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AbstractWe study the problem of optimizing over the set of all combinatorial embed-dings of a given planar graph. Our objective function prefers certain cyclesof G as face cycles in the embedding. The motivation for studying this prob-lem arises in graph drawing, where the chosen embedding has an importantinuence on the aesthetics of the drawing.We characterize the set of all possible embeddings of a given biconnectedplanar graph G by means of a system of linear inequalities with f0; 1g-variables corresponding to the set of those cycles in G which can appearin a combinatorial embedding. This system of linear inequalities can beconstructed recursively using the data structure of SPQR-trees and a newsplitting operation.Our computational results on two benchmark sets of graphs are surprising:The number of variables and constraints seems to grow only linearly with thesize of the graphs although the number of embeddings grows exponentially.For all tested graphs (up to 500 vertices) and linear objective functions, theresulting integer linear programs could be generated within 600 seconds andsolved within two seconds on a Sun Enterprise 10000 using CPLEX.



1 IntroductionA graph is called planar when it admits a drawing into the plane withoutedge-crossings. There are in�nitely many di�erent drawings for every planargraph, but they can be divided into a �nite number of equivalence classes.We call two planar drawings of the same graph equivalent when the sequenceof the edges in clockwise order around each node is the same in both draw-ings. The equivalence classes of planar drawings are called combinatorialembeddings. A combinatorial embedding also de�nes the set of cycles in thegraph that bound faces in a planar drawing.The complexity of embedding planar graphs has been studied by variousauthors in the literature [5, 4, 6]. E.g., Bienstock and Monma have givenpolynomial time algorithms for computing an embedding of a planar graphthat minimizes various distance functions to the outer face [5]. Moreover,they have shown that computing an embedding that minimizes the diameterof the dual graph is NP-hard.In this paper we deal with the following optimization problem concernedwith embeddings: Given a planar graph and a cost function on the cyclesof the graph. Find an embedding � such that the sum of the cost of thecycles that appear as face cycles in � is minimized. When choosing the cost1 for all cycles of length greater or equal to �ve and 0 for all other cycles,the problem is NP-hard [13].Our motivation to study this optimization problem and in particularits integer linear programming formulation arises in graph drawing. Mostalgorithms for drawing planar graphs need not only the graph as input butalso a combinatorial embedding. The aesthetic properties of the drawingoften changes dramatically when a di�erent embedding is chosen.Figure 1 shows two di�erent drawings of the same graph that were gen-erated using the bend minimization algorithm by Tamassia [12]. The algo-rithm used di�erent combinatorial embeddings as input. Drawing 1(a) has13 bends while drawing 1(b) has only 7 bends. It makes sense to look for theembedding that will produce the best drawing. We conjecture that thereare statistical dependencies between the length of the face cycles in the em-bedding and nice drawings. If we are able to solve the stated optimizationproblem e�ciently for practical instances, we will be able to do extensiveexperiments in order to get insights into this. But our original motivationhas been the following.In graph drawing it is often desirable to optimize some cost functionover all possible embeddings in a planar graph. In general these optimiza-tion problems are NP-hard [10]. For example: The number of bends in anorthogonal planar drawing highly depends on the chosen planar embedding.In the planarization method, the number of crossings highly depends onthe chosen embedding when the deleted edges are reinserted into a planardrawing of the rest-graph. Both problems can be formulated as ow prob-1
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(b)Figure 1: The impact of the chosen planar embedding on the drawinglems in the geometric dual graph. A ow between vertices in the geometricdual graph corresponds to a ow between adjacent face cycles in the primalgraph. Once we have characterized the set of all feasible embeddings (viaan integer linear formulation on the variables associated with each cycle),we can use this in an ILP-formulation for the corresponding ow problem.Here, the variables consist of `ow variables' and `embedding variables'.This paper introduces an integer linear program whose set of feasiblesolutions corresponds to the set of all possible combinatorial embeddings ofa given biconnected planar graph. One way of constructing such an integerlinear program is by using the fact that every combinatorial embeddingcorresponds to a 2-fold complete set of circuits (see MacLane [11]). Thevariables in such a program are all simple cycles in the graph; the constraintsguarantee that the chosen subset of all simple cycles is complete and thatno edge of the graph appears in more than two simple cycles of the subset.We have chosen another way of formulating the problem. The advantageof our formulation is that we only introduce variables for those simple cyclesthat form the boundary of a face in at least one combinatorial embeddingof the graph, thus reducing the number of variables tremendously. Fur-thermore, the constraints are derived using the structure of the graph. Weachieve this by constructing the program recursively using a data structurecalled SPQR-tree suggested by Di Battista and Tamassia ([2]). SPQR-treescan be used to code and enumerate all possible combinatorial embeddingsof a biconnected planar graph. Furthermore we introduce a new splittingoperation which enables us to construct the linear description recursively.Our computational results on two benchmark sets of graphs have beenquite surprising. We expected that the size of the linear system will growexponentially with the size of the graph. Surprisingly, we could only observea linear growth. However, the time for generating the system grows sub-2



