric variation.

14

The only performance critical part that remains is the computation of
nearest-neighbors in descriptor space. The design of our descriptors allows
us to use rather low-dimensional feature vectors with only 8 dimensions. In
addition, the reduction to sparse samples permits storing samples in-core
even for very large scenes. We therefore currently employ the approximate
nearest-neighbor library (ANN) by Mount and Arya [5], which performs well
for spatial queries with medium dimensionality.

3.5 Dynamic Area Queries

The clustering algorithm described above concludes the preprocessing of sym-
metry information. The output is a partition of the set of all feature points
into fully connected clusters of matching geometry.

We now discuss how this information can be utilized to derive more precise
symmetry information. We assume that the user (as in our experiments) or
an outer-loop algorithm (in potential applications) wants to retrieve all pieces
of geometry within the whole scene S that is symmetric to a given query piece
P ⊂ S. In this situation, we have stronger cues because we can combine the
information of all feature points FP within P simultaneously.

We first enumerate all clusters the feature points in FP belong to. From
this, we retrieve a set of transformations to symmetric instances. Since the
clusters can still contain outliers (depending on the NCC threshold), we align
all line features within the query region to the potential symmetries using
iterative closest line (ICL) [8]. We use the resulting ICL score to validate a
symmetry and display the symmetry if at least 50 percent of all line features
find a correspondence.

We recursively repeat this process with the transformations we can find
in the symmetric regions we match to, i.e., building the transitive closer via
region growing and verification by ICL to the original instance P . As shown
below, this transitive-closure step significantly improves the results.

In our experiments, we always let the user chose rectangular bounding
boxes to cut out example regions P ; in the corresponding images these are
shown as wire-frame boxes. Please note that the region queries are dynamic,
not precomputed (therefore, the costs are not included in the processing
costs given). The queries always search the whole scene, not only the visible
portion. Nevertheless, response times are interactive (in the range of a few
second for the full “Hannover” test scene).

15

4 Implementation and Results

We now evaluate our method in two steps: First, we study the influence of
algorithmic and complexity parameters. Second, we apply our method to
real-world scenes and demonstrate some practical results. All experiments
were performed on a dual Socket Intel Xeon X5650 2.66 GHZ (6 physical cores
+ hyperthreading) equipped with 48 GB of main memory and an NVIDIA
GeForce GTX 480. The code for line feature extraction uses multi-threading
with 24 threads, the remainder of the code is currently single threaded, as
feature extraction dominated the runtime.

Benchmark data: As benchmark data set, we have chosen the Han-
nover city scan collection, provided by Brenner et al. [11]. This data set
features a diverse collection of many different buildings all over the city of
Hannover, Germany, collected by 3D time-of-flight scanning and subsequent
scan registration. As a real-world data set, it contains significant noise ar-
tifacts, as well as clutter and outliers. Furthermore, many of the buildings
are acquired only partially and the sampling density varies considerably (as
it can be seen in the accompanying video). The full collection consists of 463
million points, or roughly 14GB in binary format. As we are not aware of
publicly available data sets of larger size, we use replications of parts or all
of the data to study the scaling behavior for even larger scans.

4.1 Parameters and Performance

Our method has a number of parameters that might significantly affect the
practical performance. Therefore, we first systematically study the influence
of these parameters. We proceed in two steps: First, we only look at the
recognition performance of the descriptor and chose good parameter values.
Second, we study the full pipeline and its behavior under different configu-
rations.

16

Figure 4.1: Annotated benchmark data. All spheres with the same color
indicate symmetric geometry.

Benchmark setup: We have chosen the “Wilhelm Busch museum”,
which is part of the Hannover scans, and manually annotated the data: We
label points on the objects surface with symmetry classes (see Figure 4.1).
These annotations capture the four most important symmetry classes; our
test ignores other matches.

Descriptor test: We now first test the descriptor performance. For this
test, we retrieve the sample point closest to each annotated point and match
it against all other samples using their descriptors. A good descriptor should
match these descriptors to other descriptors close to an annotation point of
the same class, and only to them. We define closeness by a sphere of radius
0.5r, which is the maximum distance at which our alignment scheme could
possibly find a match of the descriptor images. According to this definition,
we compute false negative rates (averaged over all features and descriptors),
and the absolute number of false positives, normalized by dividing by the
number of tests (i.e., overall number of annotated points).

