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Abstract. The selection problem of Bise n is, given a. set of n elements drawn 
!rom an ordered universe and an integer r with 1 ~ r ~ n, to identify the 
rth smallest element in the set. We study approximate and exact selection 
on deterministic concurrent-read concurrent-write parallel RAMs, where ap­
proximate selection with relative accuracy ~ > 0 asks for any element whose 
true rank difi'ers !rom r by at most ~n. Our main results are: (1) For all 
t 2: (log log nt, approximate selection problems of sise n can be solved in 
O(t) time with optimal speedup with relative accuracy 2-'/(10110''').; no de­
terministic PRAM algorithm for approximate selection with a running time 
below 9{log n/log log n) was previously DOwn. (2) Exact selection problems 
of sise n can be solved in O(log n/log log n) time with O( n log log n/log n) 
processors. This running time is the best possible (using only a polynomial 
number of processors), and the number of processors is optimal for the given 
running time (optimal speedup); the best previous algorithm achieves optimal 
speedup with a running time of O{log n log*n/loglog n). 

1 Introduction 

Selectingthe element of prescribed rank !rom an ordered (but not sorted) set is an 
important and well-studied problem. Blum et al. [6] showed that selection !rom a set 
of size n can be performed in linear time O( n) sequentially. Considerable research has 
gone into determining the parallel comple.xity of selection. Valiant [20] introduced the 
parallel comparison-tree (PCT) model and showed that any deterministic algorithm 
in the PCT model for finding the maximum of n elements using p processors requires 
D(n/p + log (log n/log(1 +p/n))) time. Since finding the maximumis a special case of 
selection, this lower bound applies to selection in general as well. Azar and Pippenger 
[4], building on the work of Ajtai et al. [1], gave a matching upper bound for the PCT 
model. Reischuk [19] showed that in the randomized PCT model, selection can be 
done in constant expected time using a linear number of processors, which is clearly 
optimal. The problem of selection in the PCT model has therefore been completely 
solved. The PCT model counts only comparisons, however, while processing of any 
other kind is considered !ree. For this reason, lower bounds obtained for the PCT 
model apply to all parallel comparison-based algorithms, hut upper bounds do not 
carry over to other, more realistic, models of parallel computation. 

In the PRAM · model of computation, the upper bounds for the PCT model 
demonstrably cannot be matched. It follows as a corollary to the lower bound of 
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Beame and Hästad [5] that any (randomized)algorithm that selects the rth smallest 
among n elements on ap-processor CRCW PRAM has an (expected) running time of 
O(log r / loglogp). In particular, finding the median requires O(log n/ log log n) time 
using any polynomial number of processors. It is not cüfficult to solve selection prob­
lems of sise n in (the best PQssible) time 8(lognfloglogn) on the CRCW PRAM, 
but straightforward algorithms for this task use a large number of processors. An 
important design goal is to get by with as few operations as possible, where, as usual, 
the number of operations executed by a parallel algorithm is defi.ned as the product 
of the number of processors used and the number of time steps needed by the algo­
rithm. The obvious sequential simulation of any parallel computation shows that the 
number of operations executed by a parallel algorithm for a given problem is always 
O(T), where T is the sequential complexi~y of the problem. A parallel algorithm that 
uses only O(T) operations is said to have optimal speedup or to be work-optimal, 
because it employs the available processors in the most efficient manner possible (up 
to a constant factor). The development ofwork-optimal algorithms is one ofthe most 
important goals of current research in parallel computation. 

In the special case of selection, the result of Blum et al. [6] implies that a 
work-optimal algorithm is one that executes O(n) operations. Cole [9] gave a work­
optimal deterministic CRCW PRAM algorithm for selection with a running time 
of O(lognlog·n/loglogn), and Dieb and Raman [11] recently described a work­
optimal algorithm that selects the rth smallest among n elements in O(loglogn + 
logr/loglogn) time if 1 ~ r ~ n 1/ 3 , which is the fastest possible for this range ofr. 
The problem of discovering a deterministic CRCW PRAM algorithm for general selec­
tion that combines work-optimality with the fastest running time of O(log n/log log n) 
has remained unsolved, and no progress was made on this front since the publication 
of Cole's paper. 

