
'$��'$ �
��
I N F O R M A T I K

 	

� �The Factor Algorithm forAll-to-all Communication onClusters of SMP NodesPeter Sanders1 and Jesper Larsson Tr�a�MPI{I{2002{1-008 February 2002FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U TF �URI N F O R M A T I KStuhlsatzenhausweg 85 66123 Saarbr�ucken Germany

Authors' AddressesPeter SandersMax-Planck-Institut f�ur InformatikStuhlsatzenhausweg 85, 66123 Saarbr�ucken, Germanysanders@mpi-sb.mpg.de, http://www.mpi-sb.mpg.de/~sanders/Jesper Larsson Tr�a�C&C Research Laboratories, NEC Europe Ltd.Rathausallee 10, 53757 Sankt Augustin, Germanytraff@ccrl-nece.de

AbstractWe present an algorithm for all-to-all personalized communication, in whichevery processor has an individual message to deliver to every other processor.The machine model we consider is a cluster of processing nodes where eachnode, possibly consisting of several processors, can participate in only onecommunication operation with another node at a time. The nodes may havedi�erent numbers of processors. This general model is important for theimplementation of all-to-all communication in libraries such as MPI wherecollective communication may take place over arbitrary subsets of processors.The algorithm is simple and optimal up to an additive term that is small ifthe total number of processors is large compared to the maximal number ofprocessors in a node.

Keywordsparallel computing, collective communication, personalized all-to-all, MPI,hierachical interconnection networks

1 IntroductionA successful approach to parallel programming is to write a sequential pro-gram executing on all processors and delegate interprocessor communicationand coordination to a communication library such as MPI [13]. Within thisapproach, many parallel computations can be conveniently expressed in termsof a small number of collective communication operations, where \collective"means that a subset of processors is cooperating in a nontrivial way. Onesuch frequently used collective communication operation is regular person-alized all-to-all message exchange: Each of p processors has to transmit apersonalized message to itself and each of p � 1 other processors, i. e., forevery pair of processor indices i and j a message mij has to be sent fromprocessor i to processor j. In regular all-to-all exchange, all messages areassumed to have the same length. Examples of subroutines using all-to-allcommunication are matrix transposition and FFT.This paper presents an algorithm for regular all-to-all communication onclusters of processing nodes where each node may consist of several proces-sors. We assume that only a single processor from each node can be involvedin inter-node communication at a time. Prime examples of such hierarchicalsystems are clusters of SMP nodes, where processor groups of 2{16 processorscommunicate via a shared memory, and where some medium to large numberof nodes are interconnected via a commodity interconnection network. Forexample, the Earth Simulator2 and the NEC SX-6 supercomputer3 have upto 8 processors per node; the IBM SP POWER3 allows up to 16 processorsper node.4The di�cult case is when nodes have di�ering numbers of processorsparticipating in the all-to-all exchange. This situation must be handled e�-ciently in a high-quality communications library because it arises naturally ifa job is assigned only part of the machine, or if the exchange is only amonga subset of the processors in a job.We use a simple machine model that allows an e�cient implementationportable over a large spectrum of platforms. The nodes are assumed to befully connected. Communication is single ported in the sense that at mostone processor per node can communicate with a processor on another nodeat a time. The single-ported assumption is valid for current interconnectiontechnologies like Myrinet, Giganet, the Scalable Coherent Interface (SCI), orfor the crossbar switch used on the NEC machines and the Earth Simulator.2http://www.es.jamstec.go.jp/3http://www.ess.nec.de/sx-6.html4http://www-1.ibm.com/servers/eserver/pseries/hardware/largescale/sp.html 1

