NAGA: Searching and
Ranking Knowledge

Gjergji Kasneci, Fabian M.
Suchanek, Georgiana Ifrim, Maya
Ramanath, and Gerhard Weikum

MPI-1-2007-5-001 March 2007

Authors’ Addresses

Gjergji Kasneci
Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Fabian M. Suchanek
Max-Planck-Institut fur Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Georgiana Ifrim
Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Maya Ramanath
Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Gerhard Weikum
Max-Planck-Institut fur Informatik
Stuhlsatzenhausweg 85

66123 Saarbriicken

Germany

Abstract

The Web has the potential to become the world’s largest knowledge base.
In order to unleash this potential, the wealth of information available on the
web needs to be extracted and organized. There is a need for new querying
techniques that are simple yet more expressive than those provided by stan-
dard keyword-based search engines. Search for knowledge rather than Web
pages needs to consider inherent semantic structures like entities (person,
organization, etc.) and relationships (isA, locatedIn, etc.).

In this paper, we propose NAGA, a new semantic search engine. NAGA’s
knowledge base, which is organized as a graph with typed edges, consists of
millions of entities and relationships automatically extracted from Web-based
corpora. A query language capable of expressing keyword search for the ca-
sual user as well as graph queries with regular expressions for the expert,
enables the formulation of queries with additional semantic information. We
introduce a novel scoring model, based on the principles of generative lan-
guage models, which formalizes several notions like confidence, informative-
ness and compactness and uses them to rank query results. We demonstrate
NAGA’s superior result quality over current search engines by conducting a
comprehensive evaluation, including user assessments, for advanced queries.

Keywords

Semantic Search, Entities, Relationships, Ranking

Contents

1 Introduction
1.1 Motivation
1.2 Our Approach and Contributions

2 Related Wo

rk

3 The Knowledge Base
3.1 The Data Model
3.2 Building the Knowledge Graph

4 Query Lang

uage

4.1 Formal Query Model L.
4.2 Query types

5 Ranking Answer Graphs
5.1 Language Modelo
5.2 The Background Model

6 Query Processing

7 FEvaluation

7.1 Influence of ranking desiderata
7.2 User Study
7.2.1 Benchmarks L.
7.2.2 Competitors
7.2.3 Measurementso

7.3 Results

8 Conclusions

10
10
12

14
15
19

20

23
23
25
25
25
26
29

31

1 Introduction

1.1 Motivation

The World Wide Web bears the potential of being the world’s most compre-
hensive knowledge base, but we are far from exploiting this potential. The
Web includes a wild mixture of valuable scientific and cultural content, news
and entertainment, community opinions, advertisements, as well as spam and
junk. Unfortunately, all this is coiled up into an amorphous pile of hyper-
linked pages, and keyword-oriented search engines merely provide best-effort
heuristics to find relevant “needles” in this humongous “haystack”.

As a concrete example, suppose we want to learn about physicists who
were born in the same year as Max Planck. First, it is close to impossible
to formulate this query in terms of keywords. Second, the answer to this
question is probably distributed across multiple pages, so that no state-of-the-
art search engine will be able to find it, and third, the keywords “Max Planck”
could stand for different world entities (e.g., the physicist Max Planck, the
Max-Planck Society, etc.). In fact, posing this query to Google (by using the
keywords “physicist born in the same year as Max Planck”) yields only pages
about Max Planck himself, along with pages about the Max-Planck Society.

This example highlights the need for more explicit, unifying structures for
the information of the Web. For example, a knowledge base that could under-
stand binary predicates, such as Max_Planck isA physicist or Max_Planck
bornInYear 1858, would go a long way in addressing information needs such
as the above. Combined with an appropriate query language and ranking
strategies, users would be able to express queries with semantics and retrieve
precise information in return.

There are several ways of addressing the envisioned functionality, and
there are several research avenues that aim at this direction in a broader
sense. Large-scale information extraction from semistructured corpora or
unstructured text sources has made great progress in recent years [2], but it
is not addressing the querying of the acquired knowledge. Graph querying
such as RDF-based languages or data mining on biological networks is a di-
rection that is gaining momentum [32], but does not consider the potential

uncertainty of the data and disregards the need for a ranking model. Fi-
nally, entity-oriented Web search and other forms of “semantic” information
retrieval [11] provide ranking but have rather simple query models such as
keyword search. Ranked retrieval on XML data like XQuery Full-Text [5] are
more expressive but focus on trees and do not carry over to richer knowledge
graphs. Our work positions itself at the confluence of these research avenues
and creates added value by combining techniques from all of them and further
extending this synergetic approach by various novel building blocks.

1.2 Ouwur Approach and Contributions

In this paper, we describe NAGA, our new semantic search engine. NAGA’s
data model is a graph, in which the nodes represent entities and the edges
represent relationships between the entities. We call an edge in the graph
with its two end-nodes a fact. Facts are extracted from various Web-based
data sources. To each fact, we attach a confidence measure, which reflects the
authority of the source of extraction as well as the certainty of the extraction
process. Furthermore, we maintain all URLs of Web pages in which a certain
fact occurred. NAGA’s knowledge base currently consists of 34 million facts
extracted from semi-structured Web-based sources such as Wikipedia and
IMDB as well as hand-crafted ontologies such as WordNet [28]. Addition-
ally, we utilize state-of-the-art extraction tools such as LEILA[47] in order to
extract facts from unstructured Web-pages containing natural language text.

isA — isA
physicist
.
borninYear borninYear

Figure 1.1: Query: Physicists born in the same year as Max Planck

In order to query the knowledge-graph, NAGA provides a graph-based
query language. The query language allows the formulation of queries with
semantic information. For example, Figure 1.1 shows how the preceding
query about physicists born in the same year as Max Planck can be formu-
lated with the explicit semantic information that “Max Planck” is a physicist.
NAGA also allows more complex graph queries with regular expressions over
relationships on edge labels.

NAGA returns multiple answers for some queries. In order to rank these
answers, we propose a novel scoring mechanism based on the principles of
generative language models for document-level information retrieval [41, 52].
Language models have been very successful in IR, but have so far been re-
stricted to entire documents or passages as retrieval units, using generative
models for bags of words or n-grams. We introduce a new scoring model for
the specific and unexplored setting of weighted, labeled graphs. Our scoring

model is extensible and tunable and takes into consideration several intuitive
notions such as compactness, informativeness and confidence of the results.
Our major contributions in this paper are the following:

e A graph-based knowledge representation model and tools for knowledge
extraction from Web-based corpora, building on and extending our
earlier work on the YAGO ontology [48]

e A novel, expressive yet concise query language for searching a Web-
derived knowledge base

e A novel scoring and ranking model based on a generative language
model for queries on weighted and labeled graphs

e An evaluation of the search-result quality provided by NAGA, based on
user assessments and in comparison to state-of-the-art search engines
like Google and Yahoo! Answers.

The rest of the paper is organized as follows. Chapter 2 discusses related
work. Chapter 3 describes NAGA’s knowledge base and introduces the graph-
based data model of NAGA. Chapter 4 explains the query language with
several examples of its use. In Chapter 5, we present our novel scoring model.
Chapter 6 discusses the query processing algorithms and Chapter 7 presents
experiments in comparison to conventional Web search engines. Finally, we
conclude in Chapter 8.

2 Related Work

The Semantic Web community has advocated OWL and RDF as the mod-
els for Web scale knowledge representation [46, 7]. However, these models
cannot express uncertainties and different confidence levels. RDFS, which
can be seen as a schema for annotated graph structures, has recently been
extended by means for annotations [49], but this has not yet found appli-
cations in the community. There have also been recent proposals, to create
“semantic” annotations for hyperlinks (e.g. “Semantic Wikipedia” [50]), Web
pages and images (e.g., del.icio.us and flickr.com) by means of social tagging
(e.g., [26]). The rationale is that the “wisdom of crowds” may lead to “folk-
sonomies” with expressive tags and latent structure (e.g., [23]). However, all
these proposals require humans to create, annotate, and maintain the knowl-
edge representation, which is in contrast to NAGA’s approach of automated
knowledge extraction and maintenance.

Information extraction (IE) methods have been studied for about a
decade now; [17, 19, 24, 2] provide excellent overviews of the state of the
art. Recently, significant advances on the scalability and robustness of IE
techniques have been made (e.g., [1, 37, 8, 47]). The most prominent work
that has leveraged IE for casting the Web into relational knowledge is prob-
ably the KnowlItAll project [27] and recent projects such as ExDBMS [10]
and AVATAR [39]. NAGA uses state-of-the-art IE and captures confidence
levels of imperfect extraction. In addition and in contrast to the above work,
NAGA considers this uncertainty aspect at query time by means of an elab-
orate ranking method for complex queries based on principles of statistical
language models, the latter being one of the cornerstones of modern infor-
mation retrieval (IR) for text documents [41, 52].