Attempts have been made to circumvent the lower bounds mentioned above by 
replacing exact selection by approximate selection. Here, in addition to a target rank 
r E {1, ... , n}, an accuracy parameter A > 0 is specified, and the task is to select an 
element whose rank is guaranteed to lie between r - An and r + An, which we call 
A-selection for rank r . Upper and lower bounds for the complexity of approximate 
selection in the PCT model were given by Alon and Azar [3]. In the PRAM setting, the 
lower bound of Beame and Hästad does not apply cfuectly to approximate selection, 
although it can be used to place bounds on the accuracy obtainable with a given 
amount of resources (i.e., processors and time). Hagerup [13], extending a result of 
Goodrich [12], showed that approximate selection problems of size n can be solved 
in constant time with high probability on an n-processor CRCW PRAM for A = 
l/(logn)O(l), which is the best possible accuracy for the stated time and processor 
bounds. On the other hand, no deterministic PRAM algorithms for approximate 
selection were previously known. 

In this paper we describe deterministic CRCW PRAM algorithms for the problems 
of approximate and exact selection. Our main result (Corollary 12) is that for all 
t ~ (log log n)4, approximate selection problems of size n can be solved with optimal 
speedup with relative accura.cy 2- t /(loglogn)4. The minimum running time is hence 
(log log n)4, but allowing more time yields a better accuracy, a tradeoff that has been 
observed before [15, 14, 16]. As an easy corollary of the main result, we derive a 
work-optimal algorithm for exact selection with a running time of o (log nfloglog n) 
(Theorem 13), thereby solving the open problem left by Cole's paper. 
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2 Brute-Force Approximate Selection 

Without loss of generality we can always assume that the input elements ·presented 
to a selection algorithm are distinct. Given an ordered set A, i.e., a subset of an 
ordered universe U, and an element Z E U, the rank of Z in A, rankA(z), is defined 
as I{y E A : y . . ~ z}l, and if A is nonempty, the relative rank of Z in A, PA(Z), is 
defined as rankA(z)/IAI. 

H a sufficient number of processors is available, a selection problem can be solved 
simply by independently computing the rank of each element and returning the unique 
element whose rank has the desired value. This reduces selection to counting (the 
number of smaller elements). Approximate selection similarly reduces to approxi­
mate counting. The following reswt, a special case of a theorem due to Hagerup [14, 
Theorem 6.1], deals with the latter problem. 

Lemma 1. Let n, t ~ 4 be given integers with t ~ (log log n)3 and take 
>. = 2-tlogloglogn/(loglogn)' . Then, gi'l3en n bits bll ... , bn , an integer r with L:~l bi ~ 
r ~ (1 + >') L::=l bi can be computed using O(t) time and O(n) operations. 

Lemma 2. Let n, t ~ 4 be given integers witk t ~ (log log n)3 and take 
>. = 2-tlogloglogn/(loglogn)·. Then, given an ordered set A 0/ size n and an inte­
ger r with 1 ~ r ~ n, an element Z E A with (1- >.)r $ rankA(z) ~ (1 + >.)r can be 
computed v.sing O(t) time and O(n2 ) operations. 

Proo/. Let A = {Zl' ... , Zn}, compare Zi and Zj for all i, j E {I, ... , n} and express 
the result in the form of an n xn boolean matrix. Then apply the algorithm of 
Lemma 1 independently to each row of this matrix to compute integers rl, ... , rn 

such thatrankA(zi) ~ ri ~ (1 + >.)rankA(zi), for i = 1, ... , n, and return any Zi 
with r ~ ri $ (1 + >.)r. 