exponentially; but for practical instances it is still reasonable. For a graphwith 500 vertices and 1019 di�erent combinatorial embeddings the construc-tion of the ILP took about 10 minutes. Very surprising was the fact thatthe solution of the generated ILPs took only up to 2 seconds using CPLEX.Section 2 gives a brief description of the data structure SPQR-tree. InSection 3 we describe the recursive construction of the linear constraintsystem using a new splitting operation. Our computational results are de-scribed in Section 5.2 SPQR-treesIn this section, we give a brief description of the SPQR-tree data structurefor biconnected planar graphs. A connected graph is biconnected, if it hasno cut vertex. A cut vertex of a graph G = (V;E) is a vertex whose removalincreases the number of connected components. A connected graph thathas no cut vertex is called biconnected. A set of two vertices whose removalincreases the number of connected components is called a separation pair; aconnected graph without a separation pair is called triconnected.SPQR-trees have been suggested by Di Battista and Tamassia ([2]).They represent a decomposition of a planar biconnected graph accordingto its split pairs. A split pair is a pair of nodes in the graph that is eitherconnected by an edge or has the property that its removal increases thenumber of connected components. The split components of a split pair p arethe maximal subgraphs of the original graph, for which p is not a split pair.When a split pair p is connected by an edge, one of the split componentsconsists just of this edge together with the adjacent nodes while the otherone is the original graph without the edge.The construction of the SPQR-tree works recursively. At every node v ofthe tree, we split the graph into smaller edge-disjoint subgraphs. We add anedge to each of them to make sure that they are biconnected and continueby computing their SPQR-tree and making the resulting trees the subtreesof the node used for the splitting. Every node of the SPQR-tree has twoassociated graphs:� The skeleton of the node de�ned by a split pair p is a simpli�ed versionof the whole graph where the split-components of p are replaced bysingle edges.� The pertinent graph of a node v is the subgraph of the original graphthat is represented by the subtree rooted at v.The two nodes of the split pair p that de�ne a node v are called thepoles of v. For the recursive decomposition, a new edge between the poles isadded to the pertinent graph of a node which results in a biconnected graphthat may have multiple edges. The SPQR-tree has four di�erent types of3



nodes that are de�ned by the structure and number of the split componentsof its poles va and vb:1. Q-node: The pertinent graph of the node is just the single edge e =fva; vng . The skeleton consists of the two poles that are connected bytwo edges. One of the edges represents the edge e and the other onethe rest of the graph.2. S-node: The pertinent graph of the node has at least one cut vertex (anode whose removal increases the number of connected components).When we have the cut vertices v1, v2 to vk, they then split the pertinentgraph into the components G1, G2 to Gk+1. In the skeleton of thenode, G1 to Gk+1 are replaced by single edges and the edge betweenthe poles is added. The decomposition continues with the subgraphsGi, where the poles are vi and vi+1. Figure 2(a) shows the pertinentgraph of an S-node together with the skeleton.3. P-node: va and vb in the pertinent graph have more than one split-components G1 to Gk. In the skeleton, each Gi is replaced by a singleedge and the edge between the poles is added. The decompositioncontinues with the subgraphs Gi, where the poles are again va andvb. Figure 2(b) shows the pertinent graph of a P-node with 3 splitcomponents and its skeleton.4. R-node: None of the other cases is applicable, so the pertinent graphis biconnected. The poles va and vb are not a split pair of the pertinentgraph. In this case, the decomposition depends on the maximal splitpairs of the pertinent graph with respect to the pair fva; vbg. A splitpair fv1; v2g is maximal with respect to fva; vbg, if for every other splitpair fv01; v02g, there is a split component that includes the nodes v1, v2,va and vb. For each maximal split pair p with respect to fva; vbg,we de�ne a subgraph Gp of the original graph as the union of all thesplit-components of p that do not include va and vb. In the skeleton,each subgraph Gp is replaced by a single edge and the edge betweenthe poles is added. The decomposition proceeds with the subgraphsde�ned by the maximal split pairs (see Fig. 2(c)).The SPQR-tree of a biconnected planar graph G where one edge ismarked (the so-called reference edge) is constructed in the following way:1. Remove the reference edge and consider the end-nodes of it as the polesof the remaining graph G0. Depending on the structure of G0 and thenumber of split components of the poles, choose the type of the newnode v (S, P, R or Q).2. Compute the subgraphs G1 to Gk as de�ned above for the di�erentcases and add an edge between the poles of each of the subgraphs.4
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4 (c)Figure 2: Pertinent graphs and skeletons of the di�erent node types of anSPQR-tree3. Compute the SPQR-trees T1 to Tk for the subgraphs where the addededge is the reference edge and make the root of these trees the sons ofv.When we have completed this recursive construction, we create a new Q-node representing the reference edge of G and make it the root of the wholeSPQR-tree by making the old root a son of the Q-node. This constructionimplies that all leaves of the tree are Q-nodes and all inner nodes are S-, P-,or R-nodes. Figure 3 shows a biconnected planar graph and its SPQR-treewhere the edge f1; 2g was chosen as the reference edge.When we see the SPQR-tree as an unrooted tree, we get the same treeno matter what edge of the graph was marked as the reference edge. Theskeletons of the nodes are also independent of the choice of the referenceedge. Thus, we can de�ne a unique SPQR-tree for each biconnected planargraph. Another important property of these trees is that their size (includingthe skeletons) is linear in the size of the original graph and they can beconstructed in linear time ([2]).As described in [2], SPQR-trees can be used to represent all combina-torial embeddings of a biconnected planar graph. This is done by choosingembeddings for the skeletons of the nodes in the tree. The skeletons of S- and5
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Figure 3: A biconnected planar graph and its SPQR-treeQ-nodes are simple circles, so they have only one embedding. The skeletonsof R-nodes are always triconnected graphs. In most publications, combina-torial embeddings are de�ned in such a way, that only one combinatorialembedding for a triconnected planar graph exists. Our de�nition distin-guishes between two combinatorial embeddings which are mirror-images ofeach other (the order of the edges around each node in clockwise order isreversed in the second drawing). When the skeleton of a P-node has k edges,there are (k � 1)! di�erent embeddings of its skeleton.Every combinatorial embedding of the original graph de�nes a uniquecombinatorial embedding for each skeleton of a node in the SPQR-tree.Conversely, when we de�ne an embedding for each skeleton of a node inthe SPQR-tree, we de�ne a unique embedding for the original graph. Thereason for this fact is that each skeleton is a simpli�ed version of the originalgraph where the split components of some split pair are replaced by singleedges. Thus, if the SPQR-tree of G has r R-nodes and the P-nodes P1 toPk where the skeleton of Pi has Li edges, than the number of combinatorialembeddings of G is exactly 2r kXi=1(Li � 1)! :Because the embeddings of the R- and P-nodes determine the embeddingof the graph, we call these nodes the decision nodes of the SPQR-tree. In[3], the fact that SPQR-trees can be used to enumerate all combinatorial6



