
Top-k Query Processing in
Probabilistic Databases with

Non-Materialized Views

Maximilian Dylla
Iris Miliaraki

Martin Theobald

MPI–I–2012–5-002 June 2012

Authors’ Addresses

Maximilian Dylla
Max-Planck-Institut für Informatik
Campus E1.4
D-66123 Saarbrücken

Iris Miliaraki
Max-Planck-Institut für Informatik
Campus E1.4
D-66123 Saarbrücken

Martin Theobald
Max-Planck-Institut für Informatik
Campus E1.4
D-66123 Saarbrücken

Abstract

In this paper, we investigate a novel approach of computing confidence bounds
for top-k ranking queries in probabilistic databases with non-materialized views.
Unlike prior approaches, we present an exact pruning algorithm for finding the
top-ranked query answers according to their marginal probabilities without the
need to first materialize all answer candidates via the views. Specifically, we
consider conjunctive queries over multiple levels of select-project-join views, the
latter of which are cast into Datalog rules, where also the rules themselves may
be uncertain, i.e., be valid with some degree of confidence. To our knowledge,
this work is the first to address integrated data and confidence computations in the
context of probabilistic databases by considering confidence bounds over partially
evaluated query answers with first-order lineage formulas. We further extend our
query processing techniques by a tool-suite of scheduling strategies based on se-
lectivity estimation and the expected impact of subgoals on the final confidence
of answer candidates. Experiments with large datasets demonstrate drastic run-
time improvements over both sampling and decomposition-based methods—even
in the presence of recursive rules.

Keywords

Top-k Query Processing, Probabilistic Databases, Datalog,
First-Order Lineage

Contents

1 Introduction 3
1.1 Contributions . 6

2 Computational Model 7
2.1 Probabilistic Database . 7
2.2 Views . 8
2.3 Queries . 9
2.4 Lineage . 10
2.5 Deductive Grounding with Lineage 10
2.6 Confidence Computations . 13
2.7 Expressiveness . 14

3 Confidence Bounds 15
3.1 Bounds for Propositional Lineage 15
3.2 Bounds for First-Order Lineage 17

4 Subgoal Scheduling 20
4.1 Selectivity Estimation . 20
4.2 Impact of Subgoals . 22
4.3 Benefit-oriented Subgoal Scheduling 23

5 Top-k Algorithm 24
5.1 Top-k with Dynamic Subgoal Scheduling 24
5.2 SLD Resolution with Lineage Tracing 26
5.3 Final Result Ranking . 27

6 Extensions 28
6.1 Sorted Input Relations . 28
6.2 Recursive Rules . 29

1

7 Experiments 31
7.1 Data Sets, Confidence Distributions, and Queries 31
7.2 Results . 32

8 Related Work 37

9 Conclusions 39

A 40
A.1 Data . 40

A.1.1 MayBMS / Postgres . 40
A.1.2 Trio . 42

A.2 Queries . 42
A.2.1 Q1 (non-repeating hierarchical, safe) 42
A.2.2 Q2 (repeating hierarchical, non-safe) 44
A.2.3 Q3 (head hierarchical, non-safe) 46
A.2.4 Q4 (general unsafe) . 47
A.2.5 Q5 (one proof) . 49
A.2.6 Q6 (three proofs) . 49
A.2.7 Q7 (join of existential relations) 51
A.2.8 Q8 (non-read-once) . 52
A.2.9 Q9 (nesting-depth = 1) 53
A.2.10 Q10 (nesting-depth = 2) 53
A.2.11 Q11 (nesting-depth = 3) 54
A.2.12 Q12 (with uncertain views) 54
A.2.13 Q13 (with uncertain views) 55
A.2.14 Q14 (recursion) . 55
A.2.15 Q15 (recursion) . 55
A.2.16 Confidence Distributions 55
A.2.17 Table Materialization . 55

2

1 Introduction
Managing uncertain data via probabilistic databases (PDBs) has evolved as an es-
tablished field of research, with a plethora of applications ranging from scientific
data management, sensor networks, data integration, to knowledge management
systems [36]. Despite the polynomial runtime complexity for the data computa-
tion step involved in finding probabilistic answer candidates, confidence compu-
tations for these answers are #P-hard already for fairly simple select-project-join
(SPJ) queries [7, 28]. Thus, efficient strategies for confidence computation and
early pruning of low-confidence query answers remain a key challenge for the
scalable management of uncertain data.

Recent work on efficient confidence computations in PDBs has addressed this
problem by either restricting the class of queries, i.e., by focusing on safe query
plans [8], or by considering a specific class of tuple-dependencies, commonly
referred to as read-once functions [32]. Intuitively, safe query plans denote a
class of queries for which confidence computations can directly be coupled with
the relational operators and thus be performed by an extensional query plan [36].
Read-once formulas, on the other hand, denote a class of propositional formulas
which can be factorized (in polynomial time) into a form where every variable
that represents a tuple in the database appears at most once, which again permits
efficient confidence computations. If a query plan is safe, it permits for a de-
composition into independent-join and independent-project operations (including
restricted forms of negation) over the probabilistic input data, along which con-
fidence computations can be performed in a bottom-up fashion [36]. [7] build
upon this observation to derive a dichotomy of query plans for which confidence
computations can be done either in polynomial time or are #P-hard.

While safe plans clearly focus on the characteristics of the query structure and
read-once formulas focus on the logical dependencies among individual data ob-
jects derived from a query, top-k style pruning approaches, which are the subject
of this work, have also been proposed as an alternative way of addressing con-
fidence computations in PDBs [25, 24] . These approaches typically aim to effi-
ciently identify the top-k most probable answers based on lower and upper bounds

3

Directed
Director Movie p

t1 Allen MidnightInParis 0.7
t2 Nolan Inception 0.9
t3 Tarantino ReservoirDogs 0.8
t4 Tarantino PulpFiction 0.6

ActedIn
Actor Movie p

t5 Johansson MatchPoint 0.9
t6 DiCaprio Inception 0.9
t7 Travolta PulpFiction 0.8
t8 Roth ReservoirDogs 0.6

Nominated
Movie Award p

t9 Inception BestWriting 0.9
t10 PulpFiction BestDirector 0.6
t11 PulpFiction BestWriting 0.6

Category
Movie Category p

t12 Inception Action 0.9
t13 ReservoirDogs Independent 0.5
t14 PulpFiction Crime 0.9

ν1 : ∀X,Y KnownFor(X,Y) :– ∃Z ActedIn(X,Z),Category(Z, Y) 0.7
ν2 : ∀X,Y KnownFor(X,Y) :– ∃Z Directed(X,Z),Category(Z, Y),Won(Z,BestDirector) 0.8
ν3 : ∀X,Y Written(X,Y) :– Directed(X,Y),¬Category(Y, Independent) 0.6
ν4 : ∀X Won(X,BestWriting) :– Nominated(X,BestWriting),¬Category(X,Action) 0.6
ν5 : ∀X,Y Won(X,Y) :– Nominated(X,Y) 0.4

Figure 1.1: Example movie database.

for their marginal probabilities without the need to compute the exact probabili-
ties. Suciu et al. [25] addressed this by approximating the probabilities of the
top-k answers using Monte-Carlo-style sampling techniques. Along the lines of
these works, returning the correct set of top-k answers is guaranteed while the
marginal probabilities of answer candidates are approximated only to the extent
needed for computing this top-k set. Olteanu and Wen [24] have further developed
the idea of decomposing propositional formulas for deriving confidence bounds
based on partially expanded ordered binary decision diagrams (OBDDs), which
can again be exploited by top-k algorithms for early candidate pruning. These
top-k algorithms can effectively circumvent the need for exact confidence compu-
tations and can still—in many cases—return the set of top-ranked query answers
in an exact way. However, as opposed to top-k approaches in traditional DBs [9],
none of the former approaches saves on the data computation step that is required
for finding potential answer candidates. All former approaches require extensive
data materialization for queries with multiple nested subqueries or queries over
multiple levels of potentially convoluted views.