The results are shown in Figure 4.2. The curves correspond to different
threshold values in matching the descriptors. We first test different parame-
ters for the number of spatial histograms H (Figure 4.2a).

17

It turns out that 4× 4 spatial histograms yield a good performance, with
only marginal improvements for larger values.

Next, we examine the effect of dimensionality reduction (Figure 4.2b) and
the influence of the number of orientation histogram bins. We keep the num-
ber of histograms constant at H = 4. For orientation histograms, dividing
the angular range of 180◦ into 8 bins leads to the best results. 16 bins as well
as 4 bins are worse. The reduction from 16 to 8 dimensions via PCA impedes
the recognition rate only marginally, while providing substantial benefits for
an efficient nearest-neighbor search. In summary, these test justify our pa-
rameter choice with which we achieved all the results shown below (4 × 4
histograms with 8 orientation bins overall reduced to 8 dimensions). We
want to stress that the descriptors for all our experiments are normalized.
Normalization means that we scale the histogram entries by the inverse of
the l2 norm of the full histogram before PCA reduction. This significantly
improves the recognition performance.

Full pipeline benchmark: We now test the full pipeline, including the
rapid geometric alignment. We use again the annotated data for the Museum
scene and apply the same criteria as in the previous test, with a tolerance
radius for a match of 2r. For counting true and false positives, we use two
separate criteria: First, we just evaluate the accuracy of the pairwise matches,
as done before. In addition to that, we also examine the transitive closure of
the matches, which is also done by dynamic query algorithm (Section 3.5).

Figure 4.3 shows the results for the according precision recall tests of the
full pipeline, varying the threshold value ε of the NCC-based image com-
parison. The different curves correspond to varying the number of nearest
neighbors. Within the accuracy of this test, the parameter does not seem to
affect the results and 10 nearest neighbors appear to be sufficient. However,
the test scene is still rather small; in very large scenes, an increase might
still provide an advantage. Experimenting with the full Hannover data set,
we found that 30 nearest neighbors are usually sufficient. A full assessment
would require large scale annotations on large quantities of data, which we
have to leave for future work. We have also varied the other descriptor pa-
rameters (not shown here) and confirmed the results from the previous test.

In terms of absolute recognition performance, the results are quite en-
couraging. When taking the transitive closure of the matches into account,
the recognition rate rapidly approaches 100% at small false-positive rates.
For this further test, we read off an NCC threshold value of 0.5 that gives al-
most 100% accuracy at minimal false positive rates, and use it for all further
experiments.

18

(a) influence of different number of histograms

(b) influence of dimensionality reduction and orientation binning

Figure 4.2: Precision recall curves for the descriptor test. Annotations: H =
number of spatial histograms, D = dim. after PCA, B = number of orienta-
tion bins. The y-axis is the true positive rate, averaged over all annotations,
and the x-axis is the false-positive rate, in percentage of all descriptors.

19

Figure 4.3: Precision recall curves for the full pipeline. Annotations: H
= number of spatial histograms, D = dim. after PCA, B = number of
orientation bins, KNN = number of nearest neighbors in clustering. y-axis:
true positive rate, x-axis: false-positive rate. The lower three curves show the
pairwise recognition rate, the upper three make the more realistic assumption
of extracting the connected components of the transitive closure.

Scalability: Figure 4.4 examines the scaling behavior of our method.
We replicate the museum scene on a regular grid to obtain up to 500GB of
input data. Both, the overall computation time (from line feature extraction
up to including clustering) and the clustering step itself scale almost linearly
with the scene size. When going from the smallest to the next bigger scene,
the increase is even sublinear because of an uneven load balancing in the
parallel line feature computation that negatively affects small workloads. The
absolute running times are also quite satisfactory: Computing symmetries on
a 490GB input scene took overall below 17 hours, and the single Hannover
scan collection required just 66 minutes. About two thirds of the time are
spend on computing line features and feature points, one third is spend in
the actual clustering-based symmetry detection. Table 4.1 summarizes the
statistics and timings of all of the test scenes.

Immediate results: For illustration, we show the immediate results
of the detection pipeline for the “old town hall” scan in Figure 4.5, demon-
strating how the line features capture important geometric aspects, robust to
partial and noisy data, and how the descriptors serve as a prefilter for the ge-
ometric validation. Please note that descriptors are shown in a three dimen-
sional RGB projection; the actually employed descriptors are 8-dimensional
and thus more discriminative than they appear in the projection.