embeddings of a biconnected planar graph was used to devise a branch-and-bound algorithm for �nding a planar embedding and an outer face fora graph such that the drawing computed by Tamassia's algorithm has theminimum number of bends among all possible orthogonal drawings of thegraph.3 Recursive construction of the integer linear pro-gram3.1 IntuitionThe SPQR-tree represents the decomposition of a biconnected planar graphwith respect to its triconnected components. All embeddings of the graphcan be enumerated by enumerating all possible embeddings of these compo-nents in respect to the rest of the graph. Our approach uses the fact thateach skeleton of a node in the SPQR-tree represents a simpli�ed versionof the original graph. By computing the integer linear programs (ILP) forthese simple graphs and using a lifting procedure, we can compute an ILPfor the original graph.When we take a closer look at the skeleton of a node in the SPQR-tree,we observe that it can be constructed from the original graph by replacingone or several subgraphs by single edges, which we will later call split edges.We can think of such an edge as representing the set of all the simple pathsin the original graph, that connect the two nodes of the split edge. So everycircle in a skeleton that includes a split edge represents a set of circles inthe original graph that we get by replacing the split edge with the pathsrepresented by it.The variables of our program correspond to directed circles in the graphthat are face cycles in at least one planar embedding. We can guaranteethis, because our recursive construction computes the set of variables forthe original problem using the sets of variables from subproblems for whichthe ILP has already been computed. So we construct circles in the originalgraph from circles in the subproblems by replacing split edges with paths inthe graph.3.2 The variables of the integer linear programThe skeletons of P-nodes are multi-graphs, so they have multiple edges be-tween the same pair of nodes. Because we want to talk about directedcircles, we can be much more precise when we are dealing with bidirectedgraphs. A directed graph is called bidirected if there exists a bijective func-tion r : E ! E such that for every edge e = (v; w) with r(e) = eR we haveeR = (w; v) and r(eR) = e We can turn an undirected graph into a bidi-rected graph by replacing each undirected edge by two directed edges that7



