MAX-PLANCK-INSTITUT
FUR
INFORMATIK

Approximate and Exact Deterministic

Parallel Selection

Shiva Chaudhuri, Torben Hagerup and Rajeev
Raman

MPI-I-93-118 May 1993

— 474<‘\

INFORMATIK

Im Stadtwald
W 6600 Saarbriicken

Germany

Approximate and Exact Deterministic

Parallel Selection

Shiva Chaudhuri, Torben Hagerup and Rajeev
Raman

MPI-1-93-118 May 1993

Approximate and Exact
Deterministic Parallel Selection*

Shiva Chaudhuri,* Torben Hagerup,' and Rajeev Raman’

! Max-Planck-Institut fir Informatik, Im Stadtwald, W-6600 Germany
2 UMIACS, University of Maryland, College Park, MD 20742

Abstract. The selection problem of size n is, given a set of n elements drawn
from an ordered universe and an integer » with 1 < » < n, to identify the
rth smallest element in the set. We study approximate and exact selection
on deterministic concurrent-read concurrent-write parallel RAMs, where ap-
proximate selection with relative accuracy A > 0 asks for any element whose
true rank differs from r by at most An. Our main results are: (1) For all
t > (loglogn)*, approximate selection problems of size n can be solved in
O(#) time with optimal speedup with relative accuracy 2~/ (toglogm)*, ;g de-
terministic PRAM algorithm for approximate selection with a running time
below ©(log n/loglog n) was previously known. (2) Exact selection problems
of size n can be solved in O(log n/loglogn) time with O(nloglogn/logn)
processors. This running time is the best possible (using only a polynomial
number of processors), and the number of processors is optimal for the given
running time (optimal speedup); the best previous algorithm achieves optimal
speedup with a running time of O(log nlog*njloglog n).

1 Introduction

Selecting the element of prescribed rank from an ordered (but not sorted) set is an
important and well-studied problem. Blum et al. [6] showed that selection from a set
of size n can be performed in linear time O(n) sequentially. Considerable research has
gone into determining the parallel complexity of selection. Valiant [20] introduced the
parallel comparison-tree (PCT) model and showed that any deterministic algorithm
in the PCT model for finding the maximum of n elements using p processors requires
2(n/p+log(log n/log(1+p/n))) time. Since finding the maximum is a special case of
selection, this lower bound applies to selection in general as well. Azar and Pippenger
(4], building on the work of Ajtai et al. [1], gave a matching upper bound for the PCT
model. Reischuk [19] showed that in the randemized PCT model, selection can be
done in constant expected time using a linear number of processors, which is clearly
optimal. The problem of selection in the PCT model has therefore been completely
solved. The PCT model counts only comparisons, however, while processing of any
other kind is considered free. For this reason, lower bounds obtained for the PCT
model apply to all parallel comparison-based algorithms, but upper bounds do not
carry over to other, more realistic, models of parallel computation.

In the PRAM model of computation, the upper bounds for the PCT model
demonstrably cannot be matched. It follows as a corollary to the lower bound of

* Supported by the ESPRIT Basic Research Actions Program of the EC under contract No.
7141 (project ALCOM II). Authors’ email addresses: shiva@mpi-sb.mpg.de, torben@mpi-
sb.mpg.de, raman@umiacs.umd.edu.

Beame and Hastad [5] that any (randomized) algorithm that selects the rth smallest
among n elements on a p-processor CRCW PRAM has an (expected) running time of
2(log r/loglog p). In particular, finding the median requires 2(log n/loglogn) time
using any polynomial number of processors. It is not difficult to solve selection prob-
lems of size n in (the best possible) time @(log n/loglogn) on the CRCW PRAM,
but straightforward algorithms for this task use a large number of processors. An
important design goal is to get by with as few operations as possible, where, as usual,
the number of operations executed by a parallel algorithm is defined as the product
of the number of processors used and the number of time steps needed by the algo-
rithm. The obvious sequential simulation of any parallel computation shows that the
number of operations executed by a parallel algorithm for a given problem is always
2(T), where T is the sequential complexity of the problem. A parallel algorithm that
uses only O(T') operations is said to have optimal speedup or to be work-optimal,
because it employs the available processors in the most efficient manner possible (up
to a constant factor). The development of work-optimal algorithms is one of the most
important goals of current research in parallel computation.