Our query language is akin to the RDF query language SPARQL [18]
and XML query languages such as XPath or XQuery. However, all these
languages disregard the issue of uncertainty. More related to our work is
the research on XML IR for ranked retrieval (see [4, 5] and the references
given there). This line of work, however, does not consider graph structures
that reflect Web connectivity or arbitrary relations that could be viewed as
typed edges in a graph. SPARQL-style languages are geared for graphs (see,

e.g., [6, 29] for recent, powerful models), but do not consider uncertainty and
treat ranking as a second-class citizen.

Deep-Web search, vertical search and entity search on the Web, and se-
mantic desktop search [12, 13, 14, 15, 22, 25, 44, 43, 42] enhance keyword-
based querying by typed attributes, but none of these approaches is suffi-
ciently complete for effectively searching a richly structured knowledge base.
Finally, there is prior work on graph-oriented text search in various forms.
Schema-oblivious keyword search in relational databases operates on a graph
that is created by the foreign-key relationships in the database. BANKS [9],
DBXplorer [3], and DISCOVER [35] are the most prominent, early systems
of this kind. More recent work along these lines has focused on efficiency is-
sues (21, 33, 38, 40, 45] and did not explore richer functionality. These kinds
of data graphs can be generalized into networks of entities and relationships
[11], and similar graph structures also arise when considering XML data
with XLinks and other cross-references within and across document bound-
aries [31, 16]. However, these methods operate on text nodes in a graph, but
without using explicit relation types in advanced queries. In contrast, NAGA
has a notion of typed edges that correspond to binary relations between en-
tities, and can utilize this additional knowledge for more precise querying
(along with a principled ranking model).

NAGA’s querying power is most comparable to, but goes beyond, the
search capabilities of Libra [43], EntitySearch [14], and ExDBMS [10], all
of which also operate on relations extracted from Web data. Each of them
has salient properties that are not matched by NAGA, but also significant
shortcomings compared to the rich functionality of NAGA. Libra focuses
on entities and their attributes, using a novel record-level language model.
However, it does not address general relations between different entities, and
its query model is keyword-centric. EntitySearch facilitates search that can
combine keywords and structured attributes in a convenient and powerful
manner, and it has an elaborate ranking model for result entities. However,
it does not address typed relations between entities and SPARQL-style path
expressions on knowledge graphs, and its ranking model is very different
from ours. ExDBMS uses powerful IE tools to capture entities and typed
relations, and its query model supports this full suite as well. It uses a
probabilistic form of Datalog for search [20]. In contrast, NAGA uses a
graph-based search paradigm that is more expressive by supporting regular
expressions on paths and a very general form of relatedness queries, with
joins along edges as a special case. Also, the ranking model of ExDBMS
is not nearly as comprehensive as NAGA’s language-model-based approach,
and the experimental results in [10] are very preliminary.

3 The Knowledge Base

3.1 The Data Model

Formally, our data model is a directed, weighted, labeled multi-graph
(V,E,Ly,Lg). V is a set of nodes, E C V x V is a multi-set of edges,
Ly is a set of node labels and Lg is a set of edge labels. Each node v € V' is
assigned a label [(v) € Ly and each edge e € E is assigned a label [(e) € L.

Each node represents an entity. For example, a node v with label
[(v) = Max_Planck(physicist) represents the physicist Max Planck. Each
edge stands for a relationship between two entities. For example, if w
is a node with label [(w) = 1858, then the fact that Max Planck was
born in 1858 is represented by an edge e = (v,w) with the edge label
l(e) = bornInYear. We call the edges of the knowledge graph facts and
identify them by their edge label and the two node labels. For example, we
write simply Max Planck(physicist) bornInYear 1858.

In our setting, facts are collected by information extraction from Web
sources. Since the sources may be unreliable, we have to estimate the con-
fidence for each fact. This confidence depends on the trust we have in the
Web source s, tr(s), from which the fact was extracted. ¢r(s) can be approxi-
mated, e.g., by the Page Rank of the Web page. Furthermore, the confidence
depends on the estimated accuracy acc(f,s) with which the fact f was ex-
tracted from the Web source s. This accuracy value is usually provided by
the extraction mechanism. Suppose that a fact f was extracted from the
Web sources sq,...,s,. We add f only once to the knowledge graph and
compute its confidence value as

c(f) = %Zacc(f, si) - tr(s;) (3.1)

When a fact was extracted form a Web source, we call that source a witness
for the fact. With each fact f, we store its set of witnesses W (f). The ratio-
nale behind the above formula is that the confidence in a fact f is computed
as the mean value of extraction accuracy and trust accumulated across all
the witnesses of f.

subClassOf

person

subClassOf / g 99

subClassOf

classes

subClassOf [g9 subClassOf subClassOf

physicist institute

instanceOf | 0.95 0.95 | instanceOf instanceOf| 0.95 2
=
— - locatedin \L E
IMax Planck(physmlst)l |Max Planck Institute j =
=

means\ 0.98 0.97 47 ns -
g

\

Figure 3.1: Example fragment of the knowledge graph

From an ontological point of view, we distinguish the following three kinds
of entities in the knowledge graph:

1. A word refers to an entity via the means relation. For exam-
ple, the string “Dr. Planck” may be used to refer to the entity
Max Planck(physicist). This is reflected in our data model as “Dr.
Planck” means Max Planck(physicist). Different words may refer to
the same entity (synonymy) and the same word may refer to different
entities (ambiguity).

2. An individ-
ual is a real-world object. For example, Max_Planck(physicist) or
Germany, are individuals.

3. A class is an entity that represents a group of similar individuals. For
example, the class physicist represents the group of all physicists. We
use the instance0Of relation to state that an individual belongs to a
class: Max_Planck(physicist) instanceOf physicist

The classes are arranged in a hierarchy by means of the subClassOf
relation. The root of this hierarchy is the class entity.

3.2 Building the Knowledge Graph

Currently, NAGA makes use of three basic sources of information. The first
is WordNet [28], a comprehensive thesaurus of the English language. Each
word sense in WordNet (i.e. each set of synonymous words) becomes a class

in NAGA’s knowledge graph (we exclude the proper names from WordNet).
WordNet arranges the word senses in a hierarchy, where a more general sense
is above the more specific senses (e.g. “scientist” is above “physicist”). This
hierarchy gives us the subclass0f relation of classes.

The second source for the knowledge graph is Wikipedia, the large online
encyclopedia. If a Wikipedia page describes exactly one individual, we make
the title of the page an individual in our knowledge graph. For example,
the page with the title “Paris” describes the capital of France, so we make
Paris an individual in the knowledge graph. We connect each individual
by the instanceOf relation to the corresponding WordNet class. We can
derive other relationships from Wikipedia by use of its category system. For
example, the page about Paris is in the category “Cities in France”. This tells
us that Paris is locatedIn France. Wikipedia articles are highly interlinked.
From this link structure, we derive a context relation between individuals.
For a more detailed explanation of these techniques, please refer to our prior
work in [48].

The third source for the knowledge graph is the Internet Movie Database
IMDB. The IMDB contains data about movies, actors, movie directors, pro-
ducers, etc. These entities may also occur in Wikipedia, possibly with a
slightly different name. Hence we use disambiguation heuristics to avoid
duplicate entities in the database. Last, we connect the IMDB movies and
persons to their corresponding WordNet classes by the instance0f relation.

IE techniques can be used to extract facts from other Web pages. We use
the state-of-the-art tool LEILA [47], which can extract facts from natural lan-
guage Web pages. For example, LEILA can extract the fact AlbertEinstein
bornIn 1879 from the sentence “Albert Einstein, the great physicist, was
born in 1879”. For each extracted fact, LEILA provides an accuracy estima-
tion.

As of now, since our facts have been extracted from reliable sources, we
set the trust for each page to 1 and compute the confidence of each fact
according to the formula (3.1) by taking only the extraction accuracy of our
extraction process into account [48].

All in all, our knowledge graph contains 3 million entities and 34 million
facts about them. The relations include the taxonomy (instance0f and
subclass0f) and the context relation between individuals, as well as general
relations like e.g. bornInYear, locatedIn, actedInFilm or invented.

4 Query Language

Our query language borrows some concepts from the RDF query language
SPARQL [18]. A query is a graph that may contain unlabeled vertices and
edges. An answer to a query is a subgraph of the knowledge graph that
matches the query graph. Our query language goes beyond SPARQL by
allowing also edges labeled with regular expressions.

4.1 Formal Query Model

Given a set S of labels (e.g. relation labels), we denote by REGEX(.S) the set
of regular expressions over S. We write L(r) (C S*) to denote the language
of some r € REGEX(S).