Our algorithm for all-to-all communication extends a well-known algo-rithm for non-hierarchical systems based on factoring the complete graphinto matchings. The new algorithm is optimal with respect to the time aprocessor spends waiting or transmitting data up to an additive term that isbounded by the time needed for data exchange inside a node. This time iscomparatively small if the total number of processors is large compared tothe maximum number of processors in a node. Our algorithm runs in phases,in each phase getting rid of nodes with the minimum number of processorsamong the surviving nodes. The main issue is to balance the communicationvolume of nodes with many processors over the phases so that the numberof communication steps is minimized.Related WorkAll-to-all communication has been studied intensively, and we mention onlya sample of the known results. Most work focuses on non-hierarchical sys-tems with speci�c interconnection networks [11, 5, 14]. Trade-o�s betweencommunication volume and number of communication start-ups were studiedin [3, 5], which achieve algorithms that are faster for small messages.A well-known version of the factor algorithm in which processor j com-municates with processor j xor i in step i works if the number of processorsis a power of two. General 1-factorizations of the complete graph [9, 6] can beused for arbitrary numbers of processors (see Section 2). 1-factorizations havealso been used for constructing decompositions of the complete graph intopermutations that can be e�ciently executed on mesh-like networks [11, 5],and for all-to-all communication on fully connected networks [10].Our variant of the single-ported communication model is similar to thetelephone model [2, 1]. Collective communication on hierarchical systemshas recently received some attention [12, 8, 7]. Huse [7] reports experimentswith an implementaion of (homogeneous) all-to-all which ensures that onlyone processor per node is involved in inter-node communication at a time.Algorithmic details and properties are not stated.2 The non-hierarchical factor algorithmThe basis for our algorithm is a well-known algorithm for the single-ported,non-hierarchical case. We brie
y give our version of the algorithm here. Itexploits the existence of a 1-factorization of the complete graph. Since ourconstruction requires to include self loops into the graph, whereas the usualconstruction has no self-loops. We give the construction and the proof here.2

Interestingly, self-loops simplify the construction. 5Lemma 1 Let G be the complete graph with p vertices including self-loops.G is 1-factorizable, i. e., G = (V;E) can be decomposed into p subgraphsGi = (V;Ei); i = 0; : : : ; p� 1 in which each vertex has degree 1 (1-factors).Proof: Let V = f0; : : : ; p� 1g.The ith factor Gi = (V;Ei), is constructed as follows. For u 2 V de�nevi(u) = (i�u) mod p. De�ne Ei = f(u; vi(u))ju 2 V g. Since vi(vi(u)) = (i�((i�u) mod p)) mod p = u all vertices have degree exactly one. Furthermore,any edge (u; v) 2 E will �nd itself in some factor, namely in factorG(u+v)modp.In particular, the self-loop (u; u) will �nd itself inG2umodp.We can now formulate the non-hierarchical factor algorithm that is thebasis for our hierarchical algorithm explained in the next section. It requiresp communication rounds for any number of p processors. In the ith round,processors u and v that are neighbors in Gi are paired and exchange messagesmuv and mvu.for i = 0; : : : ; p� 1 do // roundLet Gi = (V;Ei) be the ith \factor"for (u; v) 2 Ei pardo exchange(u; v) // stepprocedure exchange(u; v):// use a total processor ordering u < v to order exchange between u and vif u < v then send muv from u to v and receive mvu from v to u elseif u > v then receive mvu from v to u and send muv from u to v elsecopy muu from source bu�er of u to destination bu�er of uThe factor algorithm is optimal in the sense that in every step, eachprocessor sends data it needs to send or receives data it needs to receive.3 All-to-all communication on clustered, hi-erarchical systemsWe now generalize the factor algorithm to clustered, hierarchical systems.Let N be the number of processor nodes, and let G denote the N -node com-plete graph with self-loops. Let GA denote the subgraph of G induced bya subset of nodes A, and GiA the ith 1-factor of GA. We use U and V to5Without self-loops some special treatment for even P saves one factor.3