In the special case of selection, the result of Blum et al. [6] implies that a
work-optimal algorithm is one that executes O(n) operations. Cole [9] gave a work-
optimal deterministic CRCW PRAM algorithm for selection with a running time
of O(log nlog*n/loglogn), and Dietz and Raman [11] recently described a work-
optimal algorithm that selects the rth smallest among n elements in O(loglogn +
logr/loglogn) time if 1 < r < n!/3, which is the fastest possible for this range of r.
The problem of discovering a deterministic CRCW PRAM algorithm for general selec-
tion that combines work-optimality with the fastest running time of O(log n/loglogn)
has remained unsolved, and no progress was made on this front since the publication
of Cole’s paper.

Attempts have been made to circumvent the lower bounds mentioned above by
replacing exact selection by approximate selection. Here, in addition to a target rank
r € {1,...,n}, an accuracy parameter A > 0 is specified, and the task is to select an
element whose rank is guaranteed to lie between r — An and r + An, which we call
A-selection for rank r. Upper and lower bounds for the complexity of approximate
selection in the PCT model were given by Alon and Azar [3]. In the PRAM setting, the
lower bound of Beatne and Hastad does not apply directly to approximate selection,
although it can be used to place bounds on the accuracy obtainable with a given
amount of resources (i.e., processors and time). Hagerup [13], extending a result of
Goodrich [12], showed that approximate selection problems of size n can be solved
in constant time with high probability on an n-processor CRCW PRAM for A =
1/(logn)°(®), which is the best possible accuracy for the stated time and processor
bounds. On the other hand, no deterministic PRAM algorithms for approximate
selection were previously known.

In this paper we describe deterministic CRCW PRAM algorithms for the problems
of approximate and exact selection. Our main result (Corollary 12) is that for all
t > (log log n)*, approximate selection problems of size n can be solved with optimal
speedup with relative accuracy 2-*/(1°6106%)° The minimum running time is hence
(loglogn)*, but allowing more time yields a better accuracy, a tradeoff that has been
observed before [15, 14, 16]. As an easy corollary of the main result, we derive a
work-optimal algorithm for exact selection with a running time of O(logn/log log n)
(Theorem 13), thereby solving the open problem left by Cole’s paper.

2 Brute-Force Approximate Selection

Without loss of generality we can always assume that the input elements presented
to a selection algorithm are distinct. Given an ordered set A, i.e., a subset of an
ordered universe U, and an element z € U, the rank of z in A, ranks(z), is defined
as [{y € A:y < z}|, and if 4 is nonempty, the relative rank of z in A, pa(z), is
defined as rank4(z)/|A|.

If a sufficient number of processors is available, a selection problem can be solved
simply by independently computing the rank of each element and returning the unique
element whose rank has the desired value. This reduces selection to counting (the
number of smaller elements). Approximate selection similarly reduces to approxi-
mate counting. The following result, a special case of a theorem due to Hagerup [14,
Theorem 6.1], deals with the latter problem.

Lemmal. Let n,t > 4 be given integers with t > (loglogn)® and take
) = 2—tlogloglogn/(loglogn)® Then, given n bits by, ..., bn, an integer r with S b <
r < (14 2) X7, b can be computed using O(t) time and O(n) operations.

Lemma2. Let n,t > 4 be given integers with t > (loglogn)® and take
A = 2-tlogloglogn/(loglogn)® Then given an ordered set A of size n and an inte-
gerr with1 < r < n, an element z € A with (1 — A\)r < ranks(z) < (1 + X)r can be
computed using O(t) time and O(n?) operations.