go in opposite directions. The undirected graph G that can be transformedin this way to get the bidirected graph G0 is called the underlying graph ofG0. A directed circle in the bidirected graph G = (V;E) is a sequence of edgesof the following form: c = ((v1; v2); (v2; v3); : : : ; (vk; v1)) = (e1; e2; : : : ; ek)with the properties that every node of the graph is contained in at most twoedges of c and if k = 2, then e1 6= e2 holds. We say a planar drawing of abidirected graph is the drawing of the underlying graph, so the embeddingsof a bidirected graph are identical with the embeddings of the underlyinggraph.A face cycle in a combinatorial embedding of a bidirected planar graph isa directed circle of the graph, such that in any planar drawing that realizesthe embedding, the left side of the circle is empty. Note that the numberof face cycles of a planar biconnected graph is m � n + 2 where m is thenumber of edges in the graph and n the number of nodes.Now we are ready to construct an integer linear program (ILP) in whichthe feasible solutions correspond to the combinatorial embeddings of a bi-connected planar bidirected graph. The variables of the program are binaryand they correspond to directed circles in the graph. As objective function,we can choose any linear function on the directed circles of the graph. Withevery circle c we associate a binary variable xc. In a feasible solution of theinteger linear program, a variable xc has value 1 if the associated circle is aface cycle in the represented embedding and 0 otherwise. To keep the num-ber of variables as small as possible, we only introduce variables for thosecircles that are a face cycle in at least one combinatorial embedding of thegraph.3.3 Splitting an SPQR-treeWe use a recursive approach to construct the variables and constraints of theILP. Therefore, we need an operation that constructs a number of smallerproblems out of our original problem such that we can use the variables andconstraints computed for the smaller problems to compute the ILP for theoriginal problem. This is done by splitting the SPQR-tree at some decision-node v. Let e be an adjacent edge of v whose other endpoint is not aQ-node. Deleting e splits the tree into two trees T1 and T2. We add a newedge with a Q-node attached to both trees to replace the deleted edge andthus ensure that T1 and T2 become complete SPQR-trees again. The edgescorresponding to the new Q-nodes are called split edges. For adjacent edgesof v, whose other endpoint is a Q-node, the splitting is not necessary. Doingthis for each edge adjacent to v results in d+ 1 smaller SPQR-trees, calledthe split-trees of v, where d is the number of inner nodes adjacent to v . Thissplitting process is shown in Fig. 4. Since the new trees are SPQR-trees,they represent planar biconnected graphs which are called the split graphs8



of v. We will show how to compute the ILP for the original graph using theILPs computed for the split graphs.
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Figure 4: Splitting an SPQR-tree at an inner nodeAs we have seen, the number and type of decision-nodes in the SPQR-tree of a graph determines the number of combinatorial embeddings. Thesubproblems we generated by splitting the tree either have only one decision-node or at least one fewer than the original problem.3.4 The integer linear program for SPQR-trees with one in-ner nodeWe observe that a graph whose SPQR-tree has only one inner node is isomor-phic to the skeleton of this inner node. So the split-tree of v which includesv, called the center split-tree of v, represents a graph which is isomorphic tothe whole graph.The ILPs for SPQR-trees with only one inner node are de�ned as follows:� S-node: When the only inner node of the SPQR-tree is an S-node, thewhole graph is a simple circle. Thus it has two directed circles andboth are face-cycles in the only combinatorial embedding of the graph.So the ILP consists of two variables, both of which must be equal toone.� R-node: In this case, the whole graph is triconnected. According to ourde�nition of planar embedding, every triconnected graph has exactlytwo embeddings, which are mirror-images of each other. When thegraph has m edges and n nodes, we have k = 2(m � n+ 2) variablesand two feasible solutions. The constraints are given by the convexhull of the points in k-dimensional space, that correspond to the twosolutions.� P-node: The whole graph consists only of two nodes connected by kedges with k � 3. Every directed circle in the graph is a face cycle9



in at least one embedding of the graph, so the number of variables isequal to the number of directed circles in the graph. The number ofcircles is l = 2�k2�because we always get an undirected circle by pairing two edges and,since we are talking about directed circles, we get twice the numberof pairs of edges. As already mentioned, the number of embeddings is(k � 1)!. The constraints are given as the convex hull of the points inl-dimensional space that represent these embeddings.3.5 Construction of the ILP for SPQR-trees with more thanone inner nodeWe de�ne, how to construct the ILP of an SPQR-tree T from the ILPs of thesplit-trees of a decision node v of T . Let G be the graph that corresponds toT and T1; : : : ; Tk the split-trees of v representing the graphs G1 to Gk. Weassume that T1 is the center split-tree of v. Now we consider the directedcircles of G. We can distinguish two types:1. Local circles are circles of G that also appear in one of the graphsG1; : : : ; Gk.2. Global circles of G are not contained in any of the Gi.Every split-tree of v except the center split-tree is a subgraph of theoriginal graph G with one additional edge (the split edge corresponding tothe added Q-node). The graph that corresponds to the center split-tree mayhave more than one split edge. Note that the number of split edges in thisgraph is not necessarily equal to the degree of v, because v may have beenconnected to Q-nodes in the original tree. For every split edge e, we de�ne asubgraph expand(e) of the original graph G, which is represented by e. Thetwo nodes connected by a split edge always form a split pair p of G. Whene belongs to the graph Gi represented by the split-tree Ti, then expand(e)is the union of all the split components of G that share only the nodes of pand no edge with Gi.For every directed circle c in a graph Gi represented by a split-tree, wede�ne the set R(C) of represented circles in the original graph . A circle c0of G is in R(c), when it can be constructed from c by replacing every splitedge e = (v; w) in c by a simple path in expand(e) from v to w.The variables of the ILPs of the split-trees that represent local circleswill also be variables of the ILP of the original graph G. But we will alsohave variables that correspond to global circles of G. A global circle c in Gwill get a variable in the ILP, when the following conditions are met:1. There is a variable xc1 in the ILP of T1 with c 2 R(c1).10



