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Abstract

Initially used in digital audio players, digital cameras, mobile phones, and
USB memory sticks, flash memory may become the dominant form of end-
user storage in mobile computing, either completely replacing the magnetic
hard disks or being an additional secondary storage. We study the design
of algorithms and data structures that can exploit the flash memory devices
better. For this, we characterize the performance of NAND flash based stor-
age devices, including many solid state disks. We show that these devices
have better random read performance than hard disks, but much worse ran-
dom write performance. We also analyze the effect of misalignments, aging
and past 1/O patterns etc. on the performance obtained on these devices.
We show that despite the similarities between flash memory and RAM (fast
random reads) and between flash disk and hard disk (both are block based
devices), the algorithms designed in the RAM model or the external mem-
ory model do not realize the full potential of the flash memory devices. We
later give some broad guidelines for designing algorithms which can exploit
the comparative advantages of both a flash memory device and a hard disk,
when used together.
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1 Introduction

Flash memory is a form of non-volatile computer memory that can be elec-
trically erased and reprogrammed. Flash memory devices are lighter, more
shock resistant, consume less power and hence are particularly suited for
mobile computing. Initially used in digital audio players, digital cameras,
mobile phones, and USB memory sticks, flash memory may become the
dominant form of end-user storage in mobile computing: Some producers
of notebook computers have already launched models (Apple MacBook Air,
Sony Vaio UX90, Samsung Q1-SSD and Q30-SSD) that completely aban-
don traditional hard disks in favor of flash memory (also called solid state
disks). Market research company In-Stat predicted in July 2006 that 50% of
all mobile computers would use flash (instead of hard disks) by 2013.
Frequently, the storage devices (be it hard disks or flash) are not only used
to store data but also to actually compute on it if the problem at hand does
not completely fit into main memory (RAM); this happens on both very small
devices (like PDAs used for online route planning) and high-performance
compute servers (for example when dealing with huge graphs like the web).
Thus, it is important to understand the characteristics of the underlying
storage devices in order to predict the real running time of algorithms, even
if these devices are used as an external memory. Traditionally, algorithm
designers have been assuming a uniform cost access to any location in the
storage devices. Unfortunately, real architectures are becoming more and
more sophisticated, and will become even more so with the advent of flash
devices. In case of hard disks, the access cost depends on the current position
of the disk-head and the location that needs to be read/written. This has
been well researched; and there are good computation models such as the
external memory model [1] or the cache-oblivious model [5] that can help in
realistic analysis of algorithms that run on hard disks. This report attempts
to characterize the performance (read/writes; sequential/random) of flash
memory devices; to see the effects of random writes, misalignment, and aging
etc. on the access cost and its implications on the real running time of basic



algorithms.

External memory model.

The external memory model (or the I/O model) proposed by Aggarwal and
Vitter [1] is one of the most commonly used model when analyzing the per-
formance of algorithms that do not fit in the main memory and have to use
the hard disk. It assumes a single central processing unit and two levels of
memory hierarchy. The internal memory is fast, but has a limited size of M
words. In addition, we have an external memory which can only be accessed
using 1/Os that move B contiguous words between internal and external
memory. At any particular time stamp, the computation can only use the
data already present in the internal memory. The measure of performance
of an algorithm is the number of 1/Os it performs.

State of the art for flash memories.

Recently, there has been growing interest in using flash memories to improve
the performance of computer systems [3, 8, 10]. This trend includes the
experimental use of flash memories in database systems [8, 10], in Windows
Vista’s use of USB flash memories as a cache (a feature called ReadyBoost), in
the use of flash memory caches in hard disks (e.g., Seagate’s Momentus 5400
PSD hybrid drives, which include 256 MB on the drive’s controller), and in
proposals to integrate flash memories into motherboards or 1/0 busses (e.g.,
Intel’s Turbo Memory technology).

Most previous algorithmic work on flash memory concerns operating sys-
tem algorithms and data structures that were designed to efficiently deal
with flash memory cells wearing out, e.g., block-mapping techniques and
flash-specific file systems. A comprehensive overview on these topics was
recently published by Gal and Toledo [6]. The development of application
algorithms tuned to flash memory is in its absolute infancy. We are only
aware of very few published results beyond file systems and wear leveling:

Wu et al. [11, 12] proposed flash-aware implementations of B-trees and
R-trees without file system support by explicitly handling block-mapping
within the application data structures.

Goldberg and Werneck [7] considered point-to-point shortest-path com-
putations on pocket PCs where preprocessed input graphs (road networks)
are stored on flash-memory; due to space-efficient internal-memory data-
structures and locality in the inputs, data manipulation remains restricted
to internal memory, thus avoiding difficulties with unstructured flash memory
write accesses.



Goals.

Our first goal is to see how standard algorithms and data structures for
basic algorithms like scanning, sorting and searching designed in the RAM
model or the external memory model perform on flash storage devices. An
important question here is whether these algorithms can effectively use the
advantages of the flash devices (such as faster random read accesses) or there
is a need for a fundamentally different model for realizing the full potential
of these devices.