The relation r $ ri ~ (1 + >.)r is satisfied for at least one element Zi, namely the 
one of rank r. On the other hand, it clearly is not satisfied for any element of rank 
larger than (1 + >.)r, and since (1 + >')(1 - >.)r < r, it cannot be satisfied for uy 
element of rank smaller than (1 - >.)r either. Thealgorithm is therefore correct. 0 

3 Sampling 

This section studies certain properties of sampling. Some of the arguments parallel 
ones made in [16]. 

We allow an element of a set A to be included more than once in a sampie of A, 
i.e., the sampie is a multisubset of A. Following [16], we define a ranking function on 
a nonempty multiset B as any function rankB that maps each element Z outside of 
B to the number of elements y E B with y ~ z, and that maps Bitself bijectively 
to {I, ... , IBI} in an order-preserving fashion, i.e., for all z, y E B, if Z < y, then 
rankB(z) < rankB(Y) (in other words, a total order is imposed on B). We also define 
a relati'l3e ranking function on B as any function ofthe form rankB/IBI, where rankB 
is a ranking function on B. 

Definition S. Let >. ~ O. A nonempty multisubset B of an ordered set A is a >.­
sampie of A if for some relative ranking function PB on B (and therefore for all such 
functions), IPA(Z) - pB(z)1 ~ >., for all Z E B. 
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Lemma4. Let n and m be positi'IJe integers with m di1Jiding n, let A be an ordered 
set 0/ size n and let >. ~ O. Suppose that:c, is obtained by >.-selecting from A /or rank 
I· n/m, /or I = I, ... , m. Then the multiset {:Cl, ... , :cm } is a >.-sample 0/ A. 

Proo/. By construction, IPA (:c,) - ;k I :5 >., for I = I, ... , m. Let ranks be an arbitrary 
ranking function on B == {:Cl, " ', :cm } and fix i E {I, ... , m}. Taking j = ranks(:c.), 
our goal is to show that IPA(:Ci) - ~I :5 >.. We distinguish between three cases. 

Case I: i = j. The claim follows immediately. 

Case 2: i > j. Since ranks is a bijection from B to {I, ... , m}, there mustbe some 
I E {I, ... ,j} with ranks(:c,) > j. But then:c, ~:Ci and hence PA(:Ci)- ~:5 , " 

PA(:C') - m :5 >.. On the other hand, PA(:C') - ;; ~ PA(:C') - ;i ~ ->.. The claim 
follows. 

Case 3: i < j. Symmetrical to Case 2. 0 

Lemma5. Let >. ~ 0 and let m be a positi'IJe integer. Furthermore let Al,"" Am be 
dis joint sets 0/ a common size, and let Bi"", B m be >.-samples 0/ a common size 0/ 
Al, ... , Am, respecti1Jely. Then B = U~l Bi is a (>' + 1/ IBll)-sample 0/ A = U~l At· 

Proo/. Let ranks be an arbitrary ranking function on B, and let ranks. be a rank­
ing function on Bi consistent with ranks, for i = I, ... ,m, i.e., for all :C,y E B., 
ranks.(:c) < ranks.(Y) if and only if ranks(:c) < ranks(Y). 

Let :c E U:'l B., fix i E {I, ... , m} and let r = ranks.(:c). If r < IBil, the rank 
of :c in Ai is no larger than the rank in At ofthe element in Bi of rank r + 1 in Bi, 
i.e., no larger than 

IAtI lAI 
(r + I) IBil +>'IAil = (r + I)TBi + >.IAtI· 

This relation obviouSly also holds if r = IBil. Summing it for i = I, ... , m, we obtain 

IA·I lAI lAI ( I) 
rankA(:c) :5 ranks(:C)jBj + mjBj + >.IAI = ranks (:C)TB1 + >. + IBll lAI· 

Arguing similarly, one easily shows that rankA(:C) ~ ranks(:c)tm - >.IAI. 0 

Lemma6. Let n, k, t ~ 4 be gi1Jen integers with t ~ (loglogn)3 such that (8k)2 
di'Dides n and let>. = 2-Hogloglognl(loglogn)s. Then, gi'IJen an ordered set A 0/ size n, 
a (>'/(12 log log n) + 1/(8k»-sample 0/ A 0/ size n/(8k) can be computed using O(t) 
time and O(k3n) operations. 