Proof. Let A = {z1,...,2a}, compare z; and z; for all 7,5 € {1,...,n} and express
the result in the form of an n x n boolean matrix. Then apply the algorithm of
Lemma 1 independently to each row of this matrix to compute integers r1,...,7n
such that ranka(zi) < ri < (14 A)ranka(z;), for 2 = 1,...,n, and return any z;
with r < r; < (14 X)r.

The relation r < r; < (14 A)r is satisfied for at least one element z;, namely the
one of rank r. On the other hand, it clearly is not satisfied for any element of rank
larger than (1 + M)r, and since (1 + A)(1 = A)r < r, it cannot be satisfied for any
element of rank smaller than (1 — A)r either. The algorithm is therefore correct. O

3 Sampling

This section studies certain properties of sampling. Some of the arguments parallel
ones made in [16].

We allow an element of a set A to be included more than once in a sample of 4,
i.e., the sample is a multisubset of A. Following [16], we define a ranking function on
a nonempty multiset B as any function rankp that maps each element z outside of
B to the number of elements y € B with y < z, and that maps B itself bijectively
to {1,...,|B|} in an order-preserving fashion, i.e., for all z,y € B, if £ < vy, then
rankp(z) < rankp(y) (in other words, a total order is imposed on B). We also define
a relative ranking function on B as any function of the form rankg/|B|, where rankp
is a ranking function on B.

Definition3. Let A > 0. A nonempty multisubset B of an ordered set A is a -
sample of A if for some relative ranking function pp on B (and therefore for all such
functions), |pa(z) — pa(2)| < A, for all z € B.

Lemmad4. Let n and m be positive integers with m dividing n, let A be an ordered
set of sizen and let A > 0. Suppose that z; is obtained by \-selecting from A for rank
l-n/m, forl =1,...,m. Then the multiset {z1,...,2m} s a A-sample of A.

Proof. By construction, |p4(z1)— #| < A forl=1,...,m.Let rankp be an arbitrary
ranking function on B = {z,...,zm} and fix i € {1,..., m}. Taking j = rankp(z;),
our goal is to show that |p4(z;) — %| < A. We distinguish between three cases.
Case 1: 1 = j. The claim follows immediately.

Case 2: i > j. Since rankp is a bijection from B to {1,...,m}, there must be some
l € {1,...,5} with rankp(z;) > j. But then z; > z; and hence ps(z;) — £ <
pa(z1) — # <). On the other hand, pa(z:) — -1-7; > palzi) — -;—‘ > —A\. The claim
follows.

Case 3: i < j. Symmetrical to Case 2. O

Lemmab. Let A > 0 and let m be a positive integer. Furthermore let A,,..., Ay, be
disjoint sets of a common size, and let By,..., By, be A-samples of a common size of
Az, ..., Am, respectively. Then B = Ji~, B; is a (A+1/|B1|)-sample of A = =, A:.

Proof. Let rankp be an arbitrary ranking function on B, and let rankp; be a rank- .
ing function on B; consistent with rankg, for ¢ = 1,...,m, i.e., for all 2,y € B;,
rankp;(z) < rankp,(y) if and only if rankp(z) < rankp(y).

Let z € |2, B, fix i € {1,...,m} and let r = rankp,(z). If r < |B;|, the rank
of z in A; is no larger than the rank in A; of the element in B; of rank r+ 1 in B;,
1.e., no larger than

A
(r+ 1) }g‘: + M4 =(r+ 1)||—E= + A4l
This relation obviously also holds if » = | B;|. Summing it for ¢ = 1,...,m, we obtain
Al Al |4l
k < rank — = -
rank4(z) < ran B(z)wl |B| + 4| = rankg(a:)lBl A+ IB |4].
Arguing similarly, one easily shows that rank4(z) > rank B(z){%ll - A|Al. 0

Lemma8. Let n,k,t > 4 be given integers with t > (loglogn)® such that (8k)®
divides n and let X = 2—tlogloglogn/(loglogn)® Then, given an ordered set A of size n,
a (A/(12loglog n) + 1/(8k))-sample of A of size n/(8k) can be computed using O(t)
time and O(k®n) operations.