Our next goal is to investigate why these algorithms behave the way they
behave by characterizing the performance of more than 20 different low-end
and high-end flash devices under typical access patterns presented by basic
algorithms. Such a characterization can also be looked upon as a first step
towards obtaining a model for designing and analyzing algorithms and data
structures that can best exploit flash memory. Previous attempts [8, 10]
at characterizing the performance of these devices reported measurements
on a small number of devices (1 and 2, respectively), so it is not yet clear
whether the observed behavior reflects the flash devices, in general. Also,
these papers didn’t study if these devices exhibit any second-order effects
that may be relevant.

Our next goal is to produce a benchmarking tool that would allow its users
to measure and compare the relative performance of flash devices. Such a tool
should not only allow users to estimate the performance of a device under a
given workload in order to find a device with an appropriate cost-effectiveness
for a particular application, but also allow quick measurements of relevant
parameters of a device that can affect the performance of algorithms running
on it.

These goals may seem easy to achieve, but they are not. These devices
employ complex logical-to-physical mapping algorithms and complex mech-
anisms to decide which blocks to erase. The complexity of these mechanisms
and the fact that they are proprietary mean that it is impossible to tell ex-
actly what factors affect the performance of a device. A flash device can be
used by an algorithm designer like a hard disk (under the external memory
or the cache-oblivious model), but its performance may be far more complex.

It is also possible that the flash memory becomes an additional secondary
storage device, rather than replacing the hard disk. Our last, but not least,
goal is to find out how one can exploit the comparative advantages of both
in the design of application algorithms, when they are used together.



Outline.

The rest of the report is organized as follows. In Chapter 2, we show how
the basic algorithms perform on flash memory devices and how appropriate
are the standard computation models in predicting these performances. In
Chapter 3, we present our experimental methodology, and our benchmark-
ing program, which we use to measure and characterize the performance
of many different flash devices. We also show the effect of random writes,
misalignment, controllers and aging on the performance of these devices. In
Chapter 4, we provide an algorithm design framework for the case when flash
devices are used together with a hard disk.



2 Implications of flash devices
for algorithm design

In this section, we look at how the RAM model and external memory model
algorithms behave when running on flash memory devices. In the process,
we try to ascertain whether the analysis of algorithms in either of the two
models also carry over to the performance of these algorithms obtained on
flash devices.

In order to compare the flash memory with DRAM memory (used as
main memory), we ran a basic RAM model list ranking algorithm on two
architectures - one with 8 GB RAM memory and the other with 2 GB RAM,
but 32 GB flash memory. The list ranking problem is that given a list with
individual elements randomly stored on disk, find the distance of each element
from the head of the list. The sequential RAM model algorithm consists of
just hoping from one element to its next, and thereby keeping track of the
distances of node from the head of the list. Here, we do not consider the cost
of writing the distance labels of each node.

We stored a 230-element list of long integers (8 Bytes) in a random order,
i.e. the elements were kept in the order of a random permutation generated
beforehand. While ranking such a list took minutes in RAM, it took days
with flash. This is because even though the random reads are faster on flash
disks than the hard disk, they are still much slower than RAM. Thus, we
conclude that RAM model is not useful for predicting the performance (or
even relative performance) of algorithms running on flash memory devices
and that standard RAM model algorithms leave a lot to be desired if they
are to be used on flash devices.

As Table 2.1 shows, the performance of basic algorithms when running on
hard disks and when running on flash disks can be quite different, particularly
when it comes to algorithms involving random read 1/Os such as binary
search on a sorted array. While such algorithms are extremely slow on hard
disks necessitating B-trees and other I1/O-efficient data structures, they are



Algorithm Hard Disk | Flash
Generating a random double and writing it 0.2 us 0.37 us
Scanning (per double) 0.3 us 0.28 ps
External memory Merge-Sort (per double) 1.06 us 1.5 us
Random read 11.3 ms | 0.56 ms
Binary Search 25.5ms | 3.36 ms

Table 2.1: Runtime of basic algorithms when running on Seagate Barracuda
7200.11 hard disk as compared to 32 GB Hama Solid State Disk

acceptably fast on flash devices. On the other hand, algorithms involving
write I/Os such as merge sort (with two read and write passes over the
entire data) run much faster on hard disk than on flash.

It seems that the algorithms that run on flash have to achieve a differ-
ent tradeoff between reads and writes and between sequential and random
accesses than hard disks. Since the cost of accesses don’t drop or rise pro-
portionally over the entire spectrum, the algorithms running on flash devices
need to be qualitatively different from the one on hard disk. In particu-
lar, they should be able to tradeoff write I/Os at the cost of extra read 1/Os.
Standard external memory algorithms that assume same cost for reading and
writing fail to take advantage of fast random reads offered by flash devices.
Thus, there is a need for a fundamentally different model for realistically
predicting the performance of algorithms running on flash devices.



3 Characterization of flash
memory devices

In order to see why the standard algorithms behave as mentioned before, we
characterize more than 20 flash storage devices. This characterization can
also be looked at as a first step towards a model for designing and analyzing
algorithms and data structures running on flash memory.