2. For every split-tree Ti with 2 � i � k where c has at least one edge inGi, there is a variable xci in the ILP of Ti such that c 2 R(ci).So far we have de�ned all the variables for the integer linear program ofG. The set C of all constraints of the ILP of T is given byC = Cl [ Cc [ CG :First we de�ne the set Cl which is the set of lifted constraints of T . Each ofthe graphs T1; : : : ; Tk is a simpli�ed versions of the original graph G. Theycan be generated from G by replacing some split components of one or moresplit pairs by single edges. When we have a constraint that is valid for a splitgraph, a weaker version of this constraint is still valid for the original graph.The process of generating these new constraints is called lifting becausewe introduce new variables that cause the constraint to describe a higherdimensional half space or hyper plane. LetlXj=1 ajxcj := Rbe a constraint in a split-tree, where := 2 f�;�;=g and let X be the set ofall variables of T . Then the lifted constraint for the tree T is the following:lXj=1 aj Xc: c2R(cj)\X xc := RWe de�ne Cl as the set of lifted constraints of all the split-trees. The numberof constraints in Cl is the sum of all constraints in all split-trees.The set Cc is the set of choice constraints. For a circle c in Gi, whichincludes a split edge, we have jR(c)j > 1. All the circles in R(c) share eitherat least one directed edge or they pass a split graph of the split node in thesame direction. Therefore, only one of the circles in R(c) can be a face cyclein any combinatorial embedding of G (proof omitted). For each variable xcin a split tree with jR(c)j > 1 we have therefore one constraint that has thefollowing form: Xc02R(c)^xc02X xc0 � 1The set CG consists of only one constraint, called the center graph con-straint. Let F be the number of face cycles in a combinatorial embedding ofG1, CG the set of all global circles c in G and CL the set of all local circlesc in G1 then this constraint is: Xc 2 (Cg[Cl)\C xc = F11



This constraint is valid, because we can produce every drawing D of Gby replacing all split edges in a drawing D1 of G1 with the drawings ofsubgraphs of G. For each face cycle in D1, there will be a face cycle in D,that is either identical to the one in D1 (if it was a local circle) or is a globalcircle. This de�nes the ILP for any biconnected planar graph.4 The main theorem and its proofTheorem 1 Every feasible solution of the generated ILP corresponds to acombinatorial embedding of the given biconnected planar graph G and viceversa: every combinatorial embedding of G corresponds to a feasible solutionfor the generated ILP.Because the proof of the main theorem is quite complex, we have splitit into three lemmas.Lemma 1 Let G be a biconnected planar Graph and let T be its SPQR-Tree.Let � be a decision node in T with degree d, T1; : : : ; Td0 with d0 � d be thesplit trees of � (T1 is the center split tree) and G1; : : : ; Gd0 the associated splitgraphs. Every combinatorial embedding E of G de�nes a unique embeddingfor each Gi. On the other side, if we �x a combinatorial embedding Ei foreach Gi, we have de�ned a unique embedding for G.Proof: First we will show how E de�nes a unique combinatorial embeddingfor Gi with 2 � i � d0. Let e be the split edge in Gi and G0i be the graphwe get by deleting e from Gi and let Z be a drawing that realizes E. Thenwe can construct a planar drawing Z 0i of G0i by deleting all the drawings ofnodes and edges from Z that are not contained in G0i. To get a drawing Ziof Gi, we have to add a drawing of e to Z 0i. We have to prove, that everyplanar drawing we can construct in this way realizes the same embeddingEi. First we show, that it is possible to add a drawing of e without losingplanarity. Let u and v be the two nodes connected by e. Then fu; vg is asplit pair, and removing these nodes from G splits the graph in at least 2components. One of these components is G0i. Since all split components areconnected, there must be a path connecting u and v in each of them whichproves that there is a path p in G connecting u and v that does not use anyedge in G0i. Since Z is a planar drawing, we can get a planar drawing of Giby drawing e as the same curve that represented p in Z.To prove that every drawing of Gi that is constructed in this way realizesthe same embeddingEi, we �rst observe that the embeddingE0i ofG0i realizedby Z 0i is unique. What is left to show is that there are not two di�erent facecycles c1 and c2 in E0i that we can split by inserting the drawing of e. Sowe have to show that there is only one face in Z 0i where we can insert e. If12