Proof. Partition A into n/(8k)? groups of (8k)? elements each and use the algorithm
of Lemma 2 in parallel for each group and for each 7 € {1, ..., 8k} to (A/(121oglog n))-
select for rank i - 8. By Lemma 4, this produces a (A/(12log logn))-sample of each
group. Return as the final sample the union of the group samples, which, by Lemma 5,
is a (A/(12loglog n) + 1/(8k))-sample of A. 8]

Lemma?7. Let A\,)\’ > 0 and let A be an ordered set. Suppose that B is a A-sample
of A and that C is a N'-sample of B, where a total order is imposed on B by means
of a relative ranking function pp on B (otherwise it makes no sense to speak of a
X'-sample of B). Then C is a (A + X')-sample of A.

Proof. Let pc be a relative ranking function on C consistent with the order on B

imposed by pp (i.e., for all z,y € C, if pp(z) < pB(y), then pc(z) < pc(y)). Then
forall z € C, |pa(2z) ~ pe(e)| < |pa(z) — pa(2)| + |pB(2) — Pe(z)| < A+ X O

4 Work-Optimal Approximate Selection

Our algorithm has the same top-level structure as that of Cole [9]; the details differ.
The algorithm consists of two loops, one nested within the other. The outer loop
makes progress by eliminating more and more elements from consideration. Since the
remaining elements are always those between a lower and an upper limit, similarly as
in the case of binary search, the outer loop can be thought of as narrowing down the
“search interval”. When the search interval has become so small that an arbitrary
element in the search interval is an acceptable answer, the algorithm returns such an
element and stops.

Each iteration of the outer loop is called a stage. A stage works by computing a
sample B of the input set A of the current stage (i.e., of the elements in the current
search interval) with the property that, on the one hand, B is sufficiently small to
make brute-force selection from B according to Lemma 2 feasible and, on the other
hand, B represents A faithfully in the sense that the relative rank of an element in
B is a good approximation of its relative rank in A. The goal of the algorithm at
this point is to select an element from A whose rank in A4 is within m of r, for some
integers m and r. Approximate selection from B is then used to obtain two elements
zyz, and zx of A with ;7 < zy whose ranks are as close as possible, but guaranteed
to be on either side of r. An approximation of the number of elements smaller than
zz, is then computed and subtracted from r, after which the next stage operates on
the elements between z;, and zx with an absolute accuracy slightly smaller than m
(to counteract the inaccuracy incurred in counting the number of elements smaller
than = L)-

Computing the sample B is the task of the inner loop, whose single iterations
are called rounds. The inner loop works by gradually thinning out a sample, which
initially is the full input set A and at the end is the final sample B returned to the
outer loop. The size of B always lies between |A|*/* and |A|'/2, while the quality of
B as a sample of A will depend on the processor advantage (number of processors
per element) initially available for the computation of B. The processor advantage
derives from the progress of the outer loop: When the search interval has narrowed
down to the point where it contains only n/k elements, for some k > 1, the processor
advantage available to the inner loop will be essentially k, which allows B to be
computed as a 1/k-sample of A. This in turn allows the search interval to be narrowed
down by a factor of roughly k, so that the initial processor advantage available to
the inner loop of the next stage will be about k2. The processor advantage therefore
increases doubly-exponentially. If A is the relative accuracy of the top-level selection,
the narrowing process stops when the number of elements in the search interval has
dropped to about An; by the above, this happens after O(loglog(1/X)) stages.

The gradual thinning-out in each stage mentioned above is done by means of
repeated subsampling in O(loglogn) rounds and is characterized in the following
lemma.

Lemma8. Let n and k be given powers of 2 with 26 < k < n!/3, lett > (loglog n)*
be a given integer and take A = 2-t10gloglogn/(loglogn)* Then given an ordered set
A of size n, a max{)\, 1/k}-sample B of A with n'/* < |B| < n!/? can be computed
using O(t) time and O(k3n) operations.