3.1 Flash memory

Large-capacity flash memory devices use NAND flash chips. All NAND flash
chips have common characteristics, although different chips differ in perfor-
mance and in some minor details. The memory space of the chip is parti-
tioned into blocks called erase blocks. The only way to change a bit from
0 to 1 is to erase the entire unit containing the bit. Each block is further
partitioned into pages, which usually store 2048 bytes of data and 64 bytes of
meta-data (smaller chips have pages containing only 512+16 bytes). Erase
blocks typically contain 32 or 64 pages. Bits are changed from 1 (the erased
state) to 0 by programming (writing) data onto a page. An erased page can
be programmed only a small number of times (one to three) before it must
be erased again. Reading data takes tens of microseconds for the first access
to a page, plus tens of nanoseconds per byte. Writing a page takes hundreds
of microseconds, plus tens of nanoseconds per byte. Erasing a block takes
several milliseconds. Finally, erased blocks wear out; each block can sustain
only a limited number of erasures. The guaranteed numbers of erasures range
from 10,000 to 1,000,000. To extend the life of the chip as much as possible,
erasures should therefore be spread out roughly evenly over the entire chip;
this is called wear leveling.

Because of the inability to overwrite data in a page without first erasing
the entire block containing the page, and because erasures should be spread



out over the chip, flash memory subsystems map logical block addresses (LBA)
to physical addresses in complex ways [6]. This allows them to accept new
data for a given logical address without necessarily erasing an entire block,
and it allows them to avoid early wear even if some logical addresses are
written to more often than others. This mapping is usually a non-trivial
algorithm that uses complex data structures, some of which are stored in
RAM (usually inside the memory device) and some on the flash itself.

The use of a mapping algorithm within LBA flash devices means that
their performance characteristics can be worse and more complex than the
performance of the raw flash chips. In particular, the state of the on-flash
mapping and the volatile state of the mapping algorithm can influence the
performance of reads and writes. Also, the small amount of RAM can cause
the mapping mechanism to perform more physical 1/0 operations than would
be necessary with more RAM.

3.2 Configuration

The tests were performed on many different machines:
e A 1.5GHz Celeron-M with 512M RAM
e A 3.0GHz Pentium 4 with 2GB OF RAM
e A 2.0Ghz Intel dual core T7200 with 2GB OF RAM
e A 2 x Dual-core 2.6 GHz AMD Opteron with 2.5 GB OF RAM

All of these machines were running a 2.6 Linux kernel.

The devices include USB sticks, compact-flash and SD memory cards and
solid state disks (of capacities 16GB and 32GB). They include both high-end
and low-end devices. The USB sticks were connected via a USB 2.0 interface,
memory cards were connected through a USB 2.0 card reader (made by
Hama) or PCMCIA interface, and solid state disks with IDE interface were
installed in the machines using a 2.5 inch to 3.5 inch IDE adapter and a
PATA serial bus.

Our benchmarking tool and methodology.

Standard disk benchmarking tools like zcav fail to measure things that are
important in flash devices (e.g., write speeds, since they are similar to read
speeds on hard disks, or sequential-after-random writes); and commercial
benchmarks tend to focus on end-to-end file-system performance, which does



not characterize the performance of the flash device in a way that it useful
to algorithm designers. Therefore, we decided to implement our own bench-
marking program that is specialized (designed mainly for LBA flash devices),
but highly flexible and can easily measure the performance of a variety of ac-
cess patterns, including random and sequential reads and writes, with given
block sizes and alignments, and with operation counts or time limits. We
provide more details about our benchmarking software and our methodology
for measuring devices in Appendix A.

3.3 Result and Analysis

3.3.1 Performance of steady, aligned access patterns.

Performance Summary (log scale) Performance Summary (log scale)
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Figure 3.1: Performance (in logarithmic scale) of the (a) 1 GB Toshiba Trans-
Memory UsB flash drive and the (b) 1 GB Kingston compact-flash card.

Figure 3.1 shows the performance of two typical devices under the aligned
access patterns. The other devices that we tested varied greatly in the ab-
solute performance that they achieved, but not in the general patterns; all
followed the patterns shown in Figures 3.1a and 3.1b.