Definition 4.1.1 (Query) A query is a connected directed graph @ =
(V,E, Ly, Lg,U), where V is a set of vertices, E CV x V is a set of edges,
Ly is a set of word, individual and class labels, and Lg is a set of relation
labels. U is a set of variables.

FEach vertex v € V' is assigned a label

l(v) e LyuU
FEach edge e € F is assigned a label
l(e) € REGEX(Lg) UU U {connect}

If an edge or vertex is labeled with a variable, we call that edge or vertex
unbound.
We disallow unbound edges between two unbound vertices.

As in the knowledge graph, the vertex labels Ly denote entities and the
edge labels Lg denote relations. Edges can be labeled by the special keyword
connect or by a regular expressions over L. We say that an edge is labeled
by a simple relation if its label is contained in Lg. In addition, the labels
of nodes and edges can be variables. We call an edge of a query graph

10

a fact template and denote it by its egde label and the two node labels.
For example, Albert Einstein friend0f* $x is a fact template. Here, $x
denotes a variable.

NAGA’s query model is based on graph matching. Given a query, NAGA
aims to find subgraphs of the knowledge graph that match the query graph.
Before defining matches to our queries, we first define matches to fact tem-
plates. We say that a vertex v from a knowledge graph matches a vertex from
a query graph with label [, if [(v) = [or if I(v) is a variable. Furthermore,
we say that a query vertex v’ is bound by a vertex v of the knowledge graph
if v matches v'.

Definition 4.1.2 (Matching Path) A matching path for a fact template
x ry is a sequence of edges myq, ..., m, from the knowledge graph, such that
the following conditions hold:

o [fr is a variable, then n = 1 and the start node of m; matches x and
the end node of my matches y.

e [fr is a reqular expression, then mq, ..., m, forms a directed path and
l(my)...l(my,) € L(r). Furthermore, the start node of my matches x
and the end node of m,, matches y'.

e [fr=connect, then mq,...,m, forms an undirected path, such that its
start node matches x and its end node matches y.

Given a query ¢ and an answer graph g, we denote the matching path of
a query template ¢; from ¢ by match(q;, g). Now we generalize this definition
to queries:

Definition 4.1.3 (Answer Graph) An answer graph to a query Q is a
subgraph A of the knowledge graph, such that

e for each fact template in the query there is a matching path in A,
e cach fact in A is part of one matching path,

e cach vertex of Q) is bound to exactly one vertex of A.

We will occasionally use the label isA as a shorthand for the regular
expression instance0f subclassOf*. isA connects an individual via one
instance0f-edge to its immediate class and by several subclass0f-edges to
more general superclasses.

IFor the special case r € Ly CREGEX(Lg) (in which r is a simple relation) the match
is an edge and n = 1.

11

4.2 Query types

We provide a taxonomy of four query types in ascending order of expressive-
ness:

Evidence Queries

Fvidence Queries allow the user to search for evidence for a hypothesis.
For example, Figure 4.1 shows an evidence query that asks for evidence of
the hypothesis Max Planck was a physicist who was born in Kiel. NAGA’s
answer graph is a subgraph of the knowledge graph matching the query with
confidence values for each fact.

Physicist instancet Max Planck Lomin

Figure 4.1: Evidence query example

Formally, an evidence query is a query in which all fact templates have
only bound components.

Discovery Queries

Discovery Queries are queries that supply the user with pieces of missing
information. For example, Figure 4.2 asks for physicists who were born in the
same year as Max Planck. NAGA attempts to fill in the blanks by finding a
subgraph in the knowledge graph that matches the query and thus binds the
two variables. Note that there are multiple answers to this query and NAGA
returns a ranked list of answers. One possible answer is shown in Figure 4.3.

instanceOf physicist instanceOf

4
borninYear borninYear

Figure 4.2: Discovery query example

instanceOf re—— instanceOf
’/l \
0.98 physicist 0.96 — .
Max Planck GioE 0.97 Mihajlo Pupin

-
borninYear 1858 ~—= orninvear

Figure 4.3: Answer graph to the preceding query

Formally, a discovery query is a query in which at least one fact template
has an unbound component.

12

Regular Expression Queries

Regular Expression Queries enable users to specify more flexible matchings
by allowing regex labels on query edges. Figure 4.4 shows two queries, the
first of which uses the regular expression shorthand isA to ask Which rivers
are located in Africa? Here, an answer such as Nile instanceOf river, Nile
locatedIn Egypt, Egypt locatedIn Africa is a valid match. The second
query asks for scientists whose first name or last name is Liu.

N locatedIn* isA -
ivenNameOf | familyNameOf isA
Liu J ! L { $x }——{scientist‘

Figure 4.4: Regular expression query examples

We say that a regular expression query is a query in which at least one
edge is labeled by a regular expression that is not a simple relation.

Relatedness Queries

Relatedness Queries discover “broad” connections between pieces of informa-
tion. For example, Figure 4.5 asks the question How are Margaret Thatcher
and Indira Gandhi related?. There are several possible answers to this query
— including the trivial answer that “they are both people”, more informative
answers such as “they were both prime-ministers” as well as more complex
answers such as “Margaret Thatcher was the prime-minister of England. In-
dira Gandhi was the prime-minister of India. India and England are both
English-speaking countries”.

Figure 4.5: Relatedness Query example

Formally, a relatedness query is a query in which at least one edge is
labeled by the connect label.

13

5 Ranking Answer Graphs

A good ranking model for answer graphs should satisfy the following desider-
ata:

1. The uncertainty of extracted facts should be taken into account. That
is, answers containing facts with higher confidence should be ranked
higher.

2. Informative answers should be ranked higher. For example, when ask-
ing a query Albert_Einstein isA $z, the answer Albert_Einstein isA
physicist should rank higher than the answer Albert Einstein isA
politician, because Einstein was a physicist to a larger extent than
he was a politician. Similarly, for a query such as $y isA physicist,
the answers about world class physicists should rank higher than those
about hobby physicists.

3. Compact answers should be preferred, i.e. tightly related blocks of
information should be ranked higher than loosely related ones. For
example, for the query How are Einstein and Bohr related? the an-
swer about both having won the Nobel Prize in physics should rank
higher than the answer that Tom Cruise connects Einstein and Bohr
by being a vegetarian like Einstein, and by being born when Bohr
died. This compactness criterion also avoids overly general answers,
such as Albert Einstein isA entity, as compared to more specific an-
swers such as Albert_Einstein isA physicist, because the path from
Albert Einstein to entity is longer than the path to physicist!.

We propose a novel scoring model that integrates all the above desiderata
in a unified framework. Our approach is inspired by existing work on lan-
guage models (LM) for information retrieval on document collections [51, 34],
but it is adapted and extended to the new domain of knowledge graphs. In
this setting, the basic units are not words, but facts or fact templates. Our

'Recall from Chapter 4 that isA is a shorthand for the regular expression instance0f
subclass0f*

14

graphs and queries can be seen as sets of facts or fact templates respectively.
A candidate result graph in our setting corresponds to a document in the
standard IR setting.

The language model we propose is much more challenging than the tra-
ditional language models for two reasons:

1. By considering facts and fact templates as IR units rather than words-
in-documents, our queries include both bound and unbound arguments
— a situation that is very different from what we encounter in multi-
term queries on documents.

2. Our corpus, the knowledge graph, is virtually free of redundancy - un-
like a document-level corpus. This makes reasoning about background
models and idf-style aspects [51] more subtle and difficult.

5.1 Language Model

The basic idea of our language modeling approach is in line with IR models
[34, 51]. We assume that a query ¢ is generated by a probabilistic model
based on a candidate result graph g. Given a query ¢, we denote its fact
templates by ¢ = ¢1q2 - - - ¢, Analogously, we denote the facts of a candidate
answer g by g = g192 - - - g, We are interested in estimating the conditional
probability P(g|q), i.e. the probability that g generates the observed ¢ [51].

After applying Bayes formula and dropping a graph-independent constant
(since we are only interested in ranking graphs), we have

P(glq) ~ P(qlg)P(g)

where P(g) can reflect a prior belief that g is relevant to any query. P(q|g)
is the query likelihood given the graph g which captures how well the graph
fits the particular query ¢. In our setting we assume P(g) to be uniform and
thus we are interested in computing P(g|g). In the spirit of IR models [51],
we assume probabilistic independence between the query’s fact templates,
which results in

P(qlg) = HP(qﬂg).

Following the approach in [34] adapted to our setting, we write the likeli-
hood of a query fact given an answer graph as a mixture of two distributions,
P(q;|g) and P(g;) as follows:

Pgilg) = a- Plglg) + (1 —a) Plg), 0<a <1 (5.1)

P(gi|g) is the probability of drawing ¢; randomly from an answer graph, P(g;)
is the probability of drawing ¢; randomly from the total knowledge graph and

15

« is either automatically learned (when relevance information about answer
graphs is available [34]) or set to an empirically calibrated global value.