In this paper, we specifically focus on the case when views are not material-
ized, and we are aiming to identify the top-ranked query answers, based on their
marginal probabilities, even before the complete extensional input to these an-
swers (and in particular that of the remaining answer candidates) has been seen
by the query processor. Following the line of works on intensional query evalu-
ation [11, 4, 30, 36], we employ lineage formulas to capture the logical depen-
dencies between query answers, base tuples, and the views that were employed to

4

derive the answers. In contrast to all lineage models known to us, which consider
lineage as propositional formulas [36], where each formula represents a single
query answer, we introduce first-order lineage formulas, where each formula may
represent an entire set of query answers. We describe methods for obtaining con-
fidence bounds that hold for each answer candidate in such a set, thus allowing
us to prune low-confidence answer candidates before they have been completely
evaluated over the views. Our main observation is that each intermediate step of
query processing can be unambiguously described and thus be captured by such
a first-order lineage formula, which is our key for combining data and confidence
computations in a probabilistic database setting. In particular, this allows us to
adopt top-k-style pruning techniques known from traditional DBs [9, 15], which
aim to avoid a complete scan of all input tuples that are potentially relevant for
the top-k results based on the query plan. Moreover, we explicitly also allow our
views to be uncertain. As a consequence, answers derived from an uncertain view
are valid only with some degree of confidence even if the view’s input tuples are
not uncertain, which may greatly help in pruning answer candidates derived from
low-confidence views. We illustrate our setting by the following example.

KnownFor(X, Crime)

OR

ActedIn(X, PulpFiction) Director(X, Pulp..) Won(Pulp.., BestDirector)

AND AND

Figure 1.2: Lineage example.

Example 1 Consider a probabilistic database that contains information about
movie directors, actors, categories and award nominations as shown in Figure 1.1.
View ν1, for example, captures the case where actors are known for specific movie
categories in which they acted. Likewise, from view ν2 we may infer that directors
who won an award for a movie of a specific category (e.g., Action) are likely,
but not for sure, also known for this category. Consequently, Figure 1.2 depicts
a partially evaluated lineage formula for the query KnownFor(X ,Crime) as a
directed acyclic graph over the views and base tuples of Figure 1.1, thus asking
for directors or actors X who are known for Crime movies.

5

This lineage DAG captures an intermediate step of processing the query via
the views in a top-down fashion. We see that both ν1 and ν2 have only been
partially resolved to the base tuple t14, while all other literals in ν1 and ν2 (aka.
“subgoals” in Datalog terminology) are still unexplored. At this point, we can
already identify two intriguing questions which we may aim to answer even before
further processing the query via the remaining views: (1) are there any high-
confidence answers which we can obtain from views ν1 and ν2 at all; and (2) how
can we develop bounds to efficiently identify the top-k most probable answers
when processing the remaining literals? ⋄

1.1 Contributions
We summarize our contributions as follows:
• Current PDB engines perform data and confidence computations in two strictly

separated phases. To our knowledge, our approach is the first to consider
integrated data and confidence computations. Thus, early pruning of low-
confidence answer candidates can greatly reduce data computations in PDBs
with non-materialized views.

• We present a generic bounding approach for confidence computations over
first-order lineage formulas. Our algorithm provides (1) lower and upper
bounds for an individual query answer or for an entire set of answers if the
query variables are not bound to constants yet. We show that (2) both our
lower and upper bounds converge monotonically to the final confidences of
the query answers as we gradually expand the formulas. Both (1) and (2) are
key properties for building effective top-k-style pruning algorithms.

• Our approach allows for plugging in different schedulers which aim to select
the subgoal which is most beneficial for top-k pruning at each query process-
ing step. This benefit is estimated based on the expected selectivity, i.e., the
expected number of answers, and the expected impact of a subgoal on the
confidence of query answers.

• We present extensions for the case when sorted input lists for extensional
relations are available and for adapting our pruning techniques to recursive
queries.

• We present an extensive experimental evaluation and comparison to existing
top-k pruning strategies in probabilistic databases. Moreover, to our knowl-
edge, we are the first to report an improved runtime of our top-k algorithm in
a probabilistic database setting compared to full query evaluations in a corre-
sponding deterministic database setting.

6

2 Computational Model
In this section, we introduce our data model, which follows the common possible-
worlds semantics [2] over tuple-independent probabilistic databases, along with
the operations we allow over this kind of uncertain data. A summary of all sym-
bols used in our notation, together with their description, is depicted in Table 2.1.
Our computational model builds upon (and thus is consistent with) prior work on
probabilistic databases [3, 5, 22, 33], and specifically upon the one considered in
the context of uncertain databases with lineage [4, 30, 38], which is known to be
closed and complete under the common semantics of relational operations.

2.1 Probabilistic Database
We define a tuple-independent probabilistic database with uncertain views DB =
(T ,V , p) as a triplet consisting of a set of base tuples T , a set of views V , and
a probability measure p : T ∪ V → [0, 1], which assigns a probability value
p(e) to each uncertain base tuple and view e ∈ T ∪ V , respectively.1 As in a
regular database, we assume the set of base tuples T to be partitioned into a set
of extensional relations. The probability value p(e) denotes the confidence in
the correctness of the tuple or view, i.e., a higher value p(e) denotes a higher
confidence in e being valid.

Uncertainty of base tuples is modeled by associating a Boolean random vari-
able Xt with each base tuple t ∈ T . The case when Xt = true denotes the
probabilistic event that t is present in the probabilistic database. Analogously to
base tuples, we model the uncertainty of views by introducing also a Boolean ran-
dom variable Xν for each view ν ∈ V . Thus, Xν = true denotes the probabilistic
event that view ν holds, which we assume to hold independently of other views
or base tuples. Setting p(ν) < 1 expresses that processing the view ν may deduce

1Usually a probabilistic database is defined as a probability distribution over possible instances
of the database. In the case of a tuple-independent PDB (without any further constraints restricting
the possible instances), the distribution corresponds to the one defined by Equation (2.1).

7

Symbol Description
T Base tuples of all extensional relations
V Views defining intensional relations
X Boolean random variable
p Probability measure
P Marginal probability of a formula
ϕ, ψ Propositional lineage formulas
Φ, Ψ First-order lineage formulas
Φ[t→true] Restriction of Φ onto t→ true

X̄ Tuple of variables and constants
Rγ(X̄) Subgoal over relation R
L(X̄) Literal (signed subgoal)

Table 2.1: Description of Symbols.

uncertain results and thus decreases the confidence of answers derived from ν.
We assume globally unique identifiers for base tuples and views. For conve-

nience of notation, and if it is clear from the context, we will thus write t and ν to
denote both the identifiers and the random variables Xt and Xν associated with t
and ν, respectively.
Possible Worlds Semantics. A possible world W ⊆ (T ∪ V) is a subset of base
tuples and views in T and V , respectively. Since we assume independence among
all Boolean random variables associated with tuples and views, the probability
P (W) of a possible world W is defined as follows.

P (W) :=
∏
e∈W

p(e)
∏
e/∈W

(1− p(e)) (2.1)

Intuitively, all tuples and views in W are valid (i.e., true) in the possible world
W , whereas all tuples and views in (T ∪ V)\W are false (i.e., they are not con-
tained in the world W). In the absence of further constraints, which would restrict
the set of possible worlds (see, e.g., [7, 20]), each subset of base tuples and views
W ∈ 2T ∪V forms a possible world. Hence, there are exponentially many such
possible worlds.

2.2 Views
We represent a view ν ∈ V as a rule in Datalog notation. Hence V together
with the set of base tuples (aka. “facts”) T is also called a Datalog program.
Consequently, we will denote the deductive query processing steps applied for
processing these rules as deductive grounding. Syntactically, a Datalog rule is a
disjunctive clause with a positive head literal and a conjunction of both positive

8

and negative literals in its body (see Figure 1.1 for examples). The views’ head
literals define a set of so-called intensional relations. An intensional relation may
be defined via multiple rules; however, no extensional relation may occur also in
the head of a rule.