In all the devices that we tested, small random writes were slower than all
the other access patterns. The difference between random writes and other
access patterns is particularly large at small buffer sizes, but it is usually
still evident even on fairly large block sizes (e.g., 256KB in Figure 3.1a and
128KB in Figure 3.1b). In most devices, small-buffer random writes were at
least 10 times slower than sequential writes with the same buffer size, and
at least 100 times slower than sequential writes with large buffers. Table 3.1
shows the read/write access time with two different block sizes (512 Bytes
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DEevicE Buffer size 512 Bytes BUFFER s1ze 2 MB
NAME SIZE SR RR sw RW SR RR SW RW
KINGSTON DT SECURE 512M 0.97 0.97 0.64 | 0.012 33.14 | 33.12 | 14.72 9.85
MEMOREX MINI TRAVELDRIVE 512M 0.79 0.79 0.37 | 0.002 13.15 | 13.15 5.0 5.0
TOSHIBA TRANSMEMORY 512M 0.78 0.78 | 0.075 | 0.003 12.69 | 12.69 4.19 4.14
SANDISK U3 CRUZER MICRO 512M 0.55 0.45 0.32 | 0.013 12.8 12.8 5.2 4.8
M-SYSTEMS MDRIVE 1 0.8 0.8 0.24 | 0.005 26.4 26.4 | 15.97 | 15.97
M-SYSTEMS MDRIVE 100 1G 0.78 0.78 | 0.075 | 0.002 12.4 12.4 3.7 3.7
TOSHIBA TRANSMEMORY ite 0.8 0.8 0.27 | 0.002 12.38 | 12.38 4.54 4.54
SMI FLASH DEVICE 1 0.97 0.54 0.65 0.01 13.34 | 13.28 9.18 7.82
KINGSTON CF CARD ife 0.60 0.60 0.25 | 0.066 3.55 3.55 4.42 3.67
KINGSTON DT ELITE HS 2.0 2G 0.8 0.8 0.22 | 0.004 24.9 24.8 | 12.79 6.2
KINGSTON DT ELITE HS 2.0 4G 0.8 0.8 0.22 | 0.003 25.14 | 25.14 | 12.79 6.2
MEMOREX TD CLASSIC 003C 4G 0.79 0.17 0.12 | 0.002 12.32 | 12.15 5.15 5.15
120X CF CARD 8a || 0.68 0.44 0.96 | 0.004 19.7 19.5 | 18.16 | 16.15
SUPERTALENT SOLID STATE FLASH DRIVE 16G 1.4 0.45 0.82 | 0.028 12.65 | 12.60 9.84 9.61
HAMA SOLID STATE DISK 2.5” IDE 32G 2.9 2.18 4.89 | 0.012 28.03 | 28.02 24.5 12.6
IBM DESKSTAR HARD DRIVE 60G 5.9 0.03 4.1 0.03 29.2 22.0 24.2 16.2
SEAGATE BARRACUDA 7200.11 HARD DISK | 500G 6.2 | 0.063 5.1 0.12 87.5 69.6 88.1 71.7

Table 3.1: The tested devices and their performance (in MBps) under se-
quential and random reads and writes with block size of 512 Bytes and 2
MB.

and 2 MB) for sequential and random accesses on some of the devices that
we tested.

We believe that the high cost for random writes of small blocks is because
of the LBA mapping algorithm in these devices. These devices partition the
virtual and physical address spaces into chunks larger than an erase block;
in many cases 512KB. The LBA mapping maps areas of 512KB logical ad-
dresses to physical ranges of the same size. On encountering a write request,
the system writes the new data into a new physical chunk and keeps on
writing contiguously in this physical chunk till it switches to another logical
chunk. The logical chunk is now mapped twice. Afterwards, when the writing
switches to another logical chunk, the system copies over all the remaining
pages in the old chunk and erases it. This way every chunk is mapped once,
except for the active chunk, which is mapped twice. On devices that behave
like this, the best random-write performance (in seconds) is on blocks of
512KB (or whatever is the chunk size). At that size, the new chunk is writ-
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ten without even reading the old chunk. At smaller sizes, the system still
ends up writing 512KB, but it also needs to read stuff from the old location
of this chunk, so it is slower. We even found that on some devices, writing
randomly 256 or 128KB is slower than writing 512KB, in absolute time.

In most devices, reads were faster than writes in all block sizes. This
typical behavior is shown in Figure 3.1a.

Another nearly-universal characteristic of the devices is the fact that se-
quential reads are not faster than random reads. The read performance does
depend on block size, but usually not on whether the access pattern is ran-
dom or sequential.

The performance in each access pattern usually increases monotonically
with the block size, up to a certain saturation point. Reading and writing
small blocks is always much slower than the same operation on large blocks.

The exceptions to these general rules are discussed in detail in Appendix B.

Comparison to hard disks.

Quantitatively, the only operation in which LBA flash devices are faster than
hard disks is random reads of small buffers. Many of these devices can read a
random page in less than a millisecond, sometimes less than 0.5ms. This is at
least 10 times faster than current high-end hard disks, whose random-access
time is 5-15ms. Even though the random-read performance of LBA flash
devices varies, all the devices that we tested exhibited better random-read
times than those of hard disks.

In all other aspects, most of the flash devices tested by us are inferior to
hard disks. The random-write performance of LBA flash devices is particu-
larly bad and particularly variable. A few devices performed random writes
about as fast as hard disks, e.g., 6.2ms and 9.1ms. But many devices were
more than 10 times slower, taking more than 100ms per random write, and
some took more than 300ms.

Even under ideal access patterns, flash devices we have tested provide
smaller I/O bandwidths than hard disks. One flash device reached read
throughput approaching 30MB /s and write throughput approaching 25MB/s.
Hard disks can achieve well over 100MB/s for both reads and writes. Even
disks designed for laptops can achieve throughput approaching 60MB/s.
Flash devices would need to improve significantly before they outperform
hard disks in this metric. The possible exception to this conclusion is large-
capacity flash devices utilizing multiple flash chips, which should be able to
achieve high throughput by writing in parallel to multiple chips.