Proo/. Partition A into n/(8k)2 groups of (8k)2 elements each and use the algorithm 
ofLemma 2 in parallel for each group and for each i E {I, ... , 8k} to (>'/(12 log log n»­
select for rank i· 8k. By Lemma 4, this produces a (>./(12Ioglogn»-sample of each 
group. Return as the final sampIe the union of the group sampies, which, by Lemma 5, 
is a (>'/{121og1og n) + 1/(8k»-sample of A. 0 

Lemma 7. Let >., >" ~ 0 and let A be an ordered set. Suppose that B is a >.-sample 
0/ A and that C is a >" -sampie 0/ B, where a total order is imposed on B by means 
0/ a relati'IJe ranking function Ps on B (otherwise it makes no sense to speak 0/ a 
>"-sample 0/ B). Then C is a (>' + >")-sample 0/ A. 

Proo/. Let pc be a relative ranking function on Cconsistent with the order on B 
imposed by Ps (i.e., for all :c, y E C, if ps(:c) < ps(y), then pc(:c) < Pc(y». Then 
for all :c E C, IPA(:C) - pc(:c)1 :5 IPA(:C) - Ps (:c)1 + Ips(:c) - pc(:c)1 :5 >. + >.'. 0 
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4 Work-Optimal Approximate Selection 

Our algorithm has the same top-Ievel structure as that of Cole [9]; the details cllifer. 
The algorithm consists of two loops, one nested within the other. The outer loop 
makes progress by eliminating more and more elements from consideration. Since the 
remaining elements are always those between a lower and an upper limit,similarly as 
in the case of binary search, the outer loop can be thought of as narrowing down the 
"search interval" . When the search interval has hecome so small that an arbitrary 
element in thesearch interval is an acceptable answer, the algorithm returns such an 
element and stops. 

Each iteration of the outer loop is called astage. A stage worb by computing a 
sampIe B of the input set A ofthe current stage (Le., of the elements in the current 
search interval) with the property that, on the one hand, B is sufficiently small to 
make brute-force selection from B according to Lemma 2 feasible and, on the other 
hand, B represents A faithfully in the sense that the relative rank of an element in 
B is a good approximation of its relative rank in A. The goal of the algorithm at 
this point is to select an element from A whose rank in Ais within m of r, for some 
integers m and r. Approximate selection from B is then used to obtain two elements 
:eL and :eH of A with :eL ~ :eH whose ranks are as dose as possible, but guaranteed 
to be on either side of r. An approximation of the number of elements smaller than 
:eL is then computed and subtracted from r, after which the next stage operates on 
the elements between :eL and :eH with an absolute accuracy slightly smaller than m 
(to counteract the inaccuracy incurred in counting the number of elements smaller 
than :eL). 

Computing the sampIe B is the task of the inner loop, whose single iterations 
are caIled rounds. The inner loop worb by gradually thinning out a sampIe, which 
initially is the full input set A and at the end is the final sampIe B returned to the 
outer loop. The size of B always lies between IA1 1/ 4 and IA11/ 2, while the quality of 
B as a sampIe of A will depend on the processor advantage (number of processors 
per element) initially' available for the computation of B. The processor advantage 
derives from the progress of the outer loop: When the search interval has narrowed 
down to the point where it contains only n/k elements, for some k ~ 1, the processor 
advantage available to the inner loop will be essentially k, which allows B to be 
computed as a 1/k-sample of A. This in turn allows the search interval to be narrowed 
down by a factor of roughly k, so that the initial processor advantage available to 
the inner loop of the next stage will be about k 2• The processor advantage therefore 
increases doubly-exponentially. If,X is the relative accuracy ofthe top-Ievelselection, 
the narrowing process stops when the number of elements in the search interval has 
dropped to about 'xn; by the above, this happens after O(loglog(1/'x)) stages. 