Variables occurring in the head literal are universally quantified, while vari-
ables occurring only in the body literals are existentially quantified (see, e.g., ν3
in Figure 1.1). Following common Datalog conventions, each variable that occurs
in the head literal or in a negated body literal must also occur in at least one of the
positive body literals. This form of safe Datalog programs ensures that ground-
ing terminates, and the variables are properly bound to constants after grounding
the rules. We remark that we do not focus on safe query plans [7, 8], and hence
we do not pose any further restrictions on the views’ shape. We further remark
that this class of function-free, safe Datalog programs with negation (but with-
out recursion) corresponds to the relational calculus for SPJ queries (including set
operations such as union and difference, but without aggregations or other func-
tion calls) [1]. For any given instance of base tuples and non-recursive rules, data
computations (but not confidence computations) are of polynomial runtime in the
size of both the base tuples and rules [13]. Also, for the rest of this paper, we will
use the terms view and rule interchangeably.
Uncertain Views. In contrast to classic probabilistic database approaches, we
explicitly allow also our views to be uncertain. Considering, for example, ν5 in
Figure 1.1, we see that the probability value of 0.4 attached to ν5 lets us express
that not every movie nominated for an award indeed also wins this award. The
uncertainty of this view (together with that of view ν4) is thus propagated to ev-
ery tuple in the intensional relation Won . Thus, the main difference of our data
model to classic Datalog is the possible uncertainty of a rule (or view), which we
model by introducing an additional random variable Xν for each view ν. In Sub-
section 2.4, we describe how the Boolean random variables associated with the
views are encoded into the lineage formulas of tuples derived from these views.

2.3 Queries
We consider a query as a conjunction of first-order literals with arguments con-
sisting of tuples of constants and free (aka. “distinguished”) variables, which we
will refer to as the query variables. Again, every variable occurring in a negated
literal must also occur in at least one of the non-negated literals. Throughout this
paper, we will explicitly refer to query variables as the distinguished variables
that occur in the query literals. Tuples of constants which are bound to the tuples
of query variables by the grounding procedure will yield the query answers.

9

2.4 Lineage
Propositional Lineage. In contrast to base tuples which are assumed to be inde-
pendent, a derived tuple is completely defined via (and thus dependent of) the base
tuples and views that were employed to derive that tuple. Thus, when completely
grounded against the base tuples and views, we will refer to a derived tuple t di-
rectly via its propositional lineage formula ϕt. A propositional lineage formula
thus captures the logical dependencies between base tuples, views, and the tuples
derived from both these base tuples and views.
First-Order Lineage. As opposed to all probabilistic database approaches we are
aware of (see, e.g., [4, 6, 14, 36]), which consider lineage only in propositional
form, we more generally allow lineage to be a well-formed formula over a re-
stricted class of first-order predicate logic. A well-formed lineage formula Φ may
incorporate the constants true and false, Boolean connectives (∧, ∨, ¬), Boolean
(random) variables denoting tuples t ∈ T and views ν ∈ V , existential quantifiers
(∃), and first-order literals of the form Rγ(X̄). Following common Datalog termi-
nology, we refer to a first-order literal Rγ(X̄) as a subgoal, where R denotes the
relation name and X̄ is a tuple consisting of both constants and variables. In what
follows, these subgoals will represent yet unexplored (i.e., not yet grounded) parts
of the lineage formula. We employ adornments in the form of a superscript γ of a
subgoal to denote which variables of a subgoal are bound or free [1].

As opposed to propositional lineage, a first-order lineage formula is able to
capture any intermediate step of the grounding procedure. If at least one query
variable in a first-order lineage formula is not yet bound to a constant, the lineage
formula represents a (possibly empty) set of query answers. In Figure 1.2, for
example, the query variableX is not yet bound in two of the subgoals ActedIn(X,
PulpFiction) and Directed(X,PulpFiction).

2.5 Deductive Grounding with Lineage
We next provide an inductive definition of lineage which is obtained from ground-
ing a subgoal Rγ(X̄) over uncertain views V and uncertain base tuples T . The
definition is based on two rewriting rules which follow the general course of a top-
down grounding procedure. We are choosing top-down grounding over bottom-up
grounding in order to be able to save data computations, i.e., to avoid touching
base tuples of lower ranked answers whenever possible. Later, in Section 5, we
provide a grounding algorithm, based on SLD resolution [1], which implements
the two rewriting rules.
Rule (1) (Disjunctive Lineage) Let Rγ(X̄) be a subgoal, and let X̄ be a tuple
of constants and variables not bound in γ. Then grounding Rγ(X̄) over views V

10

and base tuples T yields a disjunction over the lineages of base tuples or tuples
derived from views that unify with Rγ(X̄).

Φ
(
Rγ(X̄)

)
:=

∨
ν (Φ(ν)) • if R is intensional

and head(ν) of ν ∈ V
unifies with Rγ(X̄)∨

t Xt • if R is extensional
and t ∈ T unifies
with Rγ(X̄)

false • else

Rule (2) (Conjunctive Lineage) Let Rγ(X̄) be a subgoal, let X̄ be a tuple of
constants and variables not bound in γ, let

ν : ∀X̄ ′ R(X̄0) :– ∃X̄ ′′ L1(X̄1), . . . , Ln(X̄n)

be a safe Datalog rule that unifies with Rγ(X̄), and let X̄0, . . . , X̄n be tuples of
constants and existentially quantified variables. Then grounding Rγ(X̄) against
ν yields a conjunction over the lineages of literals L1, . . . , Ln in the body of ν,
including an additional conjunction with the Boolean (random) variable Xν asso-
ciated with ν.

Φ (ν) := Xν∧∃X̄ ′′
(∧

i=1,...,n

{
Φ
(
Rγ

i (X̄i)
)

• if Li = Ri

¬
(
Φ
(
Rγ

i (X̄i)
))

• if Li = ¬Ri

)
Query Processing. We always start the grounding procedure from a query literal.
For a subgoal Rγ(X̄) over an extensional relation R, only Rule (1) applies. It
replaces Rγ(X̄) by either a disjunction of Boolean variables representing base
tuples or by the constant false, if no such tuples exist (which corresponds to the
“negation-as-failure” semantics in Datalog[1]). If R is intensional, Rule (1) is
utilized to create a disjunction over all rules with a head literal that unifies with
the subgoal. Then, the additional application of Rule (2) results in a conjunction
of literals in a rule’s body, where existential quantifiers over the variables that
occur in the rule’s body are added. This process, known as SLD resolution, is
repeated by using the body literals of the rule as new subqueries in the following
grounding steps.
Creating Query Answers. If a tuple of arguments X̄ in a subgoal Rγ(X̄) be-
comes bound to one or more tuples of constants C̄1, . . . , C̄n, we distinguish two
cases. First, if Rγ(X̄) relates to a top-level query literal, then each distinct tuple
C̄i corresponds to a new query answer and its lineage is copied correspondingly.
Second, if X̄ contains existentially quantified variables, then these can be elimi-
nated through a standard quantifier elimination step [1]. In general, if the bindings

11

to a variableX in Φ are C1, . . . , Cn, then we transform Φ into a disjunction of for-
mulas Φ[X→Ci] as follows.

∃XΦ≡Φ[X→C1] ∨ · · · ∨ Φ[X→Cn] (2.2)

In this case, no new query answers are introduced, but the quantifier elimination
results in a corresponding disjunction in the lineage formula.