12



3.3.2 Performance of large number of random writes.

Large number of random writes on flash memory
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Figure 3.2: Total time taken by large number of random writes on a 32 GB
Hama Solid state disk

We observed an interesting phenomenon (Figure 3.2) while performing
large number of random writes on a 32 GB Hama (2.5” IDE) solid state
disk. After the first 3000 random writes (where one random write is writing
a 8-byte real number at a random location in a 8 GB file on flash), we see
some spikes in the total running time. Afterwards, these spikes are repeated
regularly after every 2000 random writes. This behavior is not restricted to
Hama solid state disk and is observed in many other flash devices.

We believe that it is because the random writes make the page table more
complex. After a while, the controller rearranges the pages in the blocks
to simplify the LBA mapping. This process takes 5-8 seconds while really
writing the data on the disk takes less than 0.8 seconds for 2000 random
writes, causing the spikes in the total time.
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Seq write after rand write (rand buf = seq buf) Seq write after rand write (rand buf = 2k)
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Figure 3.3:  Graphs showing the effect of random writes on subsequent
sequential writes on Toshiba 1 GB TransMemory USB flash drive.

3.3.3 Effect of random writes on subsequent opera-
tions.

On some devices, a burst of random writes slows down subsequent sequential
writes. The effect can last a minute or more, and in rare cases hours (of
sustained writing). No such effect was observed on subsequent reads.

Figure 3.3 presents the performance of one such device. In these experi-
ments, we performed ¢ seconds of random writing, for ¢ = 5,30 and 60. We
then measured the performance of sequential writes during each 4 second
period for the next 120 seconds. The two graphs in Figure 3.3 show the
median performance in these 30 4-second periods relative to the steady-state
performance of the same pattern (read or write and with the same block
size). As we can see, for very small blocks the median performance in the
two minutes that follow the random writes can drop by more than a factor
of two. Even on larger blocks, performance drops by more than 10%.

More details on the recovery time of flash devices after a random burst of
writes (i.e., how long it took the device to recover back to 60% of the median
performance in the two minutes following the random writes) are presented
in Appendix C.

3.3.4 Effects of misalignment.

On many devices, misaligned random writes achieve much lower performance
than aligned writes. In this setting, alignment means that the starting ad-
dress of the write is a multiple of the block size. We have not observed similar
issues with sequential access and with random reads.

14



Speeds with a 128K buffer size
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Figure 3.4: Effect of misalignment on the performance of flash devices

Figure 3.4a shows the ratio between misaligned and aligned random writes.
The misalignment is by 2KB, 16KB and 32KB. All of these sizes are at most
as large as a single flash page. Many of the devices that we have tested
showed some performance drop on misaligned addresses, but the precise ef-
fect varied from device to device. For example, the 128MB SuperTalent USB
device is affected by misalignment by 2KB but not by misalignments of 16KB
or 32KB.

3.3.5 Effects of Aging.

We were not able to detect a significant performance degradation as devices
get older (in terms of the number of writes and erasures). Figure 3.4b shows
the performance of one device as a function of the number of sequential
writes on the entire device. The performance of each access pattern remains
essentially constant, even after 60,000 writes. On a different device (512MB
KINGSTON DATATRAVELER 14 ), we ran a similar experiment writing more
than 320,000 times, exceeding its rated endurance by at least a factor of 3
and did not observe any slowing down with age.

3.3.6 Effect of different controller interfaces.

We connected a compact-flash card via a USB 2.0 interface, PCMCIA inter-
face and an IDE interface (using a card reader) and found that the connecting
interface does not affect the relative access patterns (sequential vs. random,
read vs. write and the effect of different block sizes) of the flash devices. How-
ever, the max read and write bandwidth that we could attain from USB 2.0,

15



PCMCIA and IDE interface are 19.8 MBps (read) with 18.2 MBps (write),
0.95 MBps (read) with 0.95 MBps (write), and 2.16 MBps (read) with 4.38
MBps (write), respectively.
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4 Designing algorithms to
exploit flash when used
together with a hard disk

Till now, we discussed the characteristics of the flash memory devices and
the performance of algorithms running on architectures where the flash disks
replace the hard disks. Another likely scenario is that rather than replac-
ing hard disk, flash disk may become an additional secondary storage, used
together with hard disk. From the algorithm design point of view, it leads
to many interesting questions. A fundamental question here is how can we
best exploit the comparative advantages of the two devices while running an
application algorithm.

The simple idea of directly using external memory algorithms with input
and intermediate data randomly striped on the two disks treats both the
disks as equal. Since the sequential throughput and the latency for random
I/Os of the two devices is likely to be very different, the I/Os of the slower
disk can easily become a bottleneck, even with asynchronous I/Os.