We first show the connection between this probabilistic formulation and
tf - idf style retrieval models (following [34]), and then explain how each
distribution is modeled and estimated.

Dividing formula (5.1) by (1—a)-P(g;) does not affect the ranking because
o and P(g;) have the same value for each answer graph. This leads us to the
following formulation, which can be interpreted as a probabilistic justification
for the popular tf *idf heuristics for standard IR [34] (with the numerator
capturing the ¢f part and the denominator capturing the df part):

Plala) ~] (1 P P]g;'j)) 52

As mentioned in the scoring model requirements, we want to capture
confidence, informativeness, and compactness. We first explain how we for-
mulate the confidence and informativeness components and then explain how
our formulation automatically deals with compactness as well. We describe
P(q;|g) using a mixture model which puts different weights on confidence
and informativeness.

P(gilg) = B Peons(gilg) + (1= B) - Pinsolailg), (5.3)
0<p<1

Note that confidence and informativeness are indeed independent criteria.
For example, we can be very confident that Albert Einstein was both a
physicist and a politician, but the former fact is more informative than the
latter, because Einstein was a physicist to a larger extent than he was a
politician. The next subsections will explain how we estimate confidence,
informativeness and compactness.

Estimating Confidence

The maximum likelihood estimator for P.,,¢(¢:|g) is given by:

Puns(gilg) = J] P(f holds) (5.4)

fematch(g;,g)

where P(f holds) can be approximated by ¢(f). If ¢; is labeled by a simple
relation, then match(q;, g) contains just one fact and P.,,r(¢;|g) is the confi-
dence of that fact. If ¢; is labeled with connect or with a regular expression
over relations, then match(q;, g) contains the sequence of facts that together
match ¢;. The probability of that sequence being true is the product of the
confidences of the single facts, assuming that the confidences of the single
facts are independent.

16

Estimating Informativeness

The informativeness of a query template g; given the answer graph g depends
on the informativeness of each matching fact in g:

]Dinfo(Qim) - H Pfinfo(f|Qi) (55)

f € match(qi,g)

Note that the same fact f may have different informativeness values, de-
pending on the query formulation. For example, the fact Bob_Unknown
instanceOf physicist is less informative if the query asked for (famous)
physicists ($x instanceOf physicist), but could be very informative if the
query asked about the occupation of Bob_Unknown (Bob_Unknown instance0f
$x). Thus the informativeness of the fact f depends on the unbound argu-
ments of the query template ¢;.

Let f = (z,7,y) be an observation drawn from the joint distribution of
three random variables X, R and Y. X and Y take values from the set
of knowledge graph nodes and R takes values from the set of edges (i.e.
relations). Given a query template ¢; = (2/,7,y/), if f = (z,r,y) is a match
for ¢;, we define the informativeness of f as follows:

(P(z|r,y), if 2/ unbound in ¢
P(y|r,z), if ¥ unbound in ¢;
P(rlx,y), if v’ unbound in ¢
Pringo(fla) = § P(z,ylr), if 2’,y" unbound in ¢; (5.6)
P(z,rly), if 2/, unbound in ¢;
P(r,y|z), if ',y unbound in ¢;
\ P($’ Ty y)a else

We show how to estimate these probabilities by the example of P(z|r,y).
P(z|r,y) can be written as follows:

Pt = 0 = S p o

We estimate P(z,r,y) using the number of witness pages for the fact (z,,y)
2.

Wz, y)|
Zx’,r’,y’ |W<l'/, TJ’ y/)|
Intuitively speaking, informativeness computes the following: If z r y is an

answer to a template ' v’ ¢y where ¢’ is unbound, then the informativeness
computes how often = r y is mentioned on the Web, normalized by the

P(z,ry) =

(5.8)

2The witnesses could also be weighted by their authority, e.g. Page Rank.

17

summation over the number of times that x r 3’ is mentioned on the Web
for corresponding y’ from the set of entities of the knowledge graph. To see
why this formulation captures the intuitive understanding of informativeness,
consider some examples.

Let ¢ be the query ¢ = Albert Einstein instanceOf $x, which consists
of just one fact template. Let f be a possible answer f = Albert Einstein
instanceOf physicist. Here, the informativeness measure for f com-
putes how often Einstein is mentioned as a physicist as compared to
how often he is mentioned with some other instance0f fact. Thus, f
= Albert Einstein instance0f physicist will rank higher than [=
Albert Einstein instance0f politician. In this case, informativeness
measures the degree to which Einstein was a physicist.

Now consider the query ¢=$x instance0f physicist and consider again
the answer f=Albert Einstein instanceOf physicist. The informative-
ness measure for f will compute how often Einstein is mentioned as a physi-
cist compared to how often other people are mentioned as physicists. Since
Einstein is an important individual among the physicists, Albert Einstein
instance0f physicist will rank higher than Bob_Unknown instanceOf
physicist. In this case, informativeness measures the importance of Ein-
stein in the world of physicists.

Other examples could be: when asking for prizes that Einstein won, our
informativeness will favor the prizes he is most known for. When asking for
people born in some year, our informativeness favors famous people. When
asking for the relationship between two individuals, informativeness favors
the most prominent relation among them.

For now the number of witnesses for each fact in our knowledge
graph is not statistically significant, because our facts are extracted only
from a limited number of Web-based corpora, and many facts appear
only on one page. For this reason we approximated the P(z,r,y) val-
ues by a heuristicc. ~ We transformed the facts into keyword queries
and used a search engine to retrieve the number of pages in the Web
that contain the corresponding keywords. For example, to estimate
P(Albert Einstein|instanceOf, physicist), we formulated the query “Al-
bert Einstein” + “physicist” and retrieved the number of hits for this query.
We retrieved the number of hits for the query “physicist” as well and esti-
mated the probability as follows:

P(Albert_FEinstein|instanceO f, physicist) (5.9)

~ P(Albert_Einstein|physicist) (5.10)

_ P(Albert_FEinstein, physicist) (5.11)
P(physicist) '

N #hits(Albert Einstein physicist) (5.12)
#hits(physicist) '

18

In summary, confidence and informativeness are two complementary com-
ponents of our model. The confidence expresses how certain we are about a
specific fact — independent of the query and independent of how popular the
fact is on the Web. The informativeness captures how useful the fact is for
a given query. This depends also on how visible the fact is on the Web.

Estimating Compactness

The third desideratum, compactness of results, is implicitly captured by this
model. This is because the likelihood of an answer is the product over the
likelihoods of its component facts. Thus, it is inversely correlated to the path
length. This means that, given two answers with equal informativeness and
equal confidence of the component facts, our ranking will always prefer the
more compact answer.

For example, for the query Margaret Thatcher connect Indira Ghandi
we get as top results that they are both Female heads of government,
Women in war, and Former students of Somerville College Oxford,
while less compact (i.e. longer paths) answers that connect them via other
persons which have similar characteristics (for example Jane Fonda connects
them by being as well a Woman in war) are ranked lower.

5.2 The Background Model

We turn to estimating P(g;). P(g;) plays the role of giving different weights
to different fact templates in the query. This is similar in spirit to the idf-style
weights for weighting different query terms in traditional language models.
For a single-term query the idf part would just be a constant shift or scaling,
which does not influence the ranking. But for multi-term queries, the idf
weights give different importance to different query terms. For example,
consider the query with two fact templates ¢g1=$y bornIn Ulm and ¢2=8$y
isA scientist. If matches to this query are only partial, i.e. answers
in which only one of the fact templates is matched are allowed, then the
more important template should get higher weight. Traditionally, the more
important condition is the more specific one — the one that is expected to
have fewer matches, i.e., higher idf. If there are many people born in Ulm,
but there are only few scientists overall, this suggests giving a higher weight
to q2. By counting edges of the form x bornIn Ulm and x isA scientist in
the overall corpus (knowledge graph), we get corresponding frequency and
thus inverse frequency weights, in the ¢df spirit. ﬁ(qz) can be estimated by
the frequency in the corpus. This type of background model is heavily used
in standard IR [34, 51].