Example 2 Given the query Won(X,BestWriting) over the base tuples and
views depicted in Figure 1.1, we see that the head literals of both ν4 and ν5 unify
with this query literal. Applying Rule (1) to the query literal, and subsequently
Rule (2) results in:

(ν5 ∧ Nominated(X,BestWriting))∨
(ν4 ∧ Nominated(X,BestWriting) ∧ ¬Category(X,Action))

By applying Rule (1) on the first instance of Nominated(X, BestWriting), tu-
ples t9 and t11 unify with this subgoal and bind the query variable X to In-
ception and PulpFiction, respectively. Hence we obtain the two distinct answers
Won(Inception,BestWriting) and Won(PulpFiction,BestWriting), where the
former’s lineage is(

(ν5 ∧ t9) ∨
(
Nominated(Inception,BestWriting)
∧¬Category(Inception,Action) ∧ ν4

))
and the latter’s lineage is:(

(ν5 ∧ t11) ∨
(
Nominated(PulpFiction,BestWriting)
∧¬Category(PulpFiction,Action) ∧ ν4

))
Applying Rule (1) on the Nominated literals of both lineage formulas yields
(ν5 ∧ t9) ∨ (ν4 ∧ t9 ∧ ¬Category(Inception,Action)) and (ν5 ∧ t11) ∨ (ν4 ∧ t11∧
¬Category(PulpFiction, Action)). Finally, with respect to the Category literals,
Rule (1) delivers t12 and false for the first and second answer, respectively. Thus,
the final (propositional) lineage formulas of the two answers Won(Inception,
BestWriting) and Won(PulpFiction,BestWriting) are (ν5∧t9)∨(ν4∧t9∧¬t12)
and (ν5 ∧ t11) ∨ (ν4 ∧ t11 ∧ ¬false), respectively. ⋄

Notice that all our operations are by default duplicate-eliminating. That is, in the
case when a same literal can be answered by multiple rules (or a combination
of rules and base tuples), we create a corresponding disjunction in the Boolean
lineage formula of the derived tuple.
Complete Lineage. In a non-probabilistic Datalog setting, it is sufficient to find a
single proof for an answer in order to show that the answer exists. In contrast, for

12

Datalog rules over probabilistic data, all such proofs over the given rules and base
tuples are required in order to correctly capture all the possible worlds (and only
those) for which a query answer exists, i.e., for which the propositional lineage
formulas of the answer evaluates to true . Omitting a single proof might thus
entail incorrect marginal probabilities. SLD resolution yields this “all-proofs”
semantics [19].

2.6 Confidence Computations
A propositional lineage formula can be evaluated over a possible world W ⊆
(T ∪ V) by setting all variables in W to true and all variables in (T ∪ V)\W to
false, respectively.
Computing Marginals. For a propositional lineage formula ϕ, let M(ϕ) be the
set of possible worlds (aka. “models”) satisfying ϕ. Then, the marginal probability
P (ϕ) of a derived tuple (represented by its propositional lineage formula ϕ) is
defined as the sum of the probabilities of all worlds for which ϕ evaluates to true .

P (ϕ) :=
∑

W∈M(ϕ)

P (W) (2.3)

We note that the above sum may range over exponentially many terms because
there are exponentially many possible worlds. In fact, computing P (ϕ) is known
to be #P-hard for general propositional formulas [7, 28].
Shannon Expansions. Alternatively, to avoid computing the sum of Equation (2.3),
in a tuple-independent probabilistic database setting we can compute marginals
by incrementally decomposing the propositional lineage formulas into variable-
disjoint subformulas [10, 23]. Generally, for two propositional formulas ϕ, ψ over
disjoint sets of independent random variables, the following relationships hold:

P (ϕ ∧ ψ) :=P (ϕ) · P (ψ) (2.4)
P (ϕ ∨ ψ) :=1− (1− P (ϕ)) · (1− P (ψ)) (2.5)
P (¬ϕ) :=1− P (ϕ) (2.6)

If the above principles are not directly applicable to two propositional formu-
las ϕ and ψ due to a shared variable t, this variable can be eliminated by a Shannon
expansion. This is based on the equivalence

ϕ ≡ (t ∧ ϕ[t→true]) ∨ (¬t ∧ ϕ[t→false])

where ϕ[t→true] denotes the restriction of ϕ to the case when t is true, i.e., all
occurrences of t in ϕ[t→true] are substituted by the constant true. Then, it holds

13

that:

P (ϕ) = P (t) P (ϕ[t→true]) + (1− P (t)) P (ϕ[t→false]) (2.7)

Repeated Shannon expansions can increase the size of a formula exponentially.
This issue can be addressed to some extent by incremental decompositions as
shown in [23].

2.7 Expressiveness
With the above form of grounding, we encode the Boolean random variables that
represent the uncertain views used for grounding a query answer directly into the
lineage formulas of that query answer. Deriving a tuple via a view thus denotes
the probabilistic event that “the input tuples to the view hold and the view itself
holds”, which is captured by a conjunction of the random variables for the tuples
that ground the rule with the random variable associated with the view.

We remark that annotating views with probabilities does not exceed the ex-
pressiveness of a tuple-independent probabilistic database model, i.e., our model
still falls within the class of uncertain databases with lineage [4]. The reason is
that we can equivalently introduce a new relation Rules which stores one tuple r
per view ν that holds the respective probability p(ν). For example, we can rewrite
ν4 in Figure 1.1 to

∀X, Y Won(X, Y) :– Nominated(X, Y),Rules(r4)

where we add the tuple r4 to the relation Rules with confidence 0.4. In the follow-
ing, we argue that, while uncertain views yield an intuitive semantics, they may
also greatly contribute to an early pruning of answers derived from low-confidence
views (which we evaluate empirically in Section 7).

14

3 Confidence Bounds
In this section, we develop lower and upper bounds for the marginal probability
of any query answer that can be obtained from grounding a first-order lineage
formula. We will proceed by constructing two propositional lineage formulas
ϕlow and ϕup from a given first-order lineage formula Φ. Then, the confidences of
ϕlow and ϕup will serve as lower and upper bounds on the confidences of all query
answers captured by Φ. More formally, if ϕ1, . . . , ϕn represent all query answers
we would obtain by fully grounding Φ, then it holds that:

∀i ∈ {1, . . . , n} : P (ϕlow) ≤ P (ϕi) ≤ P (ϕup)

Building upon results of [10, 23, 29], we develop two theorems, which (1)
provide a mechanism for obtaining lower and upper bounds for formulas with
first-order literals, and which (2) guarantee that these bounds converge monoton-
ically to the marginal probabilities P (ϕi) of each query answer ϕi as we continue
to ground Φ in a top-down manner.

3.1 Bounds for Propositional Lineage
As a first step, we relate the confidence of two propositional lineage formulas ϕ
and ψ via their sets of models M(ϕ) and M(ψ), i.e., the sets of possible worlds
over which ϕ and ψ evaluate to true, respectively.

Proposition 1 For two propositional lineage formulas ϕ and ψ, it holds that:

M(ϕ) ⊆ M(ψ) ⇒ P (ϕ) ≤ P (ψ) [23]

That is, M(ϕ) includes all possible worlds for which ϕ evaluates to true. Since
we assume M(ϕ) ⊆ M(ψ), the same worlds satisfy ψ as well. However, there
might be more worlds fulfilling ψ but not ϕ. This might yield more terms over
which the sum of Equation (2.3) ranges, and thus we obtain P (ϕ) ≤ P (ψ).

15

Example 3 Consider the two formulas ϕ ≡ t1 and ψ ≡ t1 ∨ t2. From M(t1) ⊂
M(t1 ∨ t2) it follows that P (t1) < P (t1 ∨ t2), which we can easily verify using
Equation (2.3). ⋄

Conjunctive Clauses. To turn Proposition 1 into upper and lower bounds, we pro-
ceed by considering clauses in the form of conjunctions of propositional literals,
where Literals(ϕ) denotes the set of literals contained in a clause.

Proposition 2 Let ϕ, ψ be two propositional, conjunctive clauses. It holds, that
M(ϕ) ⊆ M(ψ) if and only if Literals(ϕ) ⊇ Literals(ψ) [23].

The above statement expresses that adding literals to a conjunction ϕ removes
satisfying worlds from M(ϕ).

Example 4 For the clauses t1∧t2 and t1, it holds that Literals(t1∧t2)⊃Literals(t1)
and M(t1 ∧ t2)⊆M(t1). ⋄

Disjunctive Normal Form. Moreover, we say that a propositional formula ϕ is
in disjunctive normal form (DNF), if it is a disjunction of conjunctive clauses.