The key idea in designing efficient algorithms in such a setting is to restrict
the random accesses to a static data-structure. This static data-structure is
then kept on the flash disk, thereby exploiting the fast random reads of these
devices and avoiding unnecessary writing. The sequential read and write
I/Os are all limited to the hard disk.

We illustrate this basic framework with the help of external memory BFS
algorithm of Mehlhorn and Meyer [9].

The BFS algorithm of Mehlhorn and Meyer [9] involves a preprocessing
phase to restructure the adjacency lists of the graph representation. It groups
the nodes of the input graph into disjoint clusters of small diameter and stores
the adjacency lists of the nodes in a cluster contiguously on the disk. The
key idea is that by spending only one random access (and possibly some
sequential accesses depending on cluster size) in order to load the whole
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Figure 4.1: A graph class that forces the Mehlhorn/Meyer BFS algorithm
to incur its worst case I/O complexity

cluster and then keeping the cluster data in some efficiently accessible data
structure (hot pool) until it is all used up, the total amount of I/Os can be
reduced by a factor of up to v/B on sparse graphs. The neighboring nodes of
a BFS level can be computed simply by scanning the hot pool and not the
whole graph. Removing the nodes visited in previous two levels by parallel
scanning gives the nodes in the next BFS level (a property true only for
undirected graphs). Though some edges may be scanned more often in the
pool, random I/Os to fetch adjacency lists is considerably reduced.

This algorithm is well suited for our framework as random I/Os are mostly
restricted to the data structure keeping the graph clustering, while the hot
pool accesses are mostly sequential. Also, the graph clustering is only stored
once while the hot pool is modified (read and written) in every iteration.
Thus, we keep the graph clustering data structure in the flash disk and the
hot pool on the hard disk.

We ran a fast implementation [2] of this algorithm on the graph class
shown in Figure 4.1 which is considered difficult for the above mentioned
algorithm. This graph class is a tree with v/B+1 BFS levels. Level 0 contains
only the source node which has an edge to all nodes in level 1. Levels 1...v/B
have % nodes each and the i" node in j* level (1 < j < v/B) has an edge

to the i node in levels j — 1 and j + 1.

As compared to striping the graph as well as pool randomly between the
hard disk and the flash disk, the strategy of keeping the graph clustering data
structure in flash disk and hot pool in hard disk performs around 25% better.
Table 4.1 shows the running time for the second phase of the algorithm for a
228_node graph. Although the number of I/Os in the two cases are nearly the
same, the time spent waiting for 1/Os is much better for our disk allocation
strategy, leading to better overall runtime.

The cluster size in the BF'S algorithm was chosen in a way so as to balance
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Operation Random striping Our strategy
1 Flash 2 Hard disks Same Smaller
+ 1 Hard disk cluster size | cluster size
[/O wait time 10.5 6.3 7.1 5.8
Total time 11.7 7.5 8.1 6.3

Table 4.1:  Timing (in hours) for the second phase of Mehlhorn/Meyer’s
BFS algorithm on 2?8-node graph

the random reads and sequential I/Os on the hard disks, but now in this new
setting, we can reduce the cluster size as the random I/Os are being done
much faster by the flash memory. Our experiments suggest that this leads
to even further improvements in the runtime of the BFS algorithm.
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5 Conclusions and Future work

We have characterized the performance of flash storage devices by bench-
marking more than 20 different such devices. We conclude that the read/write/erase
behavior of flash is radically different than that of other external block de-
vices like hard disks. Though flash devices have faster random access than
the hard disk, they can neither provide the read/write throughput of the
disks (the ones that can provide are far more expensive than the same ca-
pacity hard disk), nor provide faster random writes than hard disks. We
found out that access costs on flash devices also depend on the past history
(particularly, the number of random writes done before) and misalignment,
but not on the aging of devices.

We also showed that existing RAM model and external memory algo-
rithms can not realize the full potential of the flash devices. Many inter-
esting open problems arise in this context such as how best can one sort
(or even search) on a block based device where the read and write costs are
significantly different.

Furthermore, we observe that in the setting where the flash becomes an
additional level of secondary storage and used together with hard disk rather
than replacing it, one can exploit the comparative advantages of both by
restricting the random read I/Os to a static data structure stored on the
flash and using the hard disk for all other I/Os.

Our results indicate that there is a need for more experimental analysis
to find out how the existing external memory and cache-oblivious data struc-
tures like priority queues and search trees perform, when running on flash
devices. Such experimental studies should eventually lead to a model for
predicting realistic performance of algorithms and data structures running
on flash devices, as well as on combinations of hard disks and flash devices.
Coming up with a model that can capture the essence of flash devices and
yet is simple enough to design and analyze algorithms and data structures,
remains an important challenge.

As a first model, we may consider a natural extension of the standard
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external-memory model that will distinguish between block accesses for read-
ing and writing. The I/O cost measure for an algorithm incurring = read 1/Os
and y write I/Os could be x+cy -y, where the parameter cy > 1 is a penalty
factor for write accesses.