Algorithm ClusteredAllToAll:A f0; : : : ; N � 1g // set of active nodesdone 0while A 6= ; do // phaseloop invariant: 8(U; V) 2 G : 8u 2 U; v 2 V :U � V ^ 0 � l(u) < done) muv and mvu have been deliveredcurrent minfsize(U) j U 2 Agfor i = 0; : : : ; jAj � 1 do // roundfor all (U; V) 2 GiA where U � V pardofor each u 2 U; done � l(u) < current dofor each v 2 V; done � l(v) < size(V) do // stepif U = V then send muv from u to velse exchange(u, v)done currentA A n fU j size(U) = donegFigure 1: The clustered, hierarchical factor algorithm.denote processor nodes of the system, and u and v for individual processors.By size(U) we denote the number of processors in node U , and by l(u) thelocal index of processor u within its node, 0 � l(u) < size(U) for u 2 U . Tospecify what messages should be exchanged when two nodes U and V arepaired we impose a node ordering as follows:U � V if size(U) < size(V); or size(U) = size(V) ^ U � Vwhere U � V relates to an arbitrary total ordering of the nodes. The algo-rithm is shown in Figure 1 using this notation.The outermost loop iterates over a number of phases, each of which con-siders a 1-factorization of the set of active nodes A that have not yet ex-changed all their messages. The second loop iterates over the 1-factors GiAof GA. The parallel loop considers all node pairs (U; V) that are neighborsin the given 1-factor GiA. The node ordering U � V is used to convenientlydescribe the message exchange between processors on node U and proces-sors on nodes V necessary for reestablishing the invariant for the outermostloop after `done' has been increased to `current'. When U = V , the bidi-rectional exchange is replaced by a unidirectional send because otherwise,intra-node messages would be transmitted twice. Sending muu from u to umeans copying muu from source bu�er to destination bu�er of u. Figure 24

1

4

7

10

13

15

2
3

5
6

8
9

11
12

14

phase
round

active node

vum receivedprocessor

muv to be sent

0 0 1 0 1 2
012345 012345 012345 012345 012345 012345

0 1 2 3 4 5
A B C

8 7

U
u
l(u)
v

2

3

1

2

3

4

5

6

1 step

Figure 2: Execution of algorithm ClusteredAllToAll for three nodes with size1, 2, and 3 respectively. The algorithms goes through 3 phases, and 3, 2 and1 rounds respectively are required, for a total of 15 steps.gives an example of the operation of the ClusteredAllToAll algorithm, andthe following theorem formally states its correctness and in which sense it isclose to optimal.Theorem 1 Algorithm ClusteredAllToAll performs a personalized all-to-allexchange in a number of steps equal to the maximal number of messages thatthe processors in a node have to send.Proof: (Outline) Regarding correctness, let 0 = S0 < S1 < : : : < Sk be thesequence of di�erent node sizes. The algorithm performs k phases. In phasei nodes U with size(U) � Si are active. In particular, the outer loop termi-nates. Furthermore, at the end of the algorithm done = maxU2f0;::: ;N�1g size(U).The loop invariant implies that all messages have been exchanged.5

The bound on the number of steps follows since all nodes with the max-imum number of processors are participating in a communication in everystep.The reason why the algorithm is not optimal in all cases is that a node pairedwith itself communicates only unidirectionally in each step. If at the samestep two other nodes with maximum number of processors are paired, theycommunicate bidirectionally and hence take longer to complete a round. Thisis not optimal since at least in some cases there are schedules which avoidsuch situations. However, there are only few such ine�cient steps: Consider anode U with maximal number n = jU j of processors. Our algorithm performspn steps. At most n2 of these steps | a fraction of p=n | can be ine�cientfor node U . Hence, the ine�cient steps are few compared to the e�cientsteps for p� n.Although the algorithm was formulated for single-ported communicationusing 1-factorizations, generalizations to multi-ported communications arepossible. The same basic scheme applies if the complete graph is decomposedinto graphs with degrees at most k or into permutations (directed cycles).Decomposition into permutations is particularly interesting since several all-to-all algorithms for non-fully connected networks are known that are basedon this approach [11, 5, 14].4 Implementation issuesThe algorithm is easy to implement, and has been used for an implementationof the MPI_Alltoall function of the Message Passing Interface (MPI) [13]for clusters of SMP nodes.On most SMP clusters intra-node communication is considerable fasterthan communication between processors on di�erent nodes. This can beexploited to reduce the completion time somewhat by doing more (intra-node) work in rounds where a node is paired with itself, thus possibly savingrounds in subsequent phases where jAj is either even or one.A prototype implementation has been done within the framework of thewell-known MPICH implementation [4]. For each process, the data structurerepresenting the set of processes that can communicate with each other {the communicator construct of MPI { is extended with an array containingthe processes sorted after SMP node id, and an array of node sizes. Thisinformation can be computed once and for all when the communicator iscreated. Our algorithm thus only performs simple loops, array lookups andmessage passing operations.Since we do not have access to a machine with large nodes yet we only per-6