19

6 Query Processing

Algorithm 1 Query Processing Algorithm

— = =
M@

: Function: queryResults(Q)

Input: A query graph Q = (V, Eq, Le,, Lv,,U)
Output: A set of answer graphs

normalize) into Q' = (VQ/, Eq, LEQ/ , LVQ/ ,U)
return templateResults(Q’, E¢)

Function: templateResults(C,E)

Input: A query graph C = (V¢, Ec, Lg,, Ly, U)
Input: A set of templates

Output: A set of answer graphs

If E =0, return {C}

Results = ()

Pick some template e € F

for all matches €’ of e in the knowledge graph do

re =templateResults((Vo, Ec — e+ €', Lg., Ly,.,U),E — e)

If res # 0, Result = Result + re

: end for
: return Results

of

NAGA stores the knowledge graph in a database. A high-level overview
NAGA'’s query processing algorithm is shown in Algorithm 1.} We first
pre-process the given query into a normalized form (line 4 in the Function
queryResults) by applying the following rewritings: First, we add an addi-
tional edge with the regular expression means | familyNameOf for each bound

vertex. For example, the query

Einstein hasWonPrize $x

becomes

“Einstein” means|familyNameOf $Einstein
$Einstein hasWonPrize $x

'We write E + e for EU {e}.

20

This allows the user to simply use the word “Einstein” in the query to refer to
the entity Albert Einstein. Second, we translate the pseudo-relation isA
to its explicit form (instanceOf subclass0f*). For example, the query

$x isA $y
becomes
$x (instance0f subclassO0f*) $y.

This allows the user to ask for instances of classes without the need to know
about regular expressions.

The main function of the query processing algorithm is templateResults.
It is given a preprocessed query graph and a list of templates to be processed.
Initially, the templates are edges of the query graph. Some edge is picked
(line 7) and all possible matches of this edge in the query graph are identified.
For each possible match, we construct a refined query graph by replacing the
query edge by the match. Then, the function is called recursively with the
refined query graph. Once no more query edges need to be processed, the
refined query graph constitutes a result.

We identify matches for templates as follows. If the label of the edge in the
fact template is a simple relation or a variable, we translate the template
directly to an SQL statement. This applies to templates like “Einstein”
means $z, “Kinstein” $y Ulm, or $x invented $z, which can be translated
into SELECT statements. This gives us a set of matching edges for the
template.

If the edge of the template is labeled with a regular expression over
relations, we construct an automaton for the regular expression. That au-
tomaton might be nondeterministic. We identify one vertex vy of the edge
that is already bound?. If vy is not the start vertex of the edge, but the
target vertex, we invert the automaton. Now, we start a kind of breadth-
first-search in the knowledge graph from vy. The visited vertices of the search
are stored in a queue. To each vertex in the queue, we attach (1) a set of
states of the automaton and (2) a predecessor vertex. Initially, the queue
contains just vy with the initial states of the automaton and no predecessor
node attached. Whenever we poll a vertex v from the queue, we examine
the automaton states attached to v. For each state s, we find all possible
vertices v' in the knowledge graph with v r v/, where r is the relation label
of the regular expression that is being read by the automaton. To each such
v’, we attach v as a predecessor vertex and the successor states of s as its
states. If s is an exit state of the automaton, we obtain a matching path for
the regular expression edge by following the predecessor vertices of v/. Then,

2In this case, if none of the vertices in the query template is bound at query time then
we bind one of the vertices to some node in the knowledge graph.

21

v' is enqueued in the queue. This process continues until the queue is empty.
This gives us a set of matching paths for the template.

If the template is labeled with connect, we search a chain of facts from the
first template argument to the second. This is implemented by two breadth-
first-searches, which start from the two vertices and grow until they meet.
This process can deliver multiple paths between the arguments, if desired.
This gives us a set of matching paths for the connect template.

We incorporate some simple query optimizations: First, fact templates
in which the edge as well as both vertices are not labeled by a variable
are processed separately, so that they do not need to be computed in each
recursive call. Second, we coalesce subsequent non-regular expression edges
to one single SQL statement whenever possible. Furthermore, certain trivial
relations (such as e.g. smallerThan for numbers or before and after for
dates) are not stored in the database, but are computed at query time.

22

7 Evaluation

In this chapter we evaluate NAGA’s search and ranking behavior. First, we
look at some some sample queries and analyze the influence of the various
factors of the ranking model, i.e. confidence, informativeness, and compact-
ness, on NAGA’s ranking. Second, we show sample queries for each of the
query classes (i.e. discovery, regular expression, and relatedness queries) and
a subset of the ranked list of results for these queries for both Google and
NAGA. Third, we present an extensive user study that compares NAGA’s
ranking performance to the search results and rankings produced by Google
and Yahoo! Answers.

7.1 Influence of ranking desiderata

As explained in Chapter 5 the parameters of the ranking model allow empha-
sizing the confidence or the informativeness of the results, while at the same
time the compactness of answers is implicitly promoted. We study the influ-
ence of these factors for two simple queries $y isa physicist and Einstein
isa $x. We set @ = 1. This disables the ¢df component of our model, i.e.,
the background model.

We first analyze the query $y isA physicist. For this query, we expect
answers about famous physicists at the top of the ranked list. If we choose
to rank by confidence alone, e.g. we set § =1 we get as the top results less
known physicists, while the famous ones, e.g. Albert Einstein, Niels Bohr,
etc., are ranked lower in the list. This happens because we can be equally
confident that a less known physicist is a physicist, as we are for a famous
one, but this does not promote the famous physicists.

If we enable the informativeness component by setting § = 0.5 (which
gives equal weight to confidence and informativeness), the top three results
are about the famous physicists Albert Finstein, Niels Bohr and Max Planck,
followed by Marie Curie and Blaise Pascal. Thus our informativeness aspect
plays a very important role in satisfying the information demand latent in
the query.

We can observe the same effect for the query Einstein isA $x. Note

23

that Einstein is an ambiguous word that can refer to multiple entities in
our knowledge graph. We expect the answers to this query to be ranked
based on two aspects of the information need: first, answers about famous
entities which the word Finstein refers to in the knowledge graph should
be preferred, (e.g. Einstein refers among many other things to the famous
physicist Albert Einstein), and second, for the chosen entities, the extent to
which an entity has a certain property should be considered (e.g. Albert
Einstein was a physicist to a higher extent than he was a politician). If we
choose to rank by confidence alone, i.e., we set § = 1, the top results for
this query are Bob Finstein who is an actor, Arik Finstein who is a singer;
a crater and an asteroid which bear the name Einstein follow, and only very
low in the ranking the famous physicist Albert Einstein appears. As soon as
informativeness comes into play, with the setting 5 = 0.5, the top results are
about the famous physicist Albert Einstein, namely, that he was a scientist, a
physicist, a philosopher, etc., while the less informative entities that bear the
name Einstein are at the bottom of the list. Simultaneously, the compactness
property of our ranking ensures that answer graphs with long paths are at
the bottom of the ranked list, e.g., the answer graph entailing that Albert
Finstein is an entity is ranked very low.

The parameter 3 can be used to formulate a more flexible scoring, in
which either confidence or informativeness could be given a higher emphasis.
For example, if we search for a drug that heals malaria, we would want to em-
phasize confidence more than informativeness, i.e. we would not be interested
in famous drugs for malaria, but in drugs that have high associated confi-
dence for healing the disease. If we want to find out new meanings associated
with a word, we may emphasize informativeness more than confidence. This
would promote information that appears in many possibly low confidence
sources, e.g. revealing that the word Kleenex (which is a trademark) is used
by many people with the meaning of tissues.

The simple examples above show the power of the ranking strategy pro-
vided by the combined components of our ranking model. For the rest of the
paper, we set 3 to the balanced value 0.5 and maintain for a the value 1.

In Table 2 we show sample queries for each query class and the top-3
ranked result lists for these queries, for both Google and NAGA. For Google,
we show the result snippets as returned by the search engine, while for NAGA
the corresponding result graphs. As we can observe from the table, NAGA
successfully manages to deal with the ambiguity of the names Hitchcock and
Pulitzer, returning as top answers relevant information about the famous
movie director and the famous journalist. Google’s third hit is relevant for the
first query, while for the second query Google does not deliver any relevant
result in top-3. For the connection query Google returns pages discussing
certain problems between the ethnics of the two countries. NAGA returns
results about both being European countries and about entities that are
co-located in Albania and Greece. These results already give an impression

24

of NAGA’s ranking capabilities.

7.2 User Study
7.2.1 Benchmarks
We evaluated NAGA on three sets of queries.

e TREC 2005 and TREC 2006 provide standard benchmarks for question
answering systems. Out of this set, we determined the questions that
can be expressed by the current set of NAGA relations. We obtained
a set of b5 questions (query set TREC). Note that although NAGA
knows the relations used in the questions, the knowledge graph does
not necessarily contain the data to answer them.

e The work on SphereSearch [30] provides a set of 50 natural language
questions for the evaluation of a search engine. Again, we determined
the 12 questions that can be expressed in NAGA relations (query set
SphereSearch).

e Since, to the best of our knowledge, we are the first to utilize regular
expressions over relations and relatedness queries, we had to provide
these queries by ourselves. We constructed 18 natural language ques-
tions for this purpose(query set OWN).