Proof. Take k3 = k and By = A and execute a number of rounds. In Round i, for i =
1,2,...,do the following: Spending O(t/loglog n) time, use the algorithm of Lemma 6
to compute a (A/(12loglogn) +1/(8k;))-sample of B;_, of size |B;_1|/(8k;), call this
sample B; and let k;;1 be the largest power of 2 no larger than min{k?ls, v/ |Bi|/8}-
Take B as the first sample of size < n'/? encountered in this process.

If for some i we have |B;| > n/2, but k{/® > |/[B;|/8, we will have kizy >
V/|B:/16 and hence |B;11| < 24/]Bi| < n'/?, ie., the (i + 1)st round will be the
last. Let T be the number of rounds executed. By the observation just made, k;4; >
k2/%/2 > k7/S, for i = 1,...,T — 2 (recall that k > 2°), so that k; > k("/9"", for
1= 1,...,T — 1. In particular, k(7767 < n, which can be shown to imply that
T < 6loglog n.

Since k}.,|B;i| < k3|Bi-1|/8, for i = 1,...,T — 1, it is easy to see that the
total number of operations executed is indeed O(k3n). We have k;y; > 2k;, for
i=1,...,T—2, and either kr > 2kr_; as well, or kr > /|Br_1]/16 > n*/%/16 > k.
In either case Eg':l(l/k;) < 3/k. By Lemma 7, B is a M'-sample of A, where) =
ST (A/(121oglog n) +1/(8k;)) < A/2+41/(2k) < max{), 1/k}. Finally observe that
|B| = |Br| > /[Br-1] > n?/*. o

The following two lemmas describe the reduction of the “search interval” per-
formed in a single stage of the outer iteration, whereas the outer iteration as a whole
is treated in the proof of Theorem 11. To select for rank r with absolute accuracy m
is to select an element whose rank differs from = by at most m.

Lemma9. Let n,m,t,q > 4 be given integers with t > (loglogn)3, take A\ = 2~¢
and pu = 2-tlogloglogn/(loglogn)® gng syppose that m > un. Then, given an ordered
set A of size n and a M-sample B of A with n*/* < |B| < nl/2, O(t) time and O(n)
operations suffice to reduce the problem of selection from A with absolute accuracy m
to that of selection from a set of size at most 10An with absolute accuracy m — un.

Proof. Let ' = 2-[tMogloglogn]/loglogn]*1 We can assume without loss of generality
that u'n > 9(2n3/ % 4 1), since otherwise ¢ = £2(log n), in which case the problem can
be solved using Cole’s selection algorithm [9].

Assume that the task is to select from A for rank r with a.bsolute accuracy m.
Let A" = max{), u'/9} and rz = |(r/n — 2X)|B||. H r; < 1, compute ¢ as min A.
Otherwise use Lemma 2 to A’-select from B for rank r; and let z; be the resulting
element.

We will show that the rank of z; in A is at most r. Since this is obvious if
z7 = min A, assume that this is not the case. Then the rank of zz in B is at most
r+A'|B| < (r/n—X')|B|. Since B is a M'-sample of 4, the rank of zz, in A therefore
is at most (r/n— X + X)|4|=7r.

Similarly, let rg = [(r/n + 2)")| B[] and obtain zgx by M'-selecting from B for
rank rg, unless 7 > |B|, in which case we take 2y = max A. The rank of zz in A
is at least 7.

Next partition A into the sets Ay = {z € A:z< 21}, Ay ={z €A:z <
z<zp}and Ag = {z € A: z > zg}, i.e., mark each element in A with the set to
which it belongs. The rank of z; in B is at least |(r/n — 2X')|B|| — X|B| > (r/n —
3)\ —1/|B|)|B|, and the rank of zz, in A therefore is at least (r/n—4) —1/|B|)|4| >

r — 4\'n — n®/4, Similatly, the rank of 2z in A is at most + 4)\'n.+ n®/%, and hence
|Apr| < 8XMn+2n3/% 41 < 9Nn.