20

Figure 4.4: Scaling behavior with increasing scene size. The x-axis depicts the
number of instances of the Museum scene (15.3M points each, corresponding
to 488MB). The y-axis depicts elapsed time in seconds. Please note that
both axes are logarithmically scaled.

Model #Instances Size #Points Line Features Descriptors
+ Key Points + Clustering

Museum 1 0.5GB 15.3M 2m 18s 35s

4 2GB 61.3M 4m 20s 1m 45s

9 4GB 138.0M 8m 22s 3m 46s

16 7GB 245.4M 15m 43s 6m 43s

64 30GB 981.6M 48m 52s 17m 32s

256 122GB 3.9B 3h 23m 27s 1h 2m 19s

576 276GB 8.8B 6h 49m 18s 2h 12m 17s

1024 490GB 15.7B 12h 29m 2s 4h 15m 47s

Hannover 1 14GB 463.4M 43m 57s 23m 12s

9 128GB 4.2B 5h 19m 4s 3h 50m 14s

Table 4.1: Runtimes of the two algorithm stages for different models.

21

input data line features

descriptors projected dynamic query

to 3D (RGB) via PCA

Figure 4.5: Visualization of the symmetry detection pipeline stages. The
raw point cloud is first reduced to line features (colors indicate local line
segments with a common tangential direction), from which descriptors are
derived (visualized here by an RGB embedding). After clustering, a dynamic
query extracts area-based symmetries.

22

Figure 4.6: Different symmetries found across the city of Hannover. Please
note that this test uses a single parameter set for the whole data set. Detec-
tion and query are performed globally, on the whole city simultaneously (see
the accompanying video for details).

4.2 Full Hannover Data Set

In Figure 4.6 we show a set of example results, all obtained from a single
symmetry detection pass on the Hannover scan collection. For clarity, we
show a selection of dynamic queries, i.e., not all symmetry information is
displayed simultaneously in the results. We indicate the selected symmetries
by a colored sphere where each user query has an individual random color.
The user-marked bounding box is shown in the same color accordingly. Please
note that the search for both clustering and dynamic queries is performed
globally, on the whole data set. The computation of a dynamic query required
a few seconds each. Our results are robust even in the presence of substantial
noise, clutter, and missing data (to get an impression of the data quality we
refer to the accompanying video).

Comparison to Bokeloh et al. 2009 [8]: A quantitative comparison is
difficult because the previous technique computes symmetric parts by greedy
region growing. Depending on parameter settings, this will yield quite dif-
ferent results in terms of detected symmetries. On the contrary, our method
precomputes the richer set of all point-wise symmetry cliques for all feature
points. However, we then use these for a dynamic query with specified area,
an information that the previous technique cannot rely on. Nevertheless, it
is worth attempting a qualitative comparison as shown in Figure 4.7.

23

Bokeloh et al. 2009 scalable detection

Figure 4.7: Comparison to Bokeloh et al. 2009

For the old town hall scene (top row), we can observe the differences over
greedy region growing. The previous method detects some of the windows
but omits other details in favor of a global reflective symmetry of the whole
facade (which our approach does not recognize as we omit reflections from the
set T). However, our method collects all symmetry information for the de-
tails and reports them when queried, with only one top piece missing. Unlike
the previous method, we can also differentiate the different window variants
correctly. For the new town hall (bottom row), different parameter settings
for the region growing lead to a more favorable, fine grained decomposition
of the facade. Our technique cannot capture very small details individually
(such as the small windows in the top row), but otherwise leads to compa-
rable results. Please note that our method processed the entire data at once
with one set of parameters; in [8] parameters were set to each data set in-
dividually. Furthermore, our new method is less parameter dependent, only
the sensitivity and scale of the line-feature detection need to be adapted to
the data set, further parameters are kept constant.