formed preliminary performance studies on a small Giganet SMP cluster with6 nodes of 4 processors each. We experimented with various distributions ofprocesses among the nodes (regular, organ pipe, alternating full/small nodes,various random distributions). We made comparisons with the trivial, nativeMPICH algorithm for MPI_Alltoall which posts p non-blocking, concurrentsend and receive operations on each processor. The new algorithm neverperforms worse and achieves at least 10% and sometimes up to 20% higherbandwidth when the number of active processes per SMP varies. We re-mark that the implementation within MPICH permits only crude controlover the utilization of the inter-node network, since we cannot immediatelyaccess a centralized, per-node queue of communication requests. It is likelythat more e�cient, low-level, centralized contention control will lead still tobetter performance for our algorithm.References[1] Bar-Noy, Kipnis, and Schieber. Optimal multiple message broadcast-ing in telephone-like communication systems. DAMATH: Discrete Ap-plied Mathematics and Combinatorial Operations Research and Com-puter Science, 100:1{15, 2000.[2] D. Barth and P. Fraigniaud. Approximation algorithms for structuredcommunication problems. In Proceedings of the 9th Annual ACM Sympo-sium on Parallel Algorithms and Architectures, pages 180{188, Newport,Rhode Island, June 22{25, 1997. SIGACT/SIGARCH and EATCS.[3] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. E�-cient algorithms for all-to-all communications in multiport message-passing systems. IEEE Transactions on Parallel and Distributed Sys-tems, 8(11):1143{1156, 1997.[4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,portable imlementation of the MPI message passing interface standard.Parallel Computing, 22(6):789{828, 1996.[5] S. E. Hambrusch, F. Hameed, and A. A. Khokar. Communication opera-tions on coarse-grained mesh architectures. Parallel Computing, 21:731{751, 1995.[6] F. Harary. Graph Theory. Addison-Wesley, 1967.7

[7] L. P. Huse. MPI optimization for SMP based clusters interconnectedwith SCI. In 7th European PVM/MPI User's Group Meeting, volume1908 of Lecture Notes in Computer Science, pages 56{63, 2000.[8] N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, andJ. Bresnahan. Exploiting hierarchy in parallel computer networks tooptimize collective operation performance. In Proceedings of Interna-tional Parallel and Distributed Processing Symposium (IPDPS'2000),pages 377{384, 2000.[9] D. K�onig. Theorie der endlichen und unendlichen Graphen. Akademis-che Verlagsgesellschaft, 1936.[10] P. Sanders and R. Solis-Oba. How helpers hasten h-relations. Journalof Algorithms, 2001. To appear.[11] D. S. Scott. E�cient all-to-all communication patterns in hypercube andmesh topologies. In Sixth Distributed Memory Computing ConferenceProceedings, pages 398{403, 1991.[12] S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI collectiveson clusters of large-scale SMPs. In Supercomputing, 1999. http://www.supercomp.org/sc99/proceedings/techpap.htm#mpi.[13] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI{ The Complete Reference, volume 1, The MPI Core. MIT Press, secondedition, 1998.[14] Y. Yang and J. Wang. Optimal all-to-all personalized exchange in self-routable multistage networks. IEEE Transactions on Parallel and Dis-tributed Systems, 11(3):261{274, 2000.

8