If X =), |Axm| < 9Xn, and the approximate compaction algorithm of [14] can be
used to store the elements of A, in an array of size at most 10\n, unused cells of which
are filled with dummy elements with a value of co. We will show that selecting from
A with absolute accuracy m reduces to selecting from Ajs with absolute accuracy
m — un. First the algorithm of Lemma 1 can be used to compute an integer s with
|4z] < s < (1 + p)|AL|. It is now easy to see that if the rank of an element in Ay
is within m — un of »’ = r — s, then its rank in A is within m of r, as desired (in
particular, the dummy elements do not change the rank of any real element).

If X #), we have |[Ap| < 9Vn = p'n < m, so that the rank in 4 of any element
in Ay is within m of r; we can hence return an arbitrary element of Aps as the
answer. (]

Lemma10. Let n and k be given powers of 2 with 26 < k < n'/8 and let t and
m be given integers with t > [logk/logloglogn](loglogn)* and m > un, where
p = 2-tlogloglogn/(loglogn)’ Then O(t) time and O(k®n) operations suffice to reduce
the problem of selection from A with absolute accuracy m to that of selection from a
set of size at most (10/k)n with absolute accuracy m — pn.

Proof. Let A = 2-tlogloglogn/(loglogn)* 5nd note that A < 1/k. The algorithm of
Lemma 8 can be used to compute a (1/k)-sample B of A with n'/% < |B| < nl/2,
and the claim can be seen to follow from Lemma 9, used with ¢ = log k. O

Theorem 11. For all given integers n > 16 and ¢ > (loglogn)*, approzimate selec-
tion problems of size n can be solved with relative accuracy X using O(t) time, O(n)
operations and O(n) space, where

- 2_21/(10: log n)* ’ ift < (108 log TL)4 log(‘i)n;
92—t logloglogn /(loglogn)* , 1f t> (log log n)4 108(4)71'

Proof. Without loss of generality we can assume that A > 1/n, since otherwise ¢ =
f2(log n), so that the problem can be solved using Cole’s algorithm [9], and that n is
a power of 2 larger than 16032. Let m = An, so that the problem is to select from a
set of size n with absolute accuracy m. As mentioned earlier, the main part of our
algorithm consists of T' stages, for some integer T' > 0. For i = 1,...,T, Stage ¢
transforms a problem of selection from a set A; of size n; with absolute accuracy m;
to one of selection from a set A;.; of size n;4; with absolute accuracy m;,;, where
N4 is significantly smaller than n;, while m;; is slightly smaller than m;, and both
n; and n;4+; are powers of 2. In particular, n; = n and m; = m. T is the smallest
nonnegative integer such that nyy; < mpyy or nd,; < n.

We now describe Stage %, for ¢ € {1,...,T}. Let k; be the smallest power of 2
lazger than 40[(n/n;)'/%] and take ¢; = [log k;/|logloglog n|][loglog n]*. For i =
1,...,T,n; > n'/? and hence k; < 160n1/32 < n1/16 < n‘-lls. We will show below that
m; > pn;, where y = 2-tlogloglogn/(loglogn)*~2 gpending O(t; +1/loglog n) time, we
can therefore use the algorithm of Lemma 10 to reduce the problem at hand to one of
selection from a set A;; of size at most n;4; with absolute accuracy m;1 = m;—pun;,
where n;; is the smallest power of 2 larger than (10/k;)n;. We increase the size of

A4, to exactly niyy by adding a suitable number of dummy elements with a value
of co and note that n;y < (20/k;)n;.
Fori=1,...,T-1,

n n 2n(n/n,~)1/16 (n) 17/16
> > =2|— .
niy1 — (20/k;i)ng n; n;

In particulazr, ni4y < ni/2,for i =1,...,T — 1, so that E?:ﬂ"i < 2n. Noting that
< A/4, we will now prove that m; > un;, fori=1,...,T, as claimed above. Since
m = An > 4un, it suffices to show that my > m/2. But m — my = yzg':'lln,- <
2un < m/2, as required.

After Stage T, the computation is finished in one of two ways. If npy1 < mryg,
we simply return an arbitrary element of Ar;, which is obviously correct. Otherwise,
nZ. +1 < n, and we use the algorithm of Lemma 2 to select from Az, with absolute
accuracy m/2, for which O(t) time amply suffices. Since mzr > m/2, this is also
correct.