24

4.3 Discussion

Recognition results: The recognition results of our method for architec-
tural scenes are comparable with the previous state-of-the-art in symme-
try detection that are restricted to small data sets. However, our method
is restricted as it does not directly output dense correspondences but only
matches at feature points that sample the model less densely. Dense cor-
respondences still have to be reconstructed from this information, as done
for example in the presented dynamic query algorithm. Precomputing such
information as it was done in previous work is not practical for large scenes.
Efficient algorithms and data structures for computing and storing such over-
lapping dense correspondence information is still subject to future work.
Nevertheless, we would argue that the prime problem is finding symmetric
instances in the first place, which is what this paper addresses.

Scalability: Our method is currently designed for handling large but not
extremely large scenes. A key limitation is that the line features and samples
need to fit into main memory. Observing an empirical compression factor of
about 170, this would in principle allow us to handle scenes up 1-10TB us-
ing affordable 6-60 GB of main memory. However, the computation of the
line features then becomes a bottleneck. In addition, data partitioning uses
up twice the amount of time, but this could be optimized by removing the
multi-resolution rendering capabilities, which currently dominates the pre-
processing times [53]. Another concern is the effectiveness of the descriptor
in large scenes with a large variety of geometry. While we were not able
to examine this on Terabyte-sized scenes due to the lack of publicly avail-
able data, our experience with the Hannover test set was rather positive.
Despite significant geometric variety and severe noise, missing data and clut-
ter, recognition results and clustering costs were satisfactory, with results
comparable to the state-of-the-art in small scenes.

Further limitations: Our method is limited by construction to detect
symmetries that share a fixed upward orientation, and does not consider
reflections. In the context of city scanning this is acceptable since common
architectural building blocks meet this requirement. However, this might
be an issue for other data sets, such as large scale data from medical or
cellular imaging in biology. The main challenge for obtaining full rotational
invariance is reformulating the descriptor for full coordinate frame invariance.
Another limitation of our method is that it depends on the existence of line
features. Especially small scale details often tend to produce insufficient line
features which results in undetected symmetries. For example, in Figure 4.6,
top-right image, the decrease of sampling density removed too many line
features for successful detection.

25

5 Conclusions and Future
Work

We presented a new symmetry detection method designed for large-scale
point cloud data. The key idea is to design a feature space in which nearby
points have symmetric geometry with high likelihood and then perform clus-
tering in that space, which only involves local comparisons such that the
method is able to scale to large data sets. We have introduced a new de-
scriptor for 3D point clouds that is optimized for low dimensionality and fast
computation. Furthermore, we have designed a very fast approximate ge-
ometry matching scheme that is optimized for architectural objects and two
orders of magnitude faster than previous line-feature alignment, and thereby
four orders of magnitude faster than plain pairwise ICP of the original data
points. In combination, we obtain a symmetry detection system that can
handle very large point sets on a single PC. We have demonstrated symme-
try detection in scenes up to 490GB of raw input data, which is about two
orders of magnitude larger than the results of previous work.

In future work, we would like to examine scalability to even larger data
sets, beyond several TB in size. This would require a distributed implementa-
tion on a cluster, and a CUDA implementation could help in further improv-
ing the absolute throughput. Existing distributed algorithms for out-of-core
clustering of image data as described in [27] could serve as an inspiration for
a generalization in this direction. In addition to that, as discussed above,
it would also be interesting to find a compact encoding of actual matching
geometry, and remove the limitations of only matching feature points.

26

Bibliography

[1] A. Adams, N. Gelfand, and K. Pulli. Viewfinder alignment. Computer
Graphics Forum, 27(2):597–606, 2008.

[2] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. Building
rome in a day. In International Conference on Computer Vision, 2009.

[3] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. Communications of the ACM,
51(1):117–122, 2008.

[4] D. Anguelov, P. Srinivasan, H.-C. Pang, D. Koller, S. Thrun, and
J. Davis. The correlated correspondence algorithm for unsupervised
registration of nonrigid surfaces. In NIPS, 2004.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An
optimal algorithm for approximate nearest neighbor searching. Journal
of the ACM, 45:891–923, 1998.

[6] A. Berner, M. Bokeloh, M. Wand, A. Schilling, and H.-P. Seidel. A
graph-based approach to symmetry detection. In Proc. Symp. Point-
Based Graphics 2008, 2008.

[7] A. Berner, M. Wand, N. Mitra, D. Mewes, and H.-P. Seidel. Shape
analysis with subspace symmetries. 30(2), April 2011.

[8] M. Bokeloh, A. Berner, M. Wand, H.-P. Seidel, and A. Schilling. Sym-
metry detection using line features. Computer Graphics Forum, 28(2),
2009.