Lemma 1 For two propositional DNF formulas ϕ and ψ, it holds that

M(ϕ) ⊆ M(ψ) ⇔ ∀ϕ′ ∈ ϕ ∃ψ′ ∈ ψ : M(ϕ′) ⊆ M(ψ′)

where ϕ′ and ψ′ are conjunctive clauses [23, 29].

The lemma establishes a relationship between two formulas in DNF. If we can
map all clauses ϕ′ of a formula ϕ to a clause ψ′ of ψ with more satisfying worlds,
i.e., M(ϕ′) ⊆ M(ψ′), then ψ has more satisfying possible worlds than ϕ. The
mapping of clauses is established via Proposition 2.

Example 5 For the DNF formula ϕ ≡ (t1 ∧ t2) ∨ (t1 ∧ t3) ∨ t4, we can map all
clauses in ϕ to a clause in ψ ≡ t1 ∨ t4. Hence, ψ has more models than ϕ, i.e.,
M(ϕ) ⊆ M(ψ). ⋄

Thus, Lemma 1 together with Proposition 1 enables us to compare the marginal
probabilities of propositional formulas in DNF based on their clause structure.
Converting Formulas to DNF. Any propositional formula can equivalently be
transformed into DNF by iteratively applying De Morgan’s law, and thereafter the
distributive law.

Observation 1 If a variable t occurs exactly once in a propositional formula ϕ,
then all occurrences of t in the DNF of ϕ have the same sign.

The reason is that the sign of a variable t changes only when using De Mor-
gan’s law. However, when applying De Morgan’s law, no variables are duplicated.
When utilizing the distributive law, on the other hand, variables are duplicated but
preserve their signs.

16

3.2 Bounds for First-Order Lineage
Analogously to the DNF for propositional formulas, any first-order formula can
equivalently be transformed into prenex normal form by pulling all quantifiers in
front of the formula. The remaining formula can again be transformed into DNF,
which is then called prenex-DNF (PDNF). For our following constructions on
first-order formulas, we will assume the first-order formulas to be given in PDNF.
In general, such a normalization may lead to an exponential increase of the size
of the formula. However, this construction serves as a theoretical tool, only, and
never actually needs to be performed by the algorithms described in Section 5.

Let us assume we are given a first-order lineage formula ΦR which is in propo-
sitional form except for one subgoal Rγ(X̄). Moreover, we require the grounding
of Rγ(X̄) (see Section 2.4) to yield only propositional terms, i.e., Boolean vari-
ables referring to base tuples. Hence, we refer to ϕ1, . . . , ϕn as the propositional
formulas, which we obtain by grounding Rγ(X̄) in ΦR. The following theorem
provides bounds on each P (ϕi) by means of ΦR.

Theorem 1 Given a first-order lineage formula ΦR, which is in propositional
form except for one subgoalRγ(X̄), and propositional lineage formulas ϕ1, . . . , ϕn,
which are obtained from ΦR by grounding Rγ(X̄). We construct ϕup by
• substituting Rγ(X̄) with true if Rγ(X̄) occurs positive in the PDNF of ΦR, or
• substituting Rγ(X̄) with false if Rγ(X̄) occurs negated in the PDNF of ΦR.

Analogously, we construct ϕlow by
• substituting Rγ(X̄) with false if Rγ(X̄) occurs positive in the PDNF of ΦR,

or
• substituting Rγ(X̄) with true if Rγ(X̄) occurs negated in the PDNF of ΦR.

Then it holds that:

∀i ∈ {1, . . . , n} : P (ϕlow) ≤ P (ϕi) ≤ P (ϕup)

Proof 1 Choose an arbitrary but fixed i ∈ {1, . . . , n}. W.l.o.g., we assume ΦR

and ϕi to be in PDNF. The PDNF of ΦR may consist of one or more clauses that
contain Rγ(X̄), which are either of the form (ψ ∧Rγ(X̄)) or (ψ ∧¬Rγ(X̄)). For
each of these clauses, ϕi may contain a number (due to Equation (2.2)) of clauses
of the form (ψ ∧ φ). Here, the literals φ correspond to groundings of Rγ(X̄).

When substitutingRγ(X̄) by true or false as stated in Theorem 1, ΦR’s clauses
turn into (ψ ∧ true) and (ψ ∧ false) for the upper and lower bounds, respectively.
Subsequently, considering the upper bound, we employ Proposition 2 which yields
M(ψ ∧ φ) ⊆ M(ψ ∧ true), since Literals(ψ ∧ φ) ⊇ Literals(ψ ∧ true). Next,

17

from Lemma 1 it follows that M(ϕi) ⊆ M(ϕup). This matches exactly the pre-
condition of Proposition 1 from which we obtain P (ϕi) ≤ P (ϕup). The case for
the lower bound P (ϕlow) follows analogously.

Example 6 For the first-order lineage formula

ΦR ≡ t14 ∧ ∃XactedIn(Travolta, X)

the upper bound is given by P (t14 ∧ true) = P (t14) := p(t14), and the lower
bound is P (t14 ∧ false) = P (false) = 0. For any set of tuples t1, . . . , tn matching
∃X actedIn(Travolta, X), we have ϕ ≡ (t14 ∧ (t1 ∨ · · · ∨ tn)) with 0 ≤ P (t14 ∧
(t1 ∨ · · · ∨ tn)) ≤ P (t14). ⋄

Since Rγ(X̄) has exactly one occurrence in ΦR, all occurrences of Rγ(X̄) in
the PDNF of ΦR have the same sign (see Observation 1). Therefore, we replace
all occurrences of Rγ(X̄) in the PDNF of ΦR by either true or false.

Moreover, for a general first-order lineage formula Φ, which contains multiple
distinct subgoals, we can apply the substitution provided by Theorem 1 multiple
times to obtain bounds. That is, we replace every occurrence of a subgoal Rγ(X̄)
in Φ by one application of Theorem 1’s substitution to obtain ϕlow and ϕup of Φ.

Our last step is to show that, for a fixed query answer ϕ (see Section 2.5),
the confidence bounds converge monotonically to the marginal probability of the
propositional lineage formula P (ϕ) with each SLD step. The argument follows
from the execution of the grounding procedure, but backwards. By Φ1 we de-
note the original query, and Φn corresponds to the lineage formula before the last
grounding step from which we obtain the final propositional formula ϕ.

Theorem 2 Let Φ1, . . . ,Φn denote a series of first-order formulas obtained from
iteratively grounding a conjunctive query via SLD resolution. Then, rewriting
each Φi to ϕi,low and ϕi,up according to Theorem 1 creates a monotonic series of
lower and upper bounds P (ϕi,low), P (ϕi,up) for the marginal probability P (ϕ).
That is:

0 ≤ P (ϕ1,low) ≤ · · · ≤ P (ϕn,low) ≤ P (ϕ)
≤ P (ϕn,up) ≤ · · · ≤ P (ϕ1,up) ≤ 1

Proof 2 We prove the theorem by induction, where i denotes the number of ground-
ing steps taken.
Basis i = n: P (ϕn,low) ≤ P (ϕ) ≤ P (ϕn,up) is covered by one application of
Theorem 1. That is, we have exactly one occurrence of a subgoal Rγ(X̄) in Φn,
which we replace with either true or false to obtain ϕn,low and ϕn,up , respectively,
such that P (ϕn,low) ≤ P (ϕ) and P (ϕn,up) ≥ P (ϕ).
Step i→ i− 1: By the hypothesis, we are given a formula Φi with bounds char-
acterized by P (ϕi,up) and P (ϕi,low).