The gradual thinning-out in each stage mentioned above is done by means of 
repeated subsampling in O(log log n) rounds and is characterlzed in the following 
lemma. . 

Lemma 8. Let n and k be gi'l1en powers 0/ 2 with 26 ~ k ~ n 1/8, let t ~ (log log n)4 
be a gi'l1en integer and take ,X = 2-tlogloglogn/(loglogn)4. Then, gi1Jen an ordered set 

A 0/ size n,a ma:x{,X,1/k}-sample B 0/ A with n l / 4 ~ IBI ~ n l / 2 can be computed 
using O(t) time and O(k3n) operations. 
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Proo/. Take kl = k and Bo = A and execute a number of round&. In Round i, for i = 
1,2, ... , do the following: Spending O(t/loglogn) time, use the algorithm ofLemma 6 
to compute a (>'/(12 log log n) + I/(8ki))-sample of Bi-l of size IBi- I I/(8ki), call this 
sampie Bi and let ko+1 be the largest power of 2 no larger than min{kt/3

, v'iB.T/8}. 
Take B as the first sampie of size $ n l / 2 encountered in this process. 

H for some i we have IBil > n l / 2, but kt/3 ~ v'IBil/8, we will have ko+l ~ 
v'iB.T/I6 and hence IBHII $ 2v'iB.T $ n l / 2, i.e., the (i + I)st round will be the 
last. Let T be the number of rounds executed. By the observation just made, ko+1 ~ 
k:/6 /2 ~ kJ/6, for i = 1," ... , T - 2 (recall that k ~ 26), so that ki ~ k(7/6)'-1, for 
i = 1, ... , T - 1. In partiewar, k(7/6)T-2 $ n, which can be shown to imply that 
T $ 6 log log n. 

Since kl+IIBil $ kIIBi- I I/8, for i = I, ... ,T-I, it is easy to see that the 
total number of operations executed is indeed O(k3n). We have ki+1 ~ . 2ki , for 
i = 1, ... , T-2, and either kT ~ 2kT - I as well, or kT ~ v'IBT-11/I6 ~ n l / 4/I6 ~ k. 

In either case Er=I(I/ki) $ 3/k. By Lemma 7, Bis a >"-sample of A, where >" = 
Er=I(>./(I21og log n) + I/(8ki)) $ >'/2+ I/(2k) $ max{>., I/k}. Finally observe that 

IBI = IBTI ~ v'IBT-II ~ n1/ 4
• 0 

The following two lemmas describe the reduction of the "search interval" per­
formed in a single stage of the outer iteration, whereas the outer iteration as a whole 
is treated in the proof of Theorem 11. To select for rank r with ab&olute accuracy m 
is to select an element whose rank dift'ers !rom r by at most m. 

Lemma 9. Let n, m, t, q ~ 4 be gitJeninteger& with t ~ (log log n)3 I take>. = 2-q 

and jJ = 2-tlogloglogn/(loglogn)" and &uppose that m ~ jJn. Then, gitJen an ordered 

let A 0/ &ize n and a >.-&ample B 0/ A with n1/4 $ IBI $ n l / 2 , O(t) time and O(n) 
operations &uffice to reduce the problem 0/ selection from A with absolute aCCUNCY m 
to that 0/ &election from a let 0/ size at most IO>'n with absolute accuracy m - jJn. 

Proo/. Let jJ' = 2-rtnogloglognl/LloglognJ"1 . . We can assume without loss ofgenerality 
that jJ'n ~ 9(2n3/ 4 + 1), since otherwise t = n(logn), in which casethe problem can 
be solved using Cole's selection algorithm [9]. 

Assume that tbe task is to select !rom A for rank r with absolute accuracy m. 
Let >" = max{>., jJ' /9} and rL = L(r /n - 2>")IBIJ. H rL < 1, compute ZL as min A. 
Otherwise use Lemma 2 to >,'-select !rom B for rank rL and let ZL be the reswting 
element. 