For NAGA, we translated the questions to graph queries. Table 1 shows
some sample questions with their translations.

7.2.2 Competitors

We were interested in comparing NAGA to other systems that common In-
ternet users would use to answer questions. The most obvious established
competitors in this domain are Google and Yahoo! Answers. It is clear that
these systems are considerably different. Google is designed to find Web
pages, not to answer questions. Still, it is a reasonable competitor, because
it is the best-known portal to the knowledge of the Web. It is also tuned to
answer specific types of questions (like When was Einstein born?) directly by
its built-in question answering system. Yahoo! Answers has its own corpus
of questions together with their answers (provided by humans in the social-
Web spirit). When given a question, it tries to match it to a question in its
corpus and retrieves the answer. Unlike NAGA, Yahoo! Answers can answer
questions directly in natural language. It is probably the closest established
real-world competitor.

All the questions were posed to Google, Yahoo! Answers, and NAGA.
While for Google and Yahoo! Answers the queries were posed in their original
natural language form, for NAGA the queries were posed in their graph form.

25

Corpus Question with NAGA translation
TREC When was Shakespeare born?
Shakespeare bornInYear $x
In what country is Luxor?
Luxor locatedIn $x
$x isA country
SphereSearch | In which movies did a governor act?
$y isA governor
$y actedIn $z
What was discovered in the 20th century?
$x discoveredInYear $y
$y after 1900
$y before 2000
OWN Who produced or directed the movie
”Around the World in 80 Days”?
$x produced|directed
Around_the_World_in_80_Days
What do Albert Einstein and Niels Bohr
have in common?
Albert_Einstein connect Niels_Bohr

Table 7.1: Sample queries

This type of comparison is influenced by several aspects: First, the per-
formance of a search engine in this evaluation depends on how precise the
question can be formulated for the search engine. Second, it will depend on
the size of the knowledge base that the search engine uses. Last, the com-
parison measures the quality of the ranking of results produced by the search
engine. Clearly, NAGA has an advantage over Google and Yahoo! Answers,
because the questions are already translated into the graph query language.
At the same time, Google and Yahoo! Answers have a massive advantage
over NAGA, because they are commercially operated systems that can search
the whole Web (Google) or a huge corpus of several million predefined ques-
tions (Yahoo! Answers). Thus, our evaluation is in effect a stress test of
real-world applicability for all three search engines.

7.2.3 Measurements

For each question, the top-ten results of all search engines were shown to
human judges. On average, every result was assessed by 4 human judges,
who were students not working on this project. For each result of each
search engine, the judges had to decide on a scale from 2 to 0 whether the
result is highly relevant (2), correct but less relevant (1), or irrelevant (0).

26

Google

NAGA

‘When was Hitchcock born?

HITCHCOCK Family History — Cousin’s Corner —
1689 Spouse: Hannah CHAPIN Married: 27-Sep-1666 in: Springfield,

HampdenCo,MA F Child 2 Hannah HITCHCOCK Born: 1645 in: Died:

31-Aug-1733 in: Hadley

Russell Hitchcock, born in Melbourne, Australia, rock vocalist ...
‘Web brainyhistory.com. June 11, 1952 in History. Born: Russell
Hitchcock, born in Melbourne, Australia, rock vocalist, Air Supply,
Related Topics:...

Alfred Hitchcock, born in London, director, Psycho, Birds, Rear ...
Born: Alfred Hitchcock, born in London, director, Psycho, Birds,
Rear Window, Related Topics: Alfred Birds director Hitchcock

Hitchcock bornInYear $x

"Hitchcock" familyNameOf Alfred_Hitchcock
Alfred Hitchcock bornInYear 1899
{$@Hitchcock=Alfred_Hitchcock, $X=1899}
Score: 6.180527667244928E-5

Robyn_Hitchcock bornInYear 1953
"Hitchcock" familyNameOf Robyn_Hitchcock
{$Q@QHitchcock=Robyn_Hitchcock, $X=1953}
Score: 2.521802368090589E-7

Ken_Hitchcock bornInYear 1951
"Hitchcock" familyNameOf Ken Hitchcock
{$@Hitchcock=Ken_Hitchcock, $X=1951}
Score: 9.800236818104399E-8

After whom is the Pulitzer prize named?

Book results for After whom is the Pulitzer prize named? Doctors and
Discoveries - 459 pages San Francisco. - by Richard Sterling, Tom
Downs - 352 pages

TicketWeb Serafina retreats to the safe haven of memories after the
death of her husband, ... The Rose Tattoo by Pulitzer Prize winning
dramatist, Tennessee Williams.

Hemingway - Wikipedia, the free encyclopedia Hemingway received
the Pulitzer Prize in 1953 for The Old Man and the Sea....
Hemingway’s first novel after For Whom the Bell Tolls was ...

Pulitzer givennameOf |familyNameOf $x; $x instanceOf $y

"Pulitzer" familyNameOf Joseph_Pulitzer

Joseph Pulitzer instanceOf Publisher_19th_century
{$X=Joseph_Pulitzer, $Y=Publisher_19th_century}
Score: 2.377569870331447E-6

"Pulitzer" familyNameOf Joseph_Pulitzer
Joseph_Pulitzer instanceOf Publisher_20th_century
{$X=Joseph_Pulitzer, $Y=Publisher_20th_century}
Score: 2.377569870331447E-6

"Pulitzer" familyNameOf Joseph Pulitzer
Joseph_Pulitzer instanceOf American_journalist
{$X=Joseph_Pulitzer, $Y=journalist}

Score: 1.7510477120329342E-6

What do Albania and Greece have in common?

Presidenti i Republikes se Shqiperise You issued a message for the
Greece-Albania match, but do you have guarantee from President
Papulias for a righteous treatment of the Albanians, ...

The Bridge - When Christos met Gazi And we have in common many
ideas on matters related to the subject of identity. ... for a bilingual
country, with both Greek and Albanian inhabitants. ...

We are not Greek, but...: Dealing with the Greek-Albanian
Border.... do the Lunxhotes speak Greek in addition to
Albanian, or not?... have been common among the Muslims,
especially after 1976 and the ban on religion ...

Albania connect Greece

"Greece" means Greece

"Albania" means Albania

Albania instanceOf European_country
Greece instanceOf European_country

Score: 1.623389355769744E-7

"Greece" means Greece

"Albania" means Albania
Ionian_Islands locatedIn Albania
Ionian_Islands locatedIn Greece
Score: 5.635796257200772E-8

"Greece" means Greece
"Albania" means Albania
Lake_Prespa locatedIn Albania
Lake Prespa locatedIn Greece
Score: 1.6873181761967196E-11

Table 7.2: Sample Queries and Rankings

27

Corpus #Q | #A | Measure Google Yahoo NAGA
TREC 55 | 180 | NDCG 75.64% + 6.31% | 25.15% + 6.38% | 87.64% + 4.79%
pPai1 67.41% + 6.91% | 16.55% + 5.44% | 76.38% + 6.24%
SphereSearch | 12| 68 | NDCG | 38.22% + 11.85% | 17.20% =+ 9.02% | 84.68% =+ 8.57%
pPa@l 19.38% + 9.49% | 6.15% =+ 5.29% | 79.23% =+ 9.76%
OWN 18| 70| NDCG | 54.18% 4+ 11.99% | 18.23% + 9.12% | 92.88% + 5.69%
pPai1 28.33% 4+ 10.77% | 6.66% + 5.48% | 86.56% + 7.94%

#Q — Number of questions
#A — Total number of assessments for all questions

Table 7.3: Results

NAGA tries to answer queries precisely by finding matchings to the query
graphs in the knowledge graph. Since the knowledge graph is free of redun-
dancy and bound to the semantics of the relations it builds on, the number
of results returned for some queries could be smaller then ten. For example,
for a query such as Albert Einstein bornInYear $x, NAGA returns only
the result Albert Einstein bornInYear 1879. Hence the direct comparison
with the other search engines in terms of the well known precision-at-top-
10 (P@10) measure would be misleading. Therefore we chose an evaluation
measure that is not dependent on the number of results returned by the sys-
tem for a given query. Additionally, this measure can exploit the grading of
relevant results.

This is the Normalized Discounted Cumulative Gain (NDCG) introduced
by [36] and intensively used in IR benchmarking (e.g. TREC). It computes
the cumulative gain the user obtains by examining the retrieval results up
to a fixed rank position. The NDCG takes into account that highly relevant
documents are more valuable than marginally relevant documents, and that
the lower a relevant result is ranked, the less valuable it is for the user, because
the less likely it is that the user will examine the result. Thus this measure
not only estimates the number of relevant results in the ranked list, but also
incures a penalty for relevant results that are ranked low in the list. Given a
query and a ranked list of results r = ry,...,7,, the gain G; of the result at
rank ¢ is the judgment of the user (on the scale from irrelevant (0) to highly
relevant (2)). From Gy, ..., G, one derives the Discounted Cumulative Gain

—_—
vector DCG,., which is defined recursively as follows:
— G[1] if i =1;
DCG,[i] =

oYeTele Gl -
DCG,li — 1]+ 5 otherwise.