there where two such face cycles c1 and c2, then both must go through uand v. But then fu; vg is a split pair of G0i which is not possible because ofthe way SPQR-trees are constructed. This proves that every embedding Eof G de�nes a unique embedding Ei for each Gi with 2 � i � d0.To prove that E de�nes a unique embedding E1 for G1, we take anydrawing Z of G that realizes E and replace the drawing of every subgraphG0i of G that is represented by a split edge fu; vg in G1 by a single edge thatis drawn as the same curve as some path connecting u and v in G0i. Thuswe get a planar drawing Z1 and since the sequence of the edges around eachnode is �xed using this construction, the embedding E1 realized by Z1 isunique. Figure 5 shows how to construct drawings for the split graphs froma drawing of G.
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Figure 5: Deriving drawings for the split graphs from a drawing of GTo prove the opposite direction, we have to show how combinatorialembeddings for each Gi de�ne a unique combinatorial embedding for G. Todo this, we show how to construct a drawing of G from drawings of the Githat realize the embeddings Ei and that this drawing always realizes thesame embedding E. For each Gi with 2 � i � d, we generate a drawing thatrealizes Ei and has the following properties:1. The split edge of Gi is on the outer face.2. Let the two nodes ui and vi be connected by the split edge of Gi. Thenthere is an ellipse Li with the property that the drawings of ui andvi form the vertices on the major axis of Li and all other edges andnodes of the drawing are inside Li.It is always possible to generate a drawing with these properties thatrealizes any combinatorial embedding. Let Z2; : : : ; Zd be drawings of the Gi13



vuFigure 6: Drawing a split graph into an ellipsethat have the two properties stated above and Z 0i be the drawing we get bydeleting the split edge from Zi. Then each Z 0i is a drawing of a subgraph ofG that is represented by a single edge (a split edge) in G1. Consider nowany drawing Z1 of G1 that realizes E1 and where every edge is drawn as astraight line. We know that such a drawing exists ([9]). We get a planardrawing of G by replacing each drawing of a split edge in Z1 by the drawingZ 0i of the associated split graph where we have removed the drawing of thesplit edge. Each drawing Z we generate in this way using the embeddingsE1; : : : ; Ed realizes the same embedding E because the sequence of the edgesaround each node in clockwise order is �xed by the construction method.
�To proof the main theorem, we �rst have to de�ne the incidence vectorof a combinatorial embedding. Let C be the set of all directed circles in thegraph that are a face cycle in at least one combinatorial embedding of thegraph. Then the incidence vector of an embedding E is given as a vector inf0; 1gjCj where the components representing the face cycles in C have valueone and all other components have value zero.Lemma 2 Let E = fc1; c2; : : : ; ckg be a combinatorial embedding of thebiconnected planar graph G. Then the incidence vector �E satis�es all con-straints of the ILP we de�ned.Proof: We proof the lemma using induction over the number n of de-cision nodes in the SPQR-Tree T of G. The value �(c) is the value of thecomponent in � associated with the circle c. We don't consider the casen = 0, because G is a simple circle in this case and has only one combina-torial embedding.1. n = 1:No splitting of the SPQR-tree is necessary, the ILP is de�ned directlyby T . The variables are de�ned as the set of all directed circles thatare face cycles in at least one combinatorial embedding of G. Since theconstraints of the ILP are de�ned as the convex hull of all incidencevectors of combinatorial embeddings of G, �e satis�es all constraintsof the ILP. 14



2. n > 1:Let � be the node in T we used in the construction of the ILP tosplit T into the split trees T1; : : : ; Td. We split E into two subsets EGand EL such that EG holds all global circles of E and EL the localcircles of E in respect to �. Then every circle c in EL is containedin some split graph Gi with 1 � i � d. As we have seen in theprevious lemma, the combinatorial embedding E de�nes uniquely acombinatorial embedding Ei for each Gi. Every local circle in E, thatis contained in Gi is also contained in Ei. Apart from local circles thatare contained in E, every Ei with 2 � i � d contains two more circles,that are not contained in E. This is true because every Gi has exactlyone edge that is not contained in G, the split edge of Gi. In everyembedding, each edge is contained in exactly two circles, so there aretwo circles in Ei that are not circles in E.Consider now the choice constraints of the ILP for all circles c in asplit graph of � that include at least one split edge.Xc02R(c)^c02C xc0 � 1As we have already pointed out in the de�nition of the choice con-straints, any two circles in Rc pass at least one edge of G in the samedirection or pass at least one split graph of � in the same direction. Sothey can't be face cycles in the same combinatorial embedding. SinceE is a combinatorial embedding, �E must satisfy all choice constraintsof the ILP.We use this fact and the induction basis to prove that �E satis�es alllifted constraints. Because our claim holds for n � 1, we know thatthe incidence vector �Ei satis�es all constraints of the ILP for Gi with1 � i � d. The lifted constraints of the ILP are constructed out of theconstraints for the Gi by replacing each variable xc in the constraintby the sum of the variables for G, that are associated with circles inR(c). The right side of the constraint and the relation sign remainunchanged. So we have to show, that the left side of the constrainthas the same value when we apply it to �Ei as when we lift it andapply it to �E. Because the choice constraints hold, this is equivalentwith the claim�i(c0) = Xc2C\R(c0)�(c) 8 variables xc0 of the ILP of Gi.If c is a local circle, this is obvious, because we have R(c0) = c0 andc0 is a face cycle in E if and only if it is a face cycle in Ei. Now weassume that c is a global circle. Every split edge in Gi represents a15