We will show that the rank of ZL in A is at most r. Since this is obvious if 
ZL = minA, assume that this is not the case. Then the rank of ZL in B is at most 
rL + >"IBI $ (r/n - >")IBI. Since Bis a >.'-sample of A, the rank of ZL in A therefore 
is at most (r/n - >" + >")IAI = r. 

Similarly, let rH = r(r/n + 2>")IBIl and obtcLin ZB by >"-selecting !rom B for 
rank rH, unless rB > IBI, in which case we take ZB = maxA. The rank of ZH in A 
is at least r. 

Next partition A into the sets AL = {z E A : Z < zL}, AM = {z E A : ZL $ 
Z $ ZH} and AB = {z E A: Z > ZB}, i.e., mark each element in A with the se:t to 
which it belongs. The rank of ZL in B is at least l(r/n - 2>")IBIJ - >"IBI ~ (r/n-
3>" -I/IBDIBI, and the rank OfZL in A therefore is at least (r/n-4>" -I/IBDIAI ~ 
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r - 4>.'n - n 3 / 4. Similarly, the rank Of:l:H in Ais at most r + 4>"n+ n3/\and hence 
IAMI ~ 8>.'n + 2n3

/
4 + 1 ~ 9>.'n. 

H >" = >., IAM I ~ 9>.n, and the approximate compaction algorithm of [14] can be 
used to store the elements of AM in an array of size at most IO>.n, unused cells of which 
are filled with dummy elements with a value of 00. We will show that selecting {rom 
A with absolute accuracy m reduces to selecting {rom AM with absolute accuracy 
m - p.n. First the algorithm of Lemma 1 can be used to compute an integer s with 
lALl ~ s ~ (1 + p.)IALI . It. is noweasy to see that if the rank of an element in AM 
is within m - p.n of r' = r - s, then its rank in Ais within m of r, as desired (in 
particular, the dummy elements do not change the rank of any real element). 

H >" :I >., we have IAM I ~ 9>.'n = p.'n ~ m, so that the rank in A of any element 
in AM is within m of rj we can hence return an arbitrary element of AM as the 
answer. 0 

Lemma 10. Let n and k be given powers 0/2 with 26 ~ k ~ n 1/ 8 and let t and 
m be given integers with t ~ Ilogkjlogloglogn1(loglogn)4 and m ~ p.n, where 
p. = 2-Clogloglogn/(loglogn)·. Then O(t) time and O(k3n) operations suffice to reduce 
the problem 0/ selection from A with absolute accuracy m to that 0/ selection from a 
set 0/ size at most (IO/k)n with absolute accuracy m - p.n. 

Proo/. Let>. = 2-tlogloglogn/(loglogn)· and note that >. ~ I/k. The algorithm of 
Lemma 8 can be used to compute a (I/k)-sample B of A with n 1

/ 4 ~ IBI ~ n I / 2 , 

and the claim can be seen to folIow {rom Lemma 9, used with q = log k. 0 

Theorem 11. For all given integers n ~ 16 and t ~ (log log n)4, approzimate selec­
tion problems 0/ size n can be solved with relative accuracy >. using O(t) time, O(n) 
operations and O(n) space, where 

>. _ , ~J t < og og n og n, 
{ 

2_2'/(101101")· :1 (1 1 )41 (4) . 

- 2-Clogloglogn/(loglogn)·, i/t ~ (loglogn)410g(4)n. 

Proo/. Without 1055 of generality we can assume that >. ~ I/n, since otherwise t = 
n(log n), so that the problem can be solved using Cole's algorithm [9], and that n is 
apower of 2 larger than 16032• Let m = >.n, so that the problem is to select {rom a 
set of size n with absolute accuracy m. As mentioned earlier, the main part of our 
algorithm consists of T stages, for some integer T ~ O. For i = 1, ... , T, Stage i 
transforms a problem of selection {rom a set Ao of size nt with absolute accuracy Tni 
to one of selection {rom a set Ao+l of size nt+l with abso~ute accuracy Tni+l, where 
nt+l is significantly smaller than nt, while Tni+1 is slightly smaller than Tni, and both 
nt and nt+l are powers of 2. In particular, nl = n and m1 = m. T is the smallest 
nonnegative integer such that 11T+l ~ fnT+l or r?+l ~ n. 