The value DCG, = DCG,[n] is the Discounted Cumulative Gain of the
ranking 7. Now, one constructs the ideal ranking " = r},...,r/, in which a

more-relevant result always precedes a less-relevant result. The Discounted

28

Cumulative Gain DCG,. is then normalized by this maximum value DCG,.,
yielding the NDCG for r:

DCG,
NDCG, = DCa

We average the NDCG for one query over all user evaluations for that query
and average these values over all queries.

Furthermore, we provide the precision at one, PQ1. P@I1 is the number
of times that a search engine provided a relevant result in the first position
of the ranking, weighted by the relevance score (0 to 2) and normalized by
the total number of queries. Thus, PQ1 measures how satisfied the user was
on average with the first answer of the search engine.

To be sure that our findings are statistically significant, we compute the
Wilson interval for the estimates of NDCG and P@1.

7.3 Results

Table 3 shows the results of our evaluation. For the TREC query set, Google
performs very well. It has a high NDCG and in the majority of cases, the first
hit in its result ranking was already a satisfactory answer. The reason for
this is that the TREC questions are mostly of a very basic nature (see Table
1) and Google can answer a major part of them directly by its highly precise
built-in question answering system. In contrast, Yahoo! Answers performs
less well. Very often, it retrieves answers to questions that have only the
stop-words in common with the question we posed. In many cases, it does
not deliver an answer at all. NAGA, in contrast, is very strong on the TREC
questions, because they translate mostly to just one fact template. However,
NAGA does not always have the answer to the question in its knowledge
graph. Still, it performs better than both Yahoo! Answers and Google.

The SphereSearch questions are of a more sophisticated nature. They
ask for a non-trivial combination of different pieces of information. Conse-
quently, both Google and Yahoo! Answers perform worse than for the TREC
questions. NAGA, in contrast, excels on these questions, because they make
full use of its graph-based query language.

For our OWN corpus, Google again performs quite well. This is because
the questions mostly ask for a broad relationship between two individuals.
Google can answer these questions by retrieving Web documents that con-
tain the two names. In most cases, these answers were satisfactory. Yahoo!
Answers has again difficulties, whereas NAGA delivers good results for the
majority of questions and clearly outperforms Google.

In summary, our user study shows that NAGA can deliver the right an-
swers to benchmark questions in the vast majority of cases, if the questions

29

can be expressed with NAGA relations. Even if one leaves aside the ques-
tions in our OWN query set, the user study shows that NAGA outperforms
the established competitors Yahoo! Answers and Google on this task by a
considerable margin.

30

8 Conclusions

In this paper, we presented the NAGA search engine which facilitates ad-
vanced querying for knowledge rather than merely retrieving Web pages.
NAGA’s large knowledge base, organized as a directed graph, consists of
millions of facts automatically extracted from Web-based corpora. We in-
troduced a graph-based query language with several distinctive features. We
proposed a novel scoring mechanism based on generative language models,
incorporating the notions of confidence, informativeness, and compactness in
a principled manner. We compared our system to both Google and Yahoo!
Answers by conducting a comprehensive user study on a variety of simple
and complex queries. Our query set consisted of our own queries as well as
queries from standard benchmarks like TREC question answering. The re-
sults demonstrated that NAGA returns answers that are superior in quality
to both competitors.

Our future work will aim to further increase the scale and scope of our
knowledge base by incorporating more sources.

A second aspect for future work is query-processing efficiency. Although,
for almost all queries, the first result is returned in less then a second, the
efficiency for relatedness queries can still be improved.

We plan to adopt and adapt recently proposed algorithms for keyword
search in relational graphs for this purpose. NAGA is already available online
at http://www.mpii.mpg.de/~kasneci/naga.

31

Bibliography

1]

2]

3]

[4]

[9]
[10]

[11]

E. Agichtein. Scaling information extraction to large document collec-
tions. IEEE Data Eng. Bull., 28(4), 2005.

E. Agichtein, S. Sarawagi. Scalable information extraction and integra-
tion (tutorial). KDD, 2006.

S. Agrawal, S. Chaudhuri, G. Das. DBXplorer: A system for keyword-
based search over relational databases. ICDE, 2002.

S. Amer-Yahia, P. Case, T. Rolleke, J. Shanmugasundaram, G. Weikum.
Report on the DB/IR panel at SIGMOD 2005. SIGMOD Record, 34(4),
2005.

S. Amer-Yahia, J. Shanmugasundaram. XML Full-Text search: chal-
lenges and opportunities (tutorial). VLDB, 2005.

K. Anyanwu, A. Maduko, A. Sheth. Sparq2l:towards support for sub-
graph extraction queries in rdf databases. WWW, 2007.

F. Baader, 1. Horrocks, U. Sattler. Description logics as ontology lan-
guages for the semantic web. In Mechanizing Mathematical Reasoning,
Springer, 2005.

M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni.
Open information extraction from the web. IJCAI 2007.

G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, S. Sudarshan. Key-
word searching and browsing in databases using BANKS. ICDE, 2002.

M. Cafarella, C. Re, D. Suciu, O. Etzioni. Structured querying of web
text data: A technical challenge. CIDR, 2007.

S. Chakrabarti. Breaking through the syntax barrier: Searching with
entities and relations. FCML, 2004.

32

[12] S. Chakrabarti. Dynamic personalized pagerank in entity-relation
graphs. WWW, 2007.

[13] K. C-C. Chang, B. He, Z. Zhang. Toward large scale integration: Build-
ing a metaquerier over databases on the web. CIDR, 2005.

[14] T. Cheng, K. C.-C. Chang. Entity search engine: Towards agile best-
effort information integration over the web. CIDR, 2007.

[15] P.-A. Chirita, S. Ghita, W. Nejdl, R. Paiu. Beagle++: Semantically
Enhanced Searching and Ranking on the Desktop. ESWC, 2006.

[16] S. Cohen, Y. Kanza, B. Kimelfeld, Y. Sagiv. Interconnection semantics
for keyword search in XML. CIKM, 2005.

[17] W. Cohen. Information extraction (tutorial).
http://www.cs.cmu.edu/ weohen/ie-survey.ppt, 2004.

[18] W. W. W. Consortium. SPARQL. http://www.w3.org/TR/rdf-sparql-
query/, 2005.

[19] H. Cunningham. An Introduction to Information Extraction. In Ency-
clopedia of Language and Linguistics, Elsevier, 2005.

[20] N.N. Dalvi, D. Suciu. Efficient Query Evaluation on Probabilistic
Databases. VLDB, 2004.

[21] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang, X. Lin. Finding Top-k
Min-Cost Connected Trees in Databases. ICDFE, 2007.

[22] J.-P. Dittrich, M. A. V. Salles. idm: A unified and versatile data model
for personal dataspace management. VLDB, 2006.

[23] A. Doan et al., Community information management. IEEFE Data Eng.
Bull., 29(1), 2006.

[24] A. Doan, R. Ramakrishnan, S. Vaithyanathan. Managing information
extraction: state of the art and research directions (tutorial). SIGMOD,
2006.

[25] X. Dong, A.Y. Halevy. A platform for personal information management
and integration. CIDR, 2005.

[26] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan,
A. Tomkins. Visualizing tags over time. WIWW, 2006.

[27] O. Etzioni et al. Unsupervised named-entity extraction from the web:
An experimental study. Artif. Intell., 165(1), 2005.

33

[28] C. Fellbaum, editor. WordNet: An Electronic Lezical Database. MIT
Press, 1998.

[29] T. Furche, B. Linse, F. Bry, D. Plexousakis, G. Gottlob. RDF Querying:
Language Constructs and Evaluation Methods Compared. In Reasoning
Web 2006, Springer, 2006.

[30] J. Graupmann. The SphereSearch Engine for Graph-based Search on
heterogeneous semi-structured data (in German). Dissertation, Saarland
University, May 2006.

[31] J. Graupmann, R. Schenkel, G. Weikum. The spheresearch engine for
unified ranked retrieval of heterogeneous XML and web documents.
VLDB, 2005.

[32] J. Han, X. Yan, P.S. Yu. Mining and searching graphs and structures
(tutorial). KDD, 2006.

[33] H. He, H. Wang, J. Yang, P. Yu. BLINKS: Ranked keyword searches on
graphs. SIGMOD, 2007.