subgraph of G, and each face cycle of Ei was generated from a facecycle of E by collapsing some path into a single edge. So when xc iszero, there can be no face cycle in E that is in the set R(c) and whenxc is one, there must be exactly one circle in R(c) that is a face cycleof E. So the left side of the constraint has the same value when welift it and apply it to �E and the constraint is satis�ed.When Cg is the set of global circles in G, Cl the set of local circles inG1 and F the number of face cycles in any combinatorial embeddingof G1, then the center graph constraint has the following form:Xc 2 (Cg[Cl)\C xc = FThe graph G1 is the skeleton of the split node. It is constructed byreplacing all the split graphs in G by single edges. So if c is a facecycle of E and belongs to Cl, then it is also a face cycle of E1. And ifc is a global face cycle of E, the circle c0 in G1 that was generated byreplacing some paths of c by single edge is a face cycle in E1. On theother side, every face cycle of E1 is also a face cycle of E, if it containsno split edge and for every face cycle c of E1 that contains at least onesplit edge, there is a global face cycle in E that can be constructedfrom c by replacing the split edges with paths from the correspondingsplit graphs. And since jE1j = F , the equality is satis�ed by �E.
�Lemma 3 If G is a biconnected planar graph and � 2 f0; 1gjCj a vectorthat satis�es all constraints of the ILP, than � is the incidence vector of acombinatorial embedding E of G.Proof: Again, we use induction over the number n of decision nodes inthe SPQR-tree T of G and we disregard the case n = 0 because G is only asimple circle in this case.1. n = 1:T has only one decision node, and the skeleton of this node is isomor-phic with G. The ILP is the convex hull of all incidence vectors ofcombinatorial embeddings and thus every f0; 1g vector that satis�esall constraints is the incidence vector of a combinatorial embedding.2. n > 1:The proof works in two stages: First we construct vectors �i for eachsplit graph out of � and prove that these vectors satisfy the ILPs ofthe Gi, and are therefore incidence vectors of embeddings Ei of the Giby induction basis. In the second stage, we use the Ei to construct anembedding E for G and show that � is the incidence vector of E.16



So �rst we construct the vectors �i. Let c be a circle in some Gi thatis a face cycle in at least one embedding of Gi. If C is the set of circlesin G that are face cycles in at least one embedding, we set:�i(c) = Xc02C\R(c)�(c0)Because the choice constraints are satis�ed, the value of this sum isalways zero or one and so all components in �i will be either zeroor one. To show that �i is the incidence vector of a combinatorialembedding Ei, it is su�cient to prove that �i satis�es all constraintsof the ILP of Gi, because the induction basis guarantees that �i is anincidence vector of an embedding when all constraints are satis�ed.We know that � satis�es all constraints that are lifted from constraintsin the ILP of Gi. Now the right side of the constraints does not changeduring lifting. Consider the left side of an arbitrary constraint liftedfrom the constraints of Gi, when Ci is the set of circles in Gi that areassociated with variables in the ILP of Gi:Xc2Ci(�c � Xc02R(c)\C xc0) (�c 2 R)The left side of the original constraint in the ILP of Gi is:Xc2Ci(�c � xc)We constructed �i such that �i(c) = Pc02C\R(c) �(c0) and thus weknow that all constraints of Gi are satis�ed by �i and that it is theincidence vector of a combinatorial embedding Ei of Gi.We have completed stage 1 of the proof and proceed to stage 2, so wewant to construct an embedding E for G from the Ei and show that �is the incidence vector of E. We construct E as described in lemma 1.So every circle c in Gi for 1 � i � d which does not include a splitedge is a face cycle in E if and only if it is a face cycle in Ei. Considerthe way we have de�ned each �i:�i(c) = Xc02C\R(c)�(c0)Since c does not include a split edge, we have R(c) = fcg. And so wehave that �(c) = 1 if and only if c 2 E. We have now proven that� and E agree about the local circles. It remains to show that theyagree about the global circles. 17