It remains to estimate the time and the number of operations needed by the algo-
rithm. We begin by bounding the number of stages. Since n/n;1 = 0((n/n;)*7/6),
we have kiy1 = O((n/nig1)/ %) = O((n/n) V") = OkY), for i = 1,..., T~ 1.
Now if T > 2, (20/kr—1)nr-1 > nr > m/2 and hence kr_; < 40np_;/m < 40/,
which implies that T' = O(loglog(4/})).

The processing after Stage T' obviously uses O(t) time and O(n) operations. The
total number of operations executed in Stages 1 through T is

o (i k?m) =0 (i(n/m)zhsm)': O(n i(n‘_/n)n/m) = O(n),

where the last relation follows from the rapid growth of the sequence {n/n;}7_,. The
time needed by Stages 1 through T, finally, is

; : T I.1_ logks \
O(g(t{ e loglogn)) = O(m + Z[m] (loglog n))

i=1
ET: log k
og ks

= log k
_ i=1 4) — g kT 4
=0 (t + (T + Togloglogm n) (log log n)) o (t + (T + aloslonn n) (loglogn))
= O(t + (loglog(4/X) + log(4/))/loglog log n)(log log n)*).

A case analysis shows that the latter expression is O(t). u}

Corollary 12. For all given integers n > 4 and t > (loglogn)*, approzimate selec-
tion problems of size n can be solved with relative accuracy 2~/ (oglogn)* using O(t)
time and O(n) operations. In particular, for any constant A > 0, A-selection problems
of size n can be solved in O((loglogn)*) time with optimal speedup.

5 Work-Optimal Exact Selection

Armed with a reasonably accurate work-optimal algorithm for approximate selection,
it is an easy matter to derive a work-optimal algorithm for exact selection. The
algorithm is similar to one stage of the algorithm of Theorem 11. We now provide
the details.

Theorem 18. For all integers n > 4, selection problems of size n can be solved using
O(logn/loglogn) time, O(n) operations and O(n) space.

Proof. Suppose that the task is to select the element of rank r from a set A. Ap-
plied with ¢ = @(logn/loglog n), the algorithm of Corollary 12 allows us to compute
two elements zp,zg € A with ranks(zr) < r < ranks(zy), but ranks(cg) -
ranka(zr) = O(n-2"V1°5"). Next partition A into the sets A ={e € A:z <z},
Ay ={z € A: 2z <z <zg}and Ay = {x € A: 2 > zg} as in the proof of
Lemma 9. Then use exact prefix summation [10, Theorem 2.2.2] to determine |Ay|
and to store the elements of Ajs in an array of size [Apy| = O(n - 2-VI°6™), The
remaining problem is to select the element of rank r — |Af| from Aps, which triv-
ially reduces to sorting Aps. The latter task can be accomplished using the algorithm

of Cole [8, Theorem 3], which, given the available processor advantage of 20(/logn)
runs in O(log n/loglogn) time. u]

6 Increasing the Accuracy

At the price of increasing the number of operations slightly, we can obtain a better
accuracy than that provided by Theorem 11. Specifically, in O(%) time, we achieve a
relative accuracy of 2-%, as compared to the approximately 2~ tlogloglogn/(loglogn)* of
Theorem 11. Our algorithm is based on the AKS sorting network [2] and further im-
provements and expositions of it [17, 18, 7]. In a manner first used in [1], we simulate
the initial stages of the operation of the network in order to focus on an interesting
subset of the elements.

For an input of size n, where n is a power of 2, the AKS network can be thought
of as moving the elements between the nodes of a complete binary tree with n leaves
numbered 1,...,7n from left to right. Say that an element is addressed to a node u in
the tree if its rank is the number of a leaf descendant of u, and that it is a stranger
at u otherwise.

The analysis of the AKS network in [7] can be shown to imply the following: For
every integer i with 1 < 7 < logn, there is a positive integer T' with T = O(2),
computable from 7 in constant time, such that after T' stages of the operation of the
network and for any node u at depth 7 in the tree, the number of keys at u is nongero,
but the fraction of strangers among these is at most 2~ 7.