18

Let us consider the grounding step which led to Φi. In Φi−1 a subgoal Rγ(X̄)
must have been processed from which we obtained Φi. Let Φi−1 ≡ Ψ Rγ(X̄) Ψ′,
where Ψ, Ψ′ are a prefix and suffix of Φi−1. One step of grounding Rγ(X̄) via
SLD resolution thus leads to the formula Φi ≡ Ψ Φ′

i Ψ
′, where Φ′

i is a first-order
formula that consists of one or more subgoals or ground terms (including the con-
stants true and false). If we replace every occurrence ofRγ(X̄) in the conjunctive
clauses of the PDNF of Φi−1 by Φ′

i, we obtain a formula that is equivalent to Φi

(but which is not necessarily in PDNF), and whose clauses contain more terms
than the clauses in Φi−1 and thus are more specific. From this, it follows that
applying Theorem 1 on all subgoals in the actual PDNF’s of Φi and Φi−1 yields
propositional formulas ϕi,up and ϕi−1,up, such that M(ϕi,up) ⊆ M(ϕi−1,up). That
is, P (ϕi,up) ≤ P (ϕi−1,up). The case for the lower bounds P (ϕi,low) follows anal-
ogously.

19

4 Subgoal Scheduling
In this section, we present our scheduling techniques for determining the benefit
of exploring a particular subgoal. A major difference of Datalog (with recursion)
to a traditional database setting is the lack of a static query plan. Instead, we aim
to dynamically and adaptively determine the best join order among the literals in
a rule’s body by prioritizing subgoals with a low selectivity. Additionally, given
our probabilistic setting, we also aim to ground those subgoals first which have a
high impact on the confidence bounds of the answers.

4.1 Selectivity Estimation
Generally, selectivity estimation aims at computing how many answers are ex-
pected when a subgoal is expanded. For our setting, we employ a simple prob-
abilistic model for intensional relations defined over both the view structure and
the extensional data, with independence assumptions for joins and unions. We
will express this by a function S : Φ → [0, 1] which, when given a first-order
lineage formula Φ, calculates a likelihood in the range of [0, 1] for this lineage
formula to return an answer over the set of base tuples and views. For ease of
readability, we omit the arguments of subgoals with formulas for the remainder of
this section.

We recursively define the selectivity S(Rγ) of a subgoal Rγ with binding pat-
tern γ and Boolean connectives ∧, ∨ and ¬ as follows

S(Rγ, d) :=sγR if R is extensional
S(¬Rγ, d) :=1− S(Rγ, d)

S(
n∧

i=1

Rγ
i , d) :=

n∏
i=1

S(Rγ
i , d)

S(
n∨

i=1

Rγ
i , d) :=

{
1−

∏n
i=1 (1− S(Rγ

i , d+ 1)) • d < D
c • else

20

where sγR denotes the selectivity of an extensional relation R given the binding
pattern γ, and c is a constant selectivity factor which serves as a cut-off point for
the selectivity estimation at a given (top-down) grounding depth D.

This cut-off depth D serves to break the selectivity estimation for highly con-
voluted views and thus also allows us to handle recursive views (see Subsec-
tion 6.2). Our rationale for employing this heuristic is that we usually obtain
enough information for ordering subgoals by analyzing the structure of the views
and the selectivities of the extensional relations by expanding the views up to a
reasonable nesting depth. Hence, we mostly focus on finding good estimates for
the relative selectivity (i.e., the best order) of subgoals to be scheduled, while ex-
act selectivity values are not necessarily required. The advantage of this approach
is that these selectivity estimates can be fully precomputed over views V and ex-
tensional tuples T , and for any relation R with binding pattern γ. At query time,
we simply pick the selectivity estimates for all subgoals to be scheduled from
a precomputed table and use S(Rγ

i , 0), i.e., always the estimate starting at level
0 (regardless of the current state of the grounding procedure), to determine the
scheduling order of subgoals. For an extensional relation R, we use the average
amount of tuples matching a given relation and binding pattern over the size of
the extensional database as an estimate of sγR. However, our approach would also
allow for precomputing more precise statistics for predicates with individual con-
stants as binding patterns, or to incorporate explicit correlations among predicates
in the form of joint selectivities in case this information is available. Our experi-
ments show that c = 0.001 and a maximum nesting depth of D = 5 yield good
estimates for this form of subgoal scheduling.

Example 7 Given the query Won(X,BestWriting) and views ν4 and ν5, selec-
tivity estimation proceeds as follows

S(Wonγ, 0)
= S ((Nominatedγ1 ∧ ¬Categoryγ2) ∨ Nominatedγ3 , 0)

= 1−
(
(1− S(Nominatedγ1 ∧ ¬Categoryγ2 , 1))
· (1− S(Nominatedγ3 , 1))

)
= 1−

(
(1− S(Nominatedγ1 , 1) · S(¬Categoryγ2 , 1))
· (1− S(Nominatedγ3 , 1))

)
= 1− (1− 2

14
· (1− 1

14
)) · (1− 2

14
)

where 2
14

results from the fact that Nominated contains 2 tuples over a total of
14 in the database when the second argument is bound by BestWriting . Instead,
Category returns just 1 tuple (again over a total of 14 in the database) when
binding the second argument to Action. ⋄

21

4.2 Impact of Subgoals
In the next step, we aim to quantify the impact of the confidence p(t) of a Boolean
variable t on the marginal probability P (ϕ) of the propositional formula ϕ it oc-
curs in. Later, the scheduler will exploit this to choose the subgoal with the highest
impact on the confidence bounds of Φ. Following results from [17, 25], this im-
pact measure can be captured by the following derivative.

∂P (ϕ)

∂p(t)
=
P (ϕ[t→true])− P (ϕ[t→false])

1− 0

Lemma 2 For a propositional formula ϕ, if we fix the confidences of all variables
except t, it holds that

P (Φ) = c p(t) + c′

where c and c′ are two constants independent of p(t).

Proof 3 One step of Shannon Expansion on t results in:

ϕ≡ (t ∧ ϕ[t→true]) ∨ (¬t ∧ ϕ[t→false])

⇒
P (ϕ)=p(t) P (ϕ[t→true]) + (1− p(t)) P (ϕ[t→false])

=p(t) (P (ϕ[t→true])− P (ϕ[t→false]))︸ ︷︷ ︸
c

+P (ϕ[t→false])︸ ︷︷ ︸
c′

Thus, to compute the above derivative, it suffices to compute c. A general
first-order lineage formula Φ, however, may contain subgoals which makes the
above sensitivity analysis not directly applicable to Φ. Again, by substituting all
subgoals in Φ according to Theorem 1, we can quantify the impact of a subgoal
Rγ(X̄) on both the upper and lower bounds P (ϕlow), P (ϕup) in the corresponding
propositional formulas ϕlow, ϕup. That is, to quantify the impact of Rγ(X̄) on the
upper bound, we substitute all other subgoals to obtain ϕup and then compute c by
substituting Rγ(X̄) once by the constant true and once by false.

Example 8 Consider the lineage formula

(t4 ∧ ∃XWritten(X,PulpFiction))
∨ (t7 ∧ ∃XCategory(PulpFiction,X))

22

containing the subgoals Written(X,PulpFiction) and
Category(PulpFiction,X). The impact on the formula’s upper bound by the lat-
ter subgoal is then calculated as:

(1− (1− p(t4) · P (true))(1− p(t7) · P (true)))
− (1− (1− p(t4) · P (true))(1− p(t7) · P (false)))

= 1− (1− 0.6 · 1)(1− 0.8 · 1)− (1− (1− 0.6 · 1)(1− 0.2 · 0))
= 0.92− 0.6

4.3 Benefit-oriented Subgoal Scheduling
We now define the benefit of scheduling a subgoal for the next grounding step as

ben(Φ, Rγ) :=
|imup(Φ, R

γ)|+ |im low(Φ, R
γ)|

1 + S(Rγ, d)
(4.1)

where imup(Φ, R
γ) describes the impact of Rγ on the upper bound of Φ. Hence,

we favor subgoals with high impact and low selectivity.