An alternative approach might be to assume different block transfer sizes,
Bp, for reading and By for writing, where B < By and cg -z + ¢y -y (with
cr,cw > 1) would be the modified cost measure.
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Appendix A Our

benchmarking software and
methodology

Our benchmarking software (running under linux) performs a series of ex-
periments on a given block devices according to instructions in an input file.
Each line in the input file describes one experiment, which usually consists of
many reads or writes. Each experiment can consist of sequential or random
reads or writes with a given block size. The accesses can be aligned to a
multiple of the block size or misaligned by a given offset. Sequential accesses
start at a random multiple of the block size. Random accesses generate and
use a permutation of the possible starting addresses (so addresses are not
repeated unless the entire address space is written). The line in the input file
describes the number of accesses or a time limit. An input line can instruct
the program to perform a self scaling experiment [4], in which the block size
is repeatedly doubled until the throughput increases by less than 2.5%.

The buffers that are written to flash include either the approximate age
of the device (in number of writes) or the values 0x00 to 0xff, cyclically.

The block device is opened with the 0 DIRECT flag, to disable kernel
caching. We did not use raw I/O access, which eliminates main memory
buffer copying by the kernel, because it exhibited significant overheads with
small buffers. We assume that these overheads were caused by pinning user-
space pages to physical addresses. In any case, buffer copying by the kernel
probably does not have a large influence at the throughput of flash memories
(we never measured more than 30 MB/s).

We used this program to run a standard series of tests on each device.
The first tests measure the performance of aligned reads and writes, both
random and sequential, at buffer sizes that start at 512 and double to 8 MB
or to the self-scaling limit, whichever comes last. For each buffer size, the ex-
periment starts by sequentially writing the entire device using a 1 MB bulffer,
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followed by sequential reads at the given buffer size, then random reads, then
sequential writes, and finally random writes. Fach pattern (read/write, se-
quential /random) is performed 3 times, with a time limit of 30 seconds each
(90 seconds total for each pattern).

We also measure the performance of sequential writes following bursts of
random writes of varying lengths (5, 30, and 60 seconds). As in the basic test,
each such burst-sequential experiment follows a phase of sequentially writing
the entire device. We measure and record the performance of the sequential
writes at a higher resolution in this test, using 30 phases of 4 seconds each,
to assess the speed at which the device recovers from the random writes. We
tested random bursts of both 2 KB writes and of random writes at the same
buffer size as the subsequent sequential writes.

Finally, we also measure the performance of misaligned random writes.
These experiments consisted of 3 phases of 30 seconds for each buffer size
and for each misalignment offset.

Entire-device sequential writes which separate different experiments are
meant to bring the device to roughly the same state at the beginning of each
test. We cannot guarantee that this always returns the logical-to-physical
mapping to the same state (it probably does not), but it allows the device
some chance to return to a relatively simple mapping.

We also used the program to run endurance tests on a few devices. In
these experiments, we alternate between 1000 sequential writes of the entire
logical address space and detailed performance tests. In the detailed phases
we read and write on the device sequentially and randomly, in all relevant
buffer sizes 3 times 30 seconds for each combination. The phases consisting
of 1000 writes to the entire address space wear out the device at close to the
fastest rate possible, and the detailed experiments record its performance as
it wears out.

It is possible that there are other factors that influence performance of
some LBA flash devices. However, since many modifications to the bench-
marking methodology can be implemented simply by editing a text file, the
benchmarking program should remain useful even if more behaviors need
to be tested in the future. Of course, some modifications may also require
changes to the program itself (e.g., the alignment parameter was added rel-
atively late to the program).
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Appendix B Exceptions to the
general access patterns of flash
memory devices

In most devices, reads were faster than writes in all block sizes. This typical
behavior is shown in Figure 3.1a. But as Figure 3.1b shows, this is not a
universal behavior of LBA flash devices. In the device whose performance is
shown in Figure 3.1b, large sequential writes are faster than large sequential
reads. This shows that designers of such devices can trade off read perfor-
mance and write performance. Optimizing for write performance can make
sense for some applications, such as digital photography where write perfor-
mance can determine the rate at which pictures can be taken. To professional
photographers, this is more important than the rate at which pictures can
be viewed on camera or downloaded to a computer.

Poor random-write performance is not a sign of poor design, but part of
a tradeoff. All the devices that achieve sequential-write performance of over
15 MB/s (on large buffers) took more than 100 ms for small random writes.
The two devices with sub-10ms random writes achieved write bandwidths
of only 6.9 and 4.4 MB/s. The reason for this behavior appears to be as
follows. To achieve high write bandwidths, the device must avoid inefficient
erasures (ones that require copying many still-valid pages to a new erase
block). The easiest way to ensure that sequential writes are fast is to always
map contiguous logical pages to contiguous physical pages within an erase
block. That is, if erase blocks contain, say 128 KB, then each contiguous
logical 128 KB block is mapped to the pages of one erase block. Under
aligned sequential writes, this leads to optimal write throughput. But when
the host writes small random blocks, the device performs a read-modify-write
of an entire erase block for each write request, to maintain the invariant of
the address mapping.