Let n > 4 be a power of 2 and let ¢ be a positive integer. In order to use the
above to A-select from n elements, where A = 279, we proceed as follows: Choose the
positive integer ¢ minimal such that there is a node u at depth i with the property
that every element addressed to u is a valid answer to the selection problem; it is
not difficult to see that : = O(g). Then compute T from i, run the AKS network for
T stages and finally use the algorithm of Corollary 12 to select an element from the
middle half of the elements stored at u. Since the strangers at u occupy the extreme

ranks of relative size at most 2~7, this produces an element addressed to u, and hence
a correct answer. The time needed is O(T + (loglogn)*) = O(g + (loglogn)*). We
hence have

Theorem 14. For all given integersn > 4 and g > 1, approzimate selection problems
of sizen can be solved with relative accuracy 2~7 using O(g+ (loglogn)*) time, O(gn)
operations and O(n) space.

References

1.

o

- 10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.

M. Ajtai, J. Komlés, W. L. Steiger, and E. Szemerédi. Optimal parallel selection has
complexity O(loglog N). Journal of Computer and System Sciences, 38 (1989), pp.
125-133.

. M. Ajtai, J. Komlés, and E. Szemerédi. An O(nlogn) sorting network. In Proc. 15th

ACM STOC (1983), pp. 1-9.

. N. Alon and Y. Azar. Parallel Comparison Algorithms for Approximation Problems.

Combinatorica, 11 (1991), pp. 97-122.

Y. Azar and N. Pippenger. Parallel selection. Discrete Applied Mathematics, 27
(1990), pp. 49-58.

P. Beame and J. Histad. Optimal bounds for decision problems on the CRCW PRAM.
Journal of the ACM, 38 (1989), pp. 643-670.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for
selection. Journal of Computer and System Sciences, 7 (1973), pp. 448—461.

V. Chvatal. Lecture notes on the new AKS sorting network. DIMACS Technical
Report 92-29, 1992.

. R. Cole. Parallel merge sort. SIAM Journal on Computing, 17 (1988), pp. 770-785.

R. Cole. An optimally efficient selection algorithm. Information Processing Letters,
26 (1988), pp. 295-299.

R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list ranking. Infor-
mation and Computation, 81 (1989), pp. 334~352.

P.F. Dietz and R. Raman. Heap construction on the CRCW PRAM. In preparation,
1993.

M. T. Goodrich. Using approximation algorithms to design parallel algorithms that
may ignore processor allocation. In Proc. 32nd IEEE FOCS (1991), pp. 711-722.

T. Hagerup. The log-star revolution. In Proc. 9th STACS (1992), LNCS 577, pp.
259-278.

T. Hagerup. Fast deterministic processor allocation. In Proc. 4th ACM-SIAM SODA
(1993), pp. 1-10. '

T. Hagerup and R. Raman. Waste makes haste: Tight bounds for loose parallel sorting.
In Proc. $8rd IEEE FOCS (1992), pp. 628-637.

T. Hagerup and R. Raman. Fast deterministic approximate and exact parallel sorting.
In Proc. 5th ACM SPAA (1993), to appear.

M. S. Paterson. Improved sorting networks with O(log N) depth. Algorithmica, 5
(1990), pp. 75-92.

N. Pippenger. Communication Networks. In Handbook of Theoretical Computer Sci-
ence, Vol A, Algorithms and Complezity (J. van Leeuwen, ed.). Elsevier/The MIT
Press (1990), Chapter 15, pp. 805-833.

R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM Journal
on Computing, 14 (1985), pp. 396—409.

L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing, 4
(1975), pp. 348-355.

10

	93-1180001
	93-1180002
	93-1180003
	93-1180004
	93-1180005
	93-1180006
	93-1180007
	93-1180008
	93-1180009
	93-1180010
	93-1180011
	93-1180012
	cover-hinten_2099-2897-300dpi