[9] M. Bokeloh, M. Wand, V. Koltun, and H.-P. Seidel. Pattern-aware
shape deformation using sliding dockers. ACM Transactions on Graphics
(Proc. Siggraph Asia 2011), 30(5):to appear., 2011.

27

[10] M. Bokeloh, M. Wand, and H.-P. Seidel. A connection between par-
tial symmetry and inverse procedural modeling. ACM Trans. Graph.,
29:104:1–104:10, July 2010.

[11] C. Brenner. Hannover city scan database. http://www.ikg.uni-
hannover.de/index.php?id=413, 2007.

[12] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Efficient compu-
tation of isometry-invariant distances between surfaces. SIAM J. Sci.
Comput., 28(5):1812–1836, 2006.

[13] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In International Conference on Computer Vision & Pattern
Recognition, volume 2, pages 886–893, June 2005.

[14] S. Dasgupta and A. Gupta. An elementary proof of a theorem of john-
son and lindenstrauss. Random Structures and Algorithms, 22(1):60–65,
2003.

[15] J.-M. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu,
Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and M. Pollefeys. Building
rome on a cloudless day. In European Conference on Computer Vision,
2010.

[16] W. T. Freeman and M. Roth. Orientation histograms for hand ges-
ture recognition. In Intl. Workshop on Automatic Face and Gesture-
Recognition, pages 296–301. IEEE Computer Society, 1995.

[17] R. Gal and D. Cohen-Or. Salient geometric features for partial shape
matching and similarity. ACM Trans. Graph., 25(1):130–150, 2006.

[18] R. Gal, A. Shamir, T. Hassner, M. Pauly, and D. Cohen-Or. Surface
reconstruction using local shape priors. In Proc. Symp. Geometry Pro-
cessing, 2007.

[19] R. Gal, O. Sorkine, N. Mitra, and D. Cohen-Or. iwires: An analyze-
and-edit approach to shape manipulation. ACM Trans. Graph., 28(3),
2009.

[20] N. Gelfand and L. Guibas. Shape segmentation using local slippage
analysis. In Proc. Symp. Geometry Processing, 2004.

[21] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global
registration. In Proc. Symp. Geometry Processing, pages 197–206, 2005.

28

[22] J. Goldstein, J. C. Platt, and C. J. C. Burges. Redundant bit vectors for
quickly searching high-dimensional regions. Deterministic and Statistical
Methods in Machine Learning, 3635:137–158, 2005.

[23] A. E. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 21:433–449, 1999.

[24] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and
S. Rusinkiewicz. A reflective symmetry descriptor for 3d models. Algo-
rithmica, 38(1):201–225, 2003.

[25] J. Lin, D. Cohen-Or, H. R. Zhang, C. Liang, A. Sharf, O. Deussen,
and B. Chen. Structure-preserving retargeting of irregular 3d architec-
ture. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia
2011), 30(6), dec 2011.

[26] Y. Lipman, X. Chen, I. Daubechies, and T. Funkhouser. Symmetry fac-
tored embedding and distance. ACM Transactions on Graphics (SIG-
GRAPH 2010), July 2010.

[27] T. Liu, C. Rosenberg, and H. A. Rowley. Clustering billions of images
with large scale nearest neighbor search. In Proceedings of the Eighth
IEEE Workshop on Applications of Computer Vision, WACV ’07, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[28] Y. Liu, R. Collins, and Y. Tsin. A computational model for periodic
pattern perception based on frieze and wallpaper groups. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(1):354–371,
March 2004.

[29] D. Lowe. Distinctive image features from scale-invariant keypoints. In
Int. J. Computer Vision, volume 20, pages 91–110, 2003.

[30] G. Loy and J. Eklundh. Detecting symmetry and symmetric constella-
tions of features. In ECCV, pages 508–521, 2006.

[31] C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens, and D. Van-
dermeulen. Feature detection on 3d face surfaces for pose normalisa-
tion and recognition. In Biometrics: Theory Applications and Systems
(BTAS), 2010.

[32] A. Martinet, C. Soler, N. Holzschuch, and F. Sillion. Accurate detection
of symmetries in 3d shapes. ACM Trans. on Graphics, 25(2):439 – 464,
2006.