We now describe Stage i, for i E {I, ... , T}. Let ki be the smallest power of 2 
larger than 40 r ( n / nt ) 1/ 161 and take t, = flog ~ / Llog log log n J 1 flog log n 14. For i = 
1, ... , T, nt > n 1/ 2 and hence ki ~ 160n1/ 32 ~ n 1/ 16 ~ n:/8

• We will show below that 
Tni ~ p.nt, where p. = 2-Clogloglogn/(loglogn)·-2. Spending O(~ +t/loglog n) time, we 
can therefore use the algorithm of Lemma 10 to reduce the problem at hand to one of 
seledion {rom a set Ao+l of size at most nt+l with absolute accuracy Tni+l = Tni - p.nt, 
where nt+l is the smallest power of 2 larger than (IO/ki)nt. We increase the size of 
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As+1 to exactly 11.i+1 by adding a suitable number of dummy elements with a value 
of 00 and note that 11.i+1 ~ (20/A1)11.i. . 

For i = 1, ... , T - 1, 

n n 2n(n/11.i)1/16 (n ) 17/16 
--> > =2 -
ni+1 - (20/k.)11.i - 11.i 11.i 

In particular, 11.i+1 ~ 11.i/2, for i = 1, ... , T - 1, so that L:;=111.i ~ 2n. Noting that 
J.I. ~ >'/4, we will now prove that ffli ~ J.l.11.i, for i = 1, ... , T, as claimed above. Since 
m = >.n ~ 4J.1.n, it suffices to show that T7l.T ~ m/2. But m - T7l.T = J.I. L:;=-;111.i ~ 
2J.1.n ~ m/2, as required. 

After Stage T, the computation is finished in one of two ways. If 7lT+1 ~ T7l.T+1, 
we simply return an arbitrary element of AT+1' which is obviously correct. Otherwise, 
n}+1 ~ n, and we use the algorithm of Lemma 2 to select from AT+1 with absolute 
accuracy m/2, for which O(t) time amply suffices. Since T7l.T ~ m/2, this. is also 
correct. 

It remains to estimate the time and the number of operations needed by the algo­
rithm. We begin by bounding the number of stages. Since n/11.i+1 = 8«n/11.i)17/16), 

we have k'+1 = 8«n/11.i+1)1/16) = 8«n/11.i)17/16
2

) = 8(kt/16), for i = 1, ... , T - 1. 
Now if T ~ 2, (20/kT- 1)7lT-1 ~ 7lT ~ m/2 and hence kT-1 ~ 407lT_1/m ~ 40/>', 
which implies that T = O(loglog(4/>'». 

The processing after Stage T obviously uses O(t) time and O(n) operations. The 
total number of operations executed in Stages 1 through T is 

T T . T 
o (I: k:11.i) = 0 (I:(n/11.i)3/1611.i) = 0 (n I:(11.i/n)13/16) = O(n), 

.=1 .=1 .=1 

where the last relation follows from the rapid growth ofthe sequence {n/11.i}t=1' The 
time needed by Stages 1 tluough T, finally, is 

T t tT T 10 A1 
o (I: (to + )) = 0 ( + L r g 1 (log log n )4) 

.=1 log log n log log n .=1 log log log n 

T 

I: log k. 1 k 

= 0 (t + (T + l:;l~g log n) (log log n)4) = 0 (t + (T + log ~:g l~g n) (log log n)4 ) 

= O(t + (loglog(4/>') + log(4/>')/log log log n)(1og log n)4). 