[34] D. Hiemstra, A. de Vries. Relating the new language model of infor-
mation retrieval to the traditional retrieval models. Technical Report
TR-CTIT-00-09, University of Twente, 2000.

[35] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword search in
relational databases. VLDB, 2002.

[36] K. Jarvelin J. Kekéldinen. Ir evaluation methods for retrieving highly
relevant documents. SIGIR, 2000.

[37] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan,
H. Zhu. Avatar information extraction system. [FEFE Data Eng. Bull.,
29(1), 2006.

[38] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desali,
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. VLDB, 2005.

[39] E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan,
H. Zhu. Avatar semantic search: a database approach to information
retrieval. SIGMOD, 2006.

[40] B. Kimelfeld, Y. Sagiv. Finding and approximating top-k answers in
keyword proximity search. PODS, 2006.

[41] X. Liu, W. Croft. Statistical language modeling for information retrieval.
Annual Review of Information Science and Technology 39, 2004.

34

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

J. Madhavan, S. Cohen, X. Dong, A. Halevy, S. Jeffery, D. Ko, C. Yu.
Navigating the seas of structured web data. CIDR, 2007.

Z. Nie, S. S. Y. Ma, J.-R. Wen, W. Ma. Web object retrieval. WWW,
2007.

Z. Nie, Y. Zhang, J.-R. Wen, W.-Y. Ma. Object-level ranking: bringing
order to web objects. WWW, 2005.

M. Sayyadian, H. LeKhac, A. Doan, L. Gravano. Efficient Keyword
Search Across Heterogeneous Relational Databases. ICDFE, 2007.

S. Staab, R. Studer. Handbook on Ontologies. Springer, 2004.

F. M. Suchanek, G. Ifrim, G. Weikum. Combining Linguistic and Statis-
tical Analysis to Extract Relations from Web Documents. KDD, 2006.

F. M. Suchanek, G. Kasneci, G. Weikum. Yago: A Core of Semantic
Knowledge. WWW, 2007.

O. Udrea, D. Recupero, V. S. Subrahmanian. Annotated rdf. ESWC,
2006.

M. Voelkel, M. Kroetzsch, D. Vrandecic, H. Haller, R. Studer. Semantic
wikipedia. WWW, 2006.

C. Zhai. Risk Minimization and Language Modeling in Text Retrieval.
PhD thesis, Carnegie Mellon University, 2003.

C. Zhai and J. Lafferty. A risk minimization framework for information
retrieval. Information Processing and Management 42, 2006.

35

Below you find a list of the most recent technical reports of the Max-Planck-Institut fiir Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut fiir Informatik
Library

attn. Anja Becker
Stuhlsatzenhausweg 85

66123 Saarbriicken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-1-2007-5-001 G. Kasneci, F.M. Suchanek, G. Ifrim,
M. Ramanath, G. Weikum

NAGA: Searching and Ranking Knowledge
MPI-1-2007-2-001 A. Podelski, S. Wagner

A Method and a Tool for Automatic Verification of
Region Stability for Hybrid Systems

MPI-1-2006-5-006 G. Kasneci, F.M. Suchanek,
G. Weikum

Yago - A Core of Semantic Knowledge

MPI-I-2006-5-005 R. Angelova, S. Siersdorfer

A Neighborhood-Based Approach for Clustering of

Linked Document Collections

MPI-1-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum

Combining Linguistic and Statistical Analysis to

Extract Relations from Web Documents

MPI-1-2006-5-003 V. Scholz, M. Magnor

Garment Texture Editing in Monocular Video

Sequences based on Color-Coded Printing Patterns

MPI-1-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

I0-Top-k: Index-access Optimized Top-k Query

Processing

MPI-1-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed

Information Retrieval Systems

MPI-1-2006-4-010 A. Belyaev, T. Langer, H. Seidel

Mean Value Coordinates for Arbitrary Spherical

Polygons and Polyhedra in R3

MPI-1-2006-4-009 J. Gall, J. Potthoff, B. Rosenhahn,
C. Schnoerr, H. Seidel

Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications

MPI-1-2006-4-008 I. Albrecht, M. Kipp, M. Neff,
H. Seidel

Gesture Modeling and Animation by Imitation

MPI-1-2006-4-007 O. Schall, A. Belyaev, H. Seidel

Feature-preserving Non-local Denoising of Static and

Time-varying Range Data

MPI-1-2006-4-006 C. Theobalt, N. Ahmed, H. Lensch,
M. Magnor, H. Seidel

Enhanced Dynamic Reflectometry for Relightable
Free-Viewpoint Video

MPI-1-2006-4-005 A. Belyaev, H. Seidel, S. Yoshizawa
Skeleton-driven Laplacian Mesh Deformations
MPI-1-2006-4-004 V. Havran, R. Herzog, H. Seidel

On Fast Construction of Spatial Hierarchies for Ray

Tracing

MPI-1-2006-4-003 E. de Aguiar, R. Zayer, C. Theobalt,
M. Magnor, H. Seidel

A Framework for Natural Animation of Digitized
Models

MPI-1-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

GPU Point List Generation through Histogram

Pyramids

MPI-1-2006-4-001 A. Efremov, R. Mantiuk,

K. Myszkowski, H. Seidel
Design and Evaluation of Backward Compatible High

Dynamic Range Video Compression

MPI-1-2006-2-001 T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

On Verifying Complex Properties using Symbolic Shape
Analysis

MPI-1-2006-1-007 H. Bast, I. Weber, C.W. Mortensen
Output-Sensitive Autocompletion Search
MPI-1-2006-1-006 M. Kerber

Division-Free Computation of Subresultants Using
Bezout Matrices

MPI-1-2006-1-005 A. Eigenwillig, L. Kettner, N. Wolpert
Snap Rounding of Bzier Curves

MPI-1-2006-1-004 S. Funke, S. Laue, R. Naujoks, L. Zvi
Power Assignment Problems in Wireless

Communication

MPI-1-2005-5-002 S. Siersdorfer, G. Weikum

Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-1-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-1-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel

Photometric Calibration of High Dynamic Range
Cameras

MPI-1-2005-4-005 M. Goesele

?

MPI-1-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-1-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel
Analysis and Design of Discrete Normals and

Curvatures

MPI-1-2005-4-002 O. Schall, A. Belyaev, H. Seidel

Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-1-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-1-2005-2-004 Y. Kazakov

A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-1-2005-2-003 H.d. Nivelle

Using Resolution as a Decision Procedure

MPI-1-2005-2-002 P. Maier, W. Charatonik, L. Georgieva
Bounded Model Checking of Pointer Programs
MPI-1-2005-2-001 J. Hoffmann, C. Gomes, B. Selman
Bottleneck Behavior in CNF Formulas

MPI-1-2005-1-008 C. Gotsman, K. Kaligosi,

K. Mehlhorn, D. Michail, E. Pyrga
Cycle Bases of Graphs and Sampled Manifolds
MPI-1-2005-1-007 I. Katriel, M. Kutz

A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-1-2005-1-003 S. Baswana, K. Telikepalli

Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-1-2005-1-002 1. Katriel, M. Kutz, M. Skutella
Reachability Substitutes for Planar Digraphs
MPI-1-2005-1-001 D. Michail

Rank-Maximal through Maximum Weight Matchings
MPI-1-2004-NWG3-001 M. Magnor

Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-1-2004-NWG1-001 B. Blanchet

Automatic Proof of Strong Secrecy for Security
Protocols

MPI-1-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum

Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-1-2004-4-006 K. Dmitriev, V. Havran, H. Seidel
Faster Ray Tracing with SIMD Shaft Culling
MPI-1-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,

Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-1-2004-4-004 R. Zayer, C. Rssl, H. Seidel
r-Adaptive Parameterization of Surfaces
MPI-1-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel

3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

MPI-1-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel

Quadric-Based Mesh Reconstruction from Scattered
Data

MPI-1-2004-4-001 J. Haber, C. Schmitt, M. Koster,
H. Seidel

Modeling Hair using a Wisp Hair Model

MPI-1-2004-2-007 S. Wagner

Summaries for While Programs with Recursion

MPI-1-2004-2-002 P. Maier

Intuitionistic LTL and a New Characterization of Safety
and Liveness

MPI-1-2004-2-001 H. de Nivelle, Y. Kazakov

Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

MPI-1-2004-1-006 L.S. Chandran, N. Sivadasan

On the Hadwiger’s Conjecture for Graph Products
MPI-1-2004-1-005 S. Schmitt, L. Fousse

A comparison of polynomial evaluation schemes
MPI-1-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella
Online Scheduling with Bounded Migration

MPI-1-2004-1-003 I. Katriel

On Algorithms for Online Topological Ordering and
Sorting