29

[33] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-
scriptors. IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, 27(10):1615–1630, 2005.

[34] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas. Registration of
point cloud data from a geometric optimization perspective. In Symp.
Geometry Processing, 2004.

[35] N. J. Mitra, L. Guibas, and M. Pauly. Symmetrization. In ACM Trans-
actions on Graphics, volume 26, 2007.

[36] N. J. Mitra, L. J. Guibas, and M. Pauly. Partial and approximate
symmetry detection for 3d geometry. ACM Trans. Graph., 25(3):560–
568, 2006.

[37] N. J. Mitra and M. Pauly. Symmetry for architectural design. In Ad-
vances in Architectural Geometry, pages 13–16, 2008.

[38] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symmetry in 3d
geometry: Extraction and applications. EUROGRAPHICS State-of-
the-art Report (STAR), 2012.

[39] N. J. Mitra, Y.-L. Yang, D.-M. Yan, W. Li, and M. Agrawala. Illustrat-
ing how mechanical assemblies work. ACM Transactions on Graphics,
29(3), 2010.

[40] Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley lines on meshes
via implicit surface fitting. In SIGGRAPH, pages 609–612, 2004.

[41] M. Ovsjanikov, J. Sun, and L. Guibas. Global intrinsic symmetries of
shapes. In Eurographics Symposium on Geometry Processing (SGP),
2008.

[42] M. Park, R. Collins, and Y. Liu. Deformed lattice discovery via efficient
mean-shift belief propagation. ECCV 2008, pages 474–485, 2008.

[43] M. Parky, S. Leey, P.-C. Cheny, S. Kashyap, A. A. Butty, and Y. Liu.
Performance evaluation of state-of-the-art discrete symmetry detection
algorithms. Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on, 0:1–8, 2008.

[44] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on
point-sampled models. In Proc. Eurographics, 2003.

30

[45] M. Pauly, N. Mitra, J. Giesen, M. Gross, and L. J. Guibas. Example-
based 3d scan completion. In Proc. Symp. Geometry Processing, 2005.

[46] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. Guibas. Discov-
ering structural regularity in 3D geometry. ACM Trans. Graph., 27(3),
2008.

[47] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and
T. Funkhouser. A planar-reflective symmetry transform for 3D shapes.
ACM Transactions on Graphics (Proc. SIGGRAPH), 25(3), July 2006.

[48] D. Raviv, A. Bronstein, M. Bronstein, and R. Kimmel. Symmetries
of non-rigid shapes. Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1–7, Oct. 2007.

[49] R. T. C. Seungkyu Lee and Y. Liu. Rotation symmetry group detection
via frequency analysis of frieze-expansions. In Computer Vision and
Pattern Recognition (CVPR), June 2008.

[50] P. Simari, E. Kalogerakis, and K. Singh. Folding meshes: hierarchical
mesh segmentation based on planar symmetry. In SGP ’06: Proceedings
of the fourth Eurographics symposium on Geometry processing, pages
111–119, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics As-
sociation.

[51] M. Sunkel, S. Jansen, M. Wand, E. Eisemann, and H.-P. Seidel. Learning
line features in 3d geometry. 30(2), April 2011.

[52] S. Thrun and B. Wegbreit. Shape from symmetry. In ICCV ’05: Proceed-
ings of the Tenth IEEE International Conference on Computer Vision,
pages 1824–1831, Washington, DC, USA, 2005. IEEE Computer Society.

[53] M. Wand, A. Berner, M. Bokeloh, P. Jenke, A. Fleck, M. Hoffmann,
B. Maier, D. Staneker, A. Schilling, and H.-P. Seidel. Special section:
Point-based graphics: Processing and interactive editing of huge point
clouds from 3d scanners. Comput. Graph., 32:204–220, April 2008.

[54] Y. Wang, K. Xu, J. Li, H. Zhang, A. Shamir, L. Liu, Z. Cheng, and
Y. Xiong. Symmetry hierarchy of man-made objects. In Proc. Euro-
graphics, 2011.

[55] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and
A. Tagliasacchi. Deformation-driven shape correspondence. Comput.
Graph. Forum, 27(5):1431–1439, 2008.

31

[56] Q. Zheng, A. Sharf, G. Wan, Y. Li, N. J. Mitra, D. Cohen-Or, and
B. Chen. Non-local scan consolidation for 3d urban scenes. ACM Trans-
actions on Graphics, 29(3), 2010.