A case analysis shows that the laUer expression is O(t). o 

Corollary 12. For all gi1Jen integers n ~ 4 and t ~ (log log n)4 , approzimate selec­
tion problems 0/ size n can be sol1Jed with relative accuracy 2- t /(loglogn)· using O(t) 
time and O(n) operations. In particular, tor any constant >. > 0, >.-selection problems 
0/ size n can be sol1Jed in O((loglogn)4) time with optimal speedup. 
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5 Work-Optimal Exact Selection 

Armed with a reasonably accurate work-optimal algorithm for approximate selection, 
it is an easy matter to derive a work-optimal algorithm for exa.ct selection. The 
algorithm is similar to one stage of the algorithm of Theorem 11. We now provide 
the details. 

Theorem 13.For all integers n ~ 4, selection problems 0/ size n can be solved using 
O(lognjloglogn) time, O(n) operations and O(n) space. 

Proo/. Suppose that the task is to select the element of rank r !rom a set A. Ap­
plied with t = 9(lognjloglogn), the algorithm ofCorollary 12 allows us to compute 
two elements ZL, ZH E A with rankA(zL) ~ r ~ rankA(zH), but rankA(zH) -

rankA(zL) = O(n. 2-v'10gn). Nerl partition A into the sets AL = {z E A: Z < zL}, 
AM = {z E A : ZL ~ Z ~ ZH} and AH = {z E A : Z > ZH} as in the proof of 
Lemma 9. Then use exact prefix summation [10, Theorem 2.2.2] to determine IAL I 
and to store the elements of AM in an array of size IAMI = O(n . 2-v'10gn). The 
remaining problem is to select the element of rank r - lALl !rom AM, which triv­
ially reduces to sorting AM. The latter task can be accomplished using the algorithm 
of Cole [8, Theorem 3], which, given the available processor advantage of 28 (v'10gn), 
runs in O(lognjloglogn) time. 0 

6 Increasing the Accuracy 

At the price of increasing the number of operations slightly, we can obtain a better 
accuracy than that provided by Theorem 11. Specifically, in O(t) time, we achleve a 
relative accuracy of2-t , as compared to the approximately 2-tlogloglogn/(10glogn)' of 
Theorem 11. Our algorithm is based on the AKS sorting network [2] and further im­
provements and expositions ofit [17,18,7]. In a manner first used in [1], we simulate 
the initial stages of the operation of the network in order to focus on an interesting 
subset of the elements. 

For an input of size n, where n is apower of 2, the AKS network can be thought 
of as moving the elements between the nodes of a complete binary tree with n leaves 
numbered 1, ... , n !rom left to right. Say that an element is addressed to anode u in 
the tree if its rank is the number of a leaf descendant of u, and that it is astranger 
at u otherwise. 

The analysis of the AKS network in [7] can be shown to imply the following: For 
every integer i with 1 ~ i ~ log n, there is a positive integer T with T = O(i), 
computable !rom i in constant time, such that after T stages of the operation of the 
network and for any node u at depth i in the tree, the number of keys at u is nonzero, 
but the !raction of strangers among these is at most 2- 7 • 

Let n ~ 4 be apower of 2 and let q be a positive integer. In order to use the 
above to A-Select !rom n elements, where A = 2-Q, we proceed as follows: Choose the 
positive integer i minimal such that there is anode u at depth i with the property 
that every element addressed to u is a valid answer to the selection problem; it is 
not difficult to see that i = O(q). Then compute T !rom i, run the AKS network for 
T stages and finally use the algorithm of Corollary 12 to select an element !rom the 
middle half of the elements stored at u. Since the strangers at u occupy the extreme 
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ranks of relative size at most 2-7 , this pro duces an element addressed to u, and hence 
a correct answer. The time needed is O(T + (loglogn)4) = O(q + (loglogn)4). We 
hence have 

Theorem 14. For all gi1Jen integers n ~ 4 and q ~ I, approzimate selection problems 
0/ .size n can be .sol1Jed with relati1Je accuracy 2-q u.sing O(q+(log logn)4) time,O(qn) 
operations and O(n) .space. 
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