First we show that the number of components with value 1 in � thatare associated with global circles is equal to the number of global circlesin the set E. This is guaranteed by the center graph constraint:Xc 2 (Cg[Cl)\C xc = FHere Cg is the set of all global circles and Cl the set of all local circlesin G1. Since � and E agree on all local circles, the number of globalcircles whose associated component in � is 1 is F � jCl \ Ej which isequal to the number of global circles in E. We will now show that forall cg 2 Cg \E we have �(cg) = 1 and thus prove the lemma.Let cg be any circle in Cg \ E. Then there is exactly one circle c1gin the center split graph G1 with cg 2 R(c1g ). We have c1g 2 E1which follows from lemma 1. From that we can conclude that thereis a circle c0g in G with c0g 2 R(c1g ) such that �(c0g) = 1 (from theconstruction of �1 and E1). So we have to show that c0g = cg. Sincefc0g; cgg � R(c1g ), both circles are represented by the same circle c1gin G1. Consider now this circle c1g . It contains split edges and mightalso contain edges from G. When A1 is the set of edges in E1g that arealso edges in G and A2 the set of split edges in c1g , then the edges inA1 must be present in cg and c0g. So both circles can only di�er in thepaths they take through the split graphs having the split edges fromA2. Let e be an edge in A2 and Ge be the split graph associated withthis split edge. When p is the path of cg that runs through Ge, thenthere is a circle cl in Ee that consists of p and the split edge of Ge. Thisfollows from the construction of E. If c0g took a path p0 di�erent fromp through Ge, we would have another circle in Ee passing through thesplit edge in the same direction as cl. But in any embedding, there isonly one circle that passes an edge in a certain direction. Therefor, pand p0 must be the same.Since we can apply this argumentation to all split edges in the circlec1g , we can show that cg and c0g are in fact the same circle. Thus wehave �(cg) = 1 and it follows that � is indeed the incidence vector ofthe combinatorial embedding E.
�5 Computational resultsIn our computational experiments, we tried to get statistical data about thesize of the integer linear program and the times needed to compute it. Ourimplementation works for biconnected planar graphs with maximal degreefour, since we are interested in improving orthogonal planar drawings. First18



we used a benchmark set of 11491 practical graphs collected by the grouparound G. Di Battista in Rome ([7]). We have transformed these graphsinto biconnected planar graphs with maximal degree four using planariza-tion, planar augmentation, and the ring approach described in [8]. This isa commonly used approach for getting orthogonal drawings with a smallnumber of bends [1].For each of the resulting graphs, we constructed the integer linear pro-gram. As objective function, we minimized the number of face cycles withmore than �ve edges. This problem is NP-complete ([13]). Figure 7 showsthat the time for generating the ILP grows sub-exponentially with the num-ber of nodes of the graph. We were able to generate every ILP in less than40 seconds. Figure 8 shows the number of combinatorial embeddings of eachof the graphs. We noticed that only very few graphs of the test-suit had alarge number of embeddings. The maximum number of embeddings for anygraph was 4608.The Figs. 9 and 10 show that the number of constraints and variablesin the ILP grow linearly with the size of the graphs. The maximum numberof constraints was 428, while the maximum number of variables was 166.Figure 11 shows the time in seconds needed by the mipopt-solver of CPLEXto solve the ILPs to optimality. There was no ILP in our test-suit that tookmore than 0.06 seconds to solve.In order to study the limits of our method, we started a similar test-runon extremely di�cult graphs. We used the random graph generator devel-oped by the group around G. Di Battista in Rome that creates biconnectedplanar graphs with maximal degree four with an extremely high number ofembeddings (see [3] for detailed information). We generated graphs withthe number of nodes ranging from 25 to 500, proceeding in steps of 25 nodesand generating 10 random graphs for each number of nodes. For each of the200 graphs, we again generated the ILP and measured the time needed todo this. The times are shown in Fig. 12. They grow sub-exponentially andthe maximum time needed was 10 minutes on a Sun Enterprise 10000.The number of embeddings of each graph is shown in Fig. 13. Theygrow exponentially with the number of nodes, so we used a logarithmicscale for the y-axis. There was one graph with more than 1019 combinatorialembeddings. These numbers were computed by counting the number of R-and P-nodes in the SPQR-tree of each graph. Each R-node doubles thenumber of combinatorial embeddings while each P-node multiplies it by 2or 6 depending on the number of edges in its skeleton. Figures 14 and 15show the number of constraints and variables in each ILP. Both of themgrow linearly with the number of nodes. The largest ILP has about 2500constraints and 1000 variables.To test how di�cult it is to optimize over the ILPs, we have chosen 10random objective functions for each ILP with integer coe�cients between 0and 100 and computed a maximal integer solution using the mixed integer19



solver of CPLEX. Figure 16 shows the maximum time needed for any ofthe 10 objective functions. The computation time always stayed below 2seconds.Our future goal will be to extend our formulation such that each solu-tion will not only represent a combinatorial embedding but an orthogonaldrawing of the graph. This will give us a chance to �nd drawings with theminimum number of bends or drawings with fewer crossings. Of course, thiswill make the solution of the ILP much more di�cult.
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