[57] Y. Zheng, H. Fu, D. Cohen-Or, O. K.-C. Au, and C.-L. Tai. Component-
wise controllers for structure-preserving shape manipulation. In Proc.
Eurographics, 2011.

32

Below you find a list of the most recent research reports of the Max-Planck-Institut für Informatik. Most
of them are accessible via WWW using the URL http://www.mpi-inf.mpg.de/reports. Paper copies
(which are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address
below.

Max-Planck-Institut für Informatik
– Library and Publications –
Campus E 1 4

D-66123 Saarbrücken

E-mail: library@mpi-inf.mpg.de

MPI-I-2012-RG1-001 M. Suda, C. Weidenbach Labelled superposition for PLTL

MPI-I-2011-5-002 B. Taneva, M. Kacimi, G. Weikum Finding images of rare and ambiguous entities

MPI-I-2011-5-001 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Temporal index sharding for space-time efficiency in
archive search

MPI-I-2011-4-005 A. Berner, O. Burghard, M. Wand,
N.J. Mitra, R. Klein, H. Seidel

A morphable part model for shape manipulation

MPI-I-2011-4-001 M. Granados, J. Tompkin, K. In Kim,
O. Grau, J. Kautz, C. Theobalt

How not to be seen inpainting dynamic objects in
crowded scenes

MPI-I-2010-RG1-001 M. Suda, C. Weidenbach,
P. Wischnewski

On the saturation of YAGO

MPI-I-2010-5-008 S. Elbassuoni, M. Ramanath,
G. Weikum

Query relaxation for entity-relationship search

MPI-I-2010-5-007 J. Hoffart, F.M. Suchanek,
K. Berberich, G. Weikum

YAGO2: a spatially and temporally enhanced
knowledge base from Wikipedia

MPI-I-2010-5-006 A. Broschart, R. Schenkel Real-time text queries with tunable term pair indexes

MPI-I-2010-5-005 S. Seufert, S. Bedathur, J. Mestre,
G. Weikum

Bonsai: Growing Interesting Small Trees

MPI-I-2010-5-004 N. Preda, F. Suchanek, W. Yuan,
G. Weikum

Query evaluation with asymmetric web services

MPI-I-2010-5-003 A. Anand, S. Bedathur, K. Berberich,
R. Schenkel

Efficient temporal keyword queries over versioned text

MPI-I-2010-5-002 M. Theobald, M. Sozio, F. Suchanek,
N. Nakashole

URDF: Efficient Reasoning in Uncertain RDF
Knowledge Bases with Soft and Hard Rules

MPI-I-2010-5-001 K. Berberich, S. Bedathur, O. Alonso,
G. Weikum

A language modeling approach for temporal
information needs

MPI-I-2010-1-001 C. Huang, T. Kavitha Maximum cfardinality popular matchings in strict
two-sided preference lists

MPI-I-2009-RG1-005 M. Horbach, C. Weidenbach Superposition for fixed domains

MPI-I-2009-RG1-004 M. Horbach, C. Weidenbach Decidability results for saturation-based model building

MPI-I-2009-RG1-002 P. Wischnewski, C. Weidenbach Contextual rewriting

MPI-I-2009-RG1-001 M. Horbach, C. Weidenbach Deciding the inductive validity of ∀∃∗ queries

MPI-I-2009-5-007 G. Kasneci, G. Weikum, S. Elbassuoni MING: Mining Informative Entity-Relationship
Subgraphs

MPI-I-2009-5-006 S. Bedathur, K. Berberich, J. Dittrich,
N. Mamoulis, G. Weikum

Scalable phrase mining for ad-hoc text analytics

MPI-I-2009-5-005 G. de Melo, G. Weikum Towards a Universal Wordnet by learning from
combined evidenc

MPI-I-2009-5-004 N. Preda, F.M. Suchanek, G. Kasneci,
T. Neumann, G. Weikum

Coupling knowledge bases and web services for active
knowledge

MPI-I-2009-5-003 T. Neumann, G. Weikum The RDF-3X engine for scalable management of RDF
data

MPI-I-2009-5-002 M. Ramanath, K.S. Kumar, G. Ifrim Generating concise and readable summaries of XML
documents