23

5 Top-k Algorithm
Our top-k algorithm for computing query answers primarily operates on the lin-
eage formulas of (sets of) answer candidates. Specifically, subgoals from all an-
swer candidates, are kept in a priority queue Q that is ordered according to the
benefit-oriented subgoal scheduler (Section 4). Additionally, we maintain two
disjoint sets of answer candidates Atop and Acand . Following the seminal line of
threshold algorithms [9], the former comprises the current top-k answers with re-
spect to the lower bounds we compute for their marginal probabilities. The latter
consists of all remaining answer candidates whose upper confidence bounds are
still higher than the worst lower bound of any of the top-k answers. As an addi-
tional constraint, the top-k set Atop consists only of query answers whose lower
bound is greater than 0. This coincides with answers for which all query variables
have already been bound to constants by the grounding procedure, i.e., those for
which we have at least one proof but not yet necessarily all proofs. The candi-
date set, on the other hand, may hold answers candidates with a lower confidence
bound of 0, i.e., also those for which the query variables are not yet bound to
constants, hence representing sets of answers.

Each grounding step is performed by Algorithm 2, which is based on SLD
resolution [1] that has been extended by an incremental form of lineage tracing.

5.1 Top-k with Dynamic Subgoal Scheduling
At each processing step, the scheduler chooses the currently best subgoalRγ

best(X̄)
from the subgoal queueQ (Line 9), and we expand the lineage formula of this sub-
goal by performing a single SLD step over both V and T (Line 10) as described in
Section 2.5. Then, (Line 11) we update Atop and Acand due to following three rea-
sons. First, expanding Rγ

best(X̄) can change the confidence bounds of the answer.
Second, if there are no matches to Rγ

best(X̄), neither in T nor in V , the answer
candidates corresponding to Rγ

best(X̄) may be deleted (thus its lineage evaluates
to false). And third, if a query variable was bound to more than one constant, one

24

or more new top-k answer candidates are created.
Just like the original line of top-k algorithms [9], we keep track of answer

candidates residing inAtop andAcand until the following threshold-based stopping
condition holds:

∀ Φtop∈Atop ,Φcand ∈Acand : P (ϕcand ,up) ≤ P (ϕtop,low) (5.1)

Furthermore, an answer candidate Φcand ∈ Acand may be dropped from the can-
didate set Acand if:

∀ Φtop ∈ Atop : P (ϕcand ,up) ≤ P (ϕtop,low) (5.2)

To keep Q consistent with Atop and Acand , we update Q (Line 11). First, all sub-
goals occurring in deleted answers are dropped from Q. Then, all newly created
subgoals (due to new answers or the application of rules) are added to Q. Finally,
the impact (see Section 4.2) of all subgoals appearing in the same lineage formula
as Rγ

best(X̄) might have changed. Hence their priority in Q is updated.
Finally, Algorithm 1 terminates when the threshold-based breaking condition

in Line 7 of the algorithm holds, or when the candidate set Acand runs out of valid
answer candidates.

Algorithm 1 Top-k(V , T , Φq, k)
Input: Views V , uncertain tuples T , an intensional query Φq, and an integer value k
Output: Top-k answers Atop for Φq according to their lower confidence bounds

1: Initialize global priority queue Q with subgoals from Φq

2: Atop := ∅ ◃ Current top-k answers
3: Acand := {Φq} ◃ Answer candidates
4: while Acand ̸= ∅ do
5: min-k := minΦi∈Atop{P (ϕi,low), 0} ◃ Thm. 1
6: max-cand := maxΦi∈Acand

P (ϕi,up) ◃ Thm. 1
7: if min-k > max-cand then
8: break
9:

(
Φbest, R

γ
best(X̄)

)
:=

argmax(Φi∈Atop∪Acand,Ri(X̄)∈Q)ben(Φi, Ri(X̄))

◃ Eqn. 4.1
10: Φ := SLD(V , T , Φbest , R

γ
best(X̄)) ◃ Alg. 2

11: Update Atop , Acand , Q using Φ ◃ Eqns. 5.1,5.2

12: return Atop

25

5.2 SLD Resolution with Lineage Tracing
Algorithm 2 covers a single SLD step and is called as a subroutine of Algorithm 1
presented in the previous subsection. During each SLD step, a subgoal Rγ(X̄) is
replaced by new subgoals obtained from grounding the rules that define Rγ(X̄),
such that an updated version of all answers’ lineages that shareRγ(X̄) is returned.
The algorithms corresponds to Rule (1) and (2) introduced in Section 2.5.

Algorithm 2 SLD(V , T ,Φ, Rγ(X̄))
Input: Uncertain views V , uncertain tuples T , a first-order lineage formula Φ, a subgoal

Rγ(X̄) contained in Φ
Output: Updated lineage formula Φ

1: if R extensional then
2: M := {(t, γu) | t and γ unify to γu}
3: else
4: M :=

{
(ν, γu)

∣∣∣∣ν = R′γ′
(X̄) :– body ∈ V, R = R′,
γ and γ′ unify to γu

}
5: if M = ∅ then
6: Replace Rγ(X̄) in Φ by false ◃ Rule (1)
7: return Φ

8: for γ∗u ∈ bindings(M) do
9: if γ∗u binds new variables in γ then

10: Φ := expand Φ utilizing Eqn. (2.2)
11: L := Rγ∗

u(X̄) ◃ Created in previous step
12: else
13: L := Rγ(X̄)

14: if R is extensional then
15: Replace L by

∨
(t,γu)∈M,γu=γ∗

u
Xt ◃ Rule (1)

16: else
17: B := {body | (R′γ′

(X̄):– body , γu)∈M , γu = γ∗u}
18: for body ∈ B do
19: Propagate γ∗u to bindings in body’s literals
20: Replace L in Φ by

∨
body∈B body ◃ Rules (1),(2)

21: return Φ

IfR is extensional, we collect all matching tuples inM (Line 2). Otherwise, in
Line 4 we gather all rules whose relation R′ coincides with R and whose bindings
γ′ unify with γ. Thus, the set M holds a pair consisting of both the rule and the
unified bindings γu. Now, if there are no matching rules or tuples, that is M = ∅,
we replace the subgoal by false and return the altered Φ in Line 7. The loop in
Line 8 ranges over all different bindings γ∗u obtained from unifying the subgoal’s
bindings γ with the bindings γ′ occurring in the head of a matching rule. If γ∗u

26

binds more variables than γ, then in Line 10 we instantiate the quantifiers that hold
the newly bound variables according to Equation 2.2. Afterwards, in Line 11, the
copy Rγ∗

u(X̄) of Rγ(X̄) is saved in L. If Rγ∗
u matches tuples from T , we replace

L in Φ by a disjunction of the variables Xt in Line 15. Otherwise L is substituted
by a disjunction over the bodies of all rules with head Rγ∗

u (Line 20). For an
illustration of the algorithm, we refer the reader to Example 2.

5.3 Final Result Ranking
Some applications may require a complete ranking of the top-k answers. When
Algorithm 1 finishes, the marginal probabilities of the top-k answers might not
be exactly known (but only their bounds). We can tackle this by either iteratively
running top-1, . . . , top-k queries, where an inspection of the answer sets yields
the final ranking, or by continuing grounding and applying decompositions until
the confidence bounds of the top-k answers do not overlap anymore.

27

6 Extensions

6.1 Sorted Input Relations
A powerful technique in top-k query processing is to store each relation in de-
creasing order of local ranks and to use the rank at the current scan position as
an upper bound for the ranks of all remaining tuples. Top-k algorithms for ex-
tensional data [9, 15, 21] specifically focus on the former case with sorted input
relations. In our setting, we rank by confidence values and an extensional relation
R may contain a large amount of tuples that unify with a subgoal Rγ(X̄). For
example, when querying for the top-2 answers of Directed(X, Y) in Figure 1.1,
we only need to read t2 and t3 if the relation is sorted by p(ti). This strategy as-
sumes that R contains no duplicate tuples, which we can however overcome by a
preprocessing step applying an independent-project operation [36] to the relation,
if necessary.

In Theorem 1, we replaced a positive subgoal Rγ(X̄) by the constant true
to obtain this upper bound. This corresponds to using 1 as a conservative upper
bound for Rγ(X̄), since P (true) = 1. The following observation allows us to
lower this upper bound for a subgoal over an extensional input relation that is
sorted in decreasing order of ranks.