On the other hand, the device can optimize the random-write performance
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by writing data to any available erased page, enforcing no structure at all on
the address mapping. The performance of this scheme depends mostly on the
state of the mapping relative to the current access pattern, and on the amount
of surplus physical pages. If there are plenty of surplus pages, erasures can
be guaranteed to be effective even under a worst-case mapping. Suppose
that a device with n physical pages exports only n/2 logical pages. When it
must erase a block to perform the next write, it contains n/2 obsolete pages,
so on at least one erase block half the pages are obsolete. This guarantees a
50% erasure effectiveness. If there are only few surplus pages, erasures may
free only a single page. But if the current state of the mapping is mostly
contiguous within each erase block and the access pattern is also mostly
contiguous, erasures are effective and do not require much copying.

This tradeoff spans a factor of 10 or more in random-write performance
and a factor of about 4 or 5 in sequential-write performance. System de-
signers selecting an LBA flash device should be aware of this tradeoff, decide
what tradeoff their system requires, and choose a device based on benchmark
results.
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Figure B.1: Speeds of the 512M Toshiba TransMemory USB flash device. This
device achieves its maximum write speed at a 64K buffer size.

The read performance does depend on block size, but usually not on
whether the access pattern is random or sequential. On a few devices, like
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the one whose performance is shown in Figure B.1, sequential reads are faster
than random reads, but usually the two patterns achieve similar performance.

In most cases, performance increases or stays the same when the block
size increases. But Figure B.1 shows an exception. The best sequential-
write performance of this occurs with blocks of 64 KB; on larger blocks,
performance drops (by more than 20%).
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Appendix C Recovery time
after a burst of random writes

Figure C.1 presents the performance of a device in which random writes slow
down subsequent sequential operations. In these experiments, we performed
t seconds of random writing, for ¢ = 5,30 and 60. We then measured the
performance of sequential writes during each 4 second period for the next
120 seconds. The two graphs in the middle show the median performance
in these 30 4-second periods relative to the steady-state performance of the
same pattern (read or write and with the same block size). As we can see,
for very small blocks the median performance in the two minutes that follow
the random writes can drop by more than a factor of two. Even on larger
blocks, performance drops by more than 10%.

The two graphs in the middle row of Figure C.1 differ in the block size
during the t seconds of random writes. In the middle-left graph, the random
writes were of the same size as the subsequent operation, whereas in the
middle-right graph the random writes were always of 2 KB buffers. The
behavior of this particular device in the two cases is similar, but on other
devices later the two cases differ. When the two cases differ, random writes
of 2 KB usually slow down subsequent writes more than random writes of
larger blocks. This is typified by the results shown in Figure C.2.

In experiments not reported here we explored the effects of random writes
on subsequent read operations and on subsequent random writes. We did not
discover any effect on these subsequent operations, so we do not describe the
detailed results of these experiments.

The graph on the lower-left corners of Figures C.1 and C.2 show how long
it took the device to recover back to 60% of the median performance in the
two minutes following the random writes. The device in Figure C.1 usually
recovers immediately to this performance level, but in some buffer sizes, it
can take it 20-30 seconds to recover. Note that recovery here means a return
to a 0.6 fraction of the median post-random performance, not to the base
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Figure C.1: Toshiba TransMemory USB flash drive results.
graphs show the speeds. The two graphs in the middle show how the device
is affected by random writes. The bottom left graph shows the time it takes
to return back to 60% of the median speed. The bottom right graph shows
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Figure C.2: Results of the M-Systems mDrive 100 USB device, showing a

constant decrease in the sequential write speed, with no recovery time.

performance in the particular access pattern.

Figure C.3 presents the recovery time in a different way, on a time line.
After a 30 seconds random write time, the speed of the sequential write slows
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Figure C.3: A time line showing the sequential write performance with 32KB
blocks of the device in FigureC.1. The time line starts at the end of 5 or 30
seconds of random writes (again with a 32KB buffer size). The markers show
the write bandwidth in each 4-second period following the random writes.
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Figure C.4: An example of extreme recovery times, as observed in the 2GB
Kingston DT Elite 2.0. The graph shows the time (measured in minutes)
it takes to write the entire device sequentially with a 2MB buffer size after
random writes of 5 to 60 seconds. Random writes were performed using
buffer sizes of at most 2KB.

down to about 30% of the normal speed. After 30 seconds of a sequential
write, the speed climbs back towards the normal speed. We have seen similar
behaviors in other devices that we tested.

On the high-end 2 GB Kingston DT Elite 2 device, random writes with
buffer sizes of 2 KB or less cause a drop in the the performance of subsequent
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sequential writes to less than 5% of the normal (with the same buffer size).
The device did not recover to its normal performance until it was entirely
rewritten sequentially. Normally, it takes 3 minutes to write the entire device
sequentially with a buffer size of 2 MB, but after random small-buffer writes,
it can take more than 25 minutes, a factor of 8 slower (Figure C.4). We
observed the same behavior in the 4 GB version of this device.

We have also observed many devices whose performance was not affected
at all by random writes.
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