MPI-I-2009-4-006 C. Stoll Optical reconstruction of detailed animatable human
body models

MPI-I-2009-4-005 A. Berner, M. Bokeloh, M. Wand,
A. Schilling, H. Seidel

Generalized intrinsic symmetry detection

MPI-I-2009-4-004 V. Havran, J. Zajac, J. Drahokoupil,
H. Seidel

MPI Informatics building model as data for your
research

MPI-I-2009-4-003 M. Fuchs, T. Chen, O. Wang,
R. Raskar, H.P.A. Lensch, H. Seidel

A shaped temporal filter camera

MPI-I-2009-4-002 A. Tevs, M. Wand, I. Ihrke, H. Seidel A Bayesian approach to manifold topology
reconstruction

MPI-I-2009-4-001 M.B. Hullin, B. Ajdin, J. Hanika,
H. Seidel, J. Kautz, H.P.A. Lensch

Acquisition and analysis of bispectral bidirectional
reflectance distribution functions

MPI-I-2008-RG1-001 A. Fietzke, C. Weidenbach Labelled splitting

MPI-I-2008-5-004 F. Suchanek, M. Sozio, G. Weikum SOFI: a self-organizing framework for information
extraction

MPI-I-2008-5-003 G. de Melo, F.M. Suchanek, A. Pease Integrating Yago into the suggested upper merged
ontology

MPI-I-2008-5-002 T. Neumann, G. Moerkotte Single phase construction of optimal DAG-structured
QEPs

MPI-I-2008-5-001 G. Kasneci, M. Ramanath, M. Sozio,
F.M. Suchanek, G. Weikum

STAR: Steiner tree approximation in
relationship-graphs

MPI-I-2008-4-003 T. Schultz, H. Theisel, H. Seidel Crease surfaces: from theory to extraction and
application to diffusion tensor MRI

MPI-I-2008-4-002 D. Wang, A. Belyaev, W. Saleem,
H. Seidel

Estimating complexity of 3D shapes using view
similarity

MPI-I-2008-1-001 D. Ajwani, I. Malinger, U. Meyer,
S. Toledo

Characterizing the performance of Flash memory
storage devices and its impact on algorithm design

MPI-I-2007-RG1-002 T. Hillenbrand, C. Weidenbach Superposition for finite domains

MPI-I-2007-5-003 F.M. Suchanek, G. Kasneci,
G. Weikum

Yago : a large ontology from Wikipedia and WordNet

MPI-I-2007-5-002 K. Berberich, S. Bedathur,
T. Neumann, G. Weikum

A time machine for text search

MPI-I-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: searching and ranking knowledge

MPI-I-2007-4-008 J. Gall, T. Brox, B. Rosenhahn,
H. Seidel

Global stochastic optimization for robust and accurate
human motion capture

MPI-I-2007-4-007 R. Herzog, V. Havran, K. Myszkowski,
H. Seidel

Global illumination using photon ray splatting

MPI-I-2007-4-006 C. Dyken, G. Ziegler, C. Theobalt,
H. Seidel

GPU marching cubes on shader model 3.0 and 4.0

MPI-I-2007-4-005 T. Schultz, J. Weickert, H. Seidel A higher-order structure tensor

MPI-I-2007-4-004 C. Stoll, E. de Aguiar, C. Theobalt,
H. Seidel

A volumetric approach to interactive shape editing

MPI-I-2007-4-003 R. Bargmann, V. Blanz, H. Seidel A nonlinear viseme model for triphone-based speech
synthesis

MPI-I-2007-4-002 T. Langer, H. Seidel Construction of smooth maps with mean value
coordinates

MPI-I-2007-4-001 J. Gall, B. Rosenhahn, H. Seidel Clustered stochastic optimization for object recognition
and pose estimation

MPI-I-2007-2-001 A. Podelski, S. Wagner A method and a tool for automatic veriication of region
stability for hybrid systems

MPI-I-2007-1-003 A. Gidenstam, M. Papatriantafilou LFthreads: a lock-free thread library

MPI-I-2007-1-002 E. Althaus, S. Canzar A Lagrangian relaxation approach for the multiple
sequence alignment problem

MPI-I-2007-1-001 E. Berberich, L. Kettner Linear-time reordering in a sweep-line algorithm for
algebraic curves intersecting in a common point