Observation 2 Let R be an extensional relation with tuples sorted in decreasing
order of p(ti), let Rγ(X̄) be a subgoal and let t1, . . . , tm be the tuples matching
Rγ(X̄). Then, for subgoalRγ(X̄) , we can set the upper confidence bound of each
tuple tj ∈ R, with i < j ≤ m, to min{p(t1), . . . , p(ti)}, if and only if all unbound
variables of Rγ(X̄) are query variables and there are no duplicates in R.

The key for this observation is that binding a query variable yields a new
query answer, while binding existentially quantified variables introduced by a rule
results in a disjunction in the lineage formula due to a quantifier elimination. This
disjunction may result in a higher confidence than that of the individual input
tuples due to Equation (2.5). For example, if two independent tuples t1, t2 with a

28

confidence of 0.5 each match a single subgoal with non-query variables, then we
obtain 1− (1− 0.5) · (1− 0.5) = 0.75 > 0.5. Thus, using an upper bound of 0.5
would be incorrect.

6.2 Recursive Rules
We develop an algorithmic extension for handling rules with recursively defined
intensional relations. To ensure a safe semantics for the deductive grounding
steps, we require the set of recursive rules V to be stratifiable [1], i.e., it is not
allowed to deduce a tuple from its own negation. Stratifiability is a pure syntactic
check on the rule structure and can be done prior to query processing. The com-
bined complexity (in terms of data and rules) for Datalog programs with a single,
recursive, non-linear rule is known to be EXPTIME-complete [13]. Although we
cannot improve upon this worst-case bound, we argue that top-k pruning may also
help to improve the runtime for recursive queries in practice.

Recursion poses a challenging problem for grounding. In principle, the lin-
eage formula of an answer could grow infinitely large due to a cycle in the rules.
Therefore, we next formulate a theorem which ensures the finiteness of a lineage
formula Φ, without altering the possible worlds that satisfy Φ. We define a cycle
to be a subgoal Rγ(X̄) whose SLD expansion results in a formula Φ containing
subgoalsRγ1(X̄1), . . . , R

γn(X̄n), such that (γ1, X̄1), . . . , (γn, X̄n) bind or contain
the same constants as (γ, X̄), but the names of the unbound variables in the X̄i’s
may differ.

Theorem 3 Let Φ = ΨRγ(X̄)Ψ′ be a lineage formula and let the expansion
Φex (R

γ(X̄)) of Rγ(X̄) yield the cycle ΨΦex (R
γ(X̄))Ψ′. Then it holds that:

ΨΦex (R
γ(X̄))Ψ′ ≡ ΨΦex (Φex (R

γ(X̄)))Ψ′

In other words, expanding a cycle more than once does not change the validity of
a lineage formula, which agrees with results from [27].

Proof 4 W.l.o.g., we assume all formulas to be in prenex form. Furthermore, let
Φ′ ∨

∨
i(Φ

′′
i ∧ Rγ(X̄)) be the DNF of Φex (R

γ(X̄)). That is Φ′ is a DNF formula,
Φi are conjunctions of literals and both do not contain Rγ(X̄). Due to stratifi-
cation, Rγ(X̄) must occur positively in the above formula. Now, we can rewrite
ΨΦex (Φex (R

γ(X̄)))Ψ′ through the following series of algebraic transformations:

ΨΦex (Φex (R
γ(X̄)))Ψ′

≡ ΨΦ′ ∨
∨

i(Φ
′′
i ∧ (Φ′ ∨

∨
j(Φ

′′
j ∧Rγ(X̄))))Ψ′

≡ ΨΦ′ ∨
∨

i(Φ
′′
i ∧ Φ) ∨

∨
i,j(Φ

′′
i ∧ Φ′′

j ∧Rγ(X̄))Ψ′

≡ ΨΦ′ ∨
∨

i,j(Φ
′′
i ∧ Φ′′

j ∧Rγ(X̄))Ψ′

≡ ΨΦ′ ∨
∨

i(Φ
′′
i ∧ Φ′′

i ∧Rγ(X̄)) ∨
∨

i ̸=j(Φ
′′
i ∧ Φ′′

j ∧Rγ(X̄))Ψ′

29

≡ ΨΦ′ ∨
∨

i(Φ
′′
i ∧Rγ(X̄)) ∨

∨
i̸=j(Φ

′′
i ∧ Φ′′

j ∧Rγ(X̄))Ψ′

≡ ΨΦ′ ∨
∨

i(Ψ
′′
i ∧Rγ(X̄))

≡ ΨΦex (R
γ(X̄))Ψ′

This yields again the form of the first expansion of Rγ(X̄).

In our implementation of SLD resolution with dynamic subgoal scheduling,
we block those subgoals in our priority queue that form the leaf of a cycle. If all
subgoals in the lineage formula of an answer are blocked, no new results can be
obtained, so we substitute these subgoals by false.

30

7 Experiments
In this section, we present our experimental evaluation. All experiments are per-
formed on an 8-core Intel Xeon with 2.4 GHz and 48 GB of RAM. Our top-k
approach is implemented in about 8k lines of Java code and utilizes a PostgreSQL
database in the backend. We use two well-known PDB systems for comparison
purposes, MayBMS1 and Trio2, both computing all answers and their respective
probabilities. We also include measurements using a deterministic database, de-
noted as PostgreSQL, by storing confidence values in all relations but ignoring
the actual confidence computations (which are combinatorially much more com-
plex than a simple score aggregation). This serves as a lower bound on all top-k
approaches (including [24, 25]), which require materialization and lineage tracing
of all answer candidates. Additionally, we implemented [25], which we refer to
as MultiSim.

7.1 Data Sets, Confidence Distributions, and Queries
We use two different datasets based on IMDB and YAGO. The IMDB movie
dataset consists of 6 relations, namely directed, acted, edited, produced, written,
and hasCategory, altogether summing up to 26·106 tuples. Since this data is deter-
ministic, we sample confidence values from three distributions, namely uniform,
gaussian, and exponential. Our second dataset is derived from the YAGO [35]
knowledge base with 132 · 106 tuples, where we also sample confidences using a
uniform distribution (YAGO’s tuples come with a constant confidence value per
relation). All rules and queries used in the experiments are available in Appendix
A.

1MayBMS: http://maybms.sourceforge.net/
2Trio: http://infolab.stanford.edu/trio/

31

http://maybms.sourceforge.net/
http://infolab.stanford.edu/trio/

Figure 7.1: Query Classes

7.2 Results
Query Classes. We start by focusing on four established query classes [7, 24, 36]
in the PDB field, namely non-repeating hierarchical queries, repeating hierarchi-
cal queries, non-repeating head-hierarchical queries, and general unsafe queries
which are represented by query patterns Q1, Q2, Q3 and Q4, respectively. Out of
the former three query classes, only the first class is guaranteed to yield safe query
plans, while the second and third (as well as the fourth) are unsafe. Each of the
four query patterns is instantiated to 1,000 different queries by inserting randomly
chosen constants into the query literals, each ensuring at least 50 answers. In the
following, we report average runtimes over the 1,000 individual queries per query
class by running each query 4 times and taking the average runtime of the latter 3
runs to calculate these averages. That is, the following figures depict results from
16,000 individual queries for these first four query patterns Q1–Q4. For presen-
tation purposes, we depict only up to an average runtime of 100 seconds for all
systems.

The results for the IMDB dataset with uniform confidences are depicted in
Figure 7.1. For the non-repeating hierarchical queries (Q1) our top-k approach
outperforms all systems including the deterministic setting. We gain this advan-
tage because not all answers’ lineage needs to be materialized for determining
the top-k answers. At the same time, the confidence computations required for
computing the bounds are processed in polynomial time, not slowing down our
top-k approach. Q2 contains repeated relations and the gains in data computa-
tions are partially diminished by the Shannon expansions performed for comput-
ing the bounds. Moreover, Q3 includes expensive data computations, which are
caused by a subquery common to all answers and hence not required to rank the

32

results. So, our top-k algorithm successfully terminates and even outperforms the
deterministic PostgreSQL baseline. Finally, Q4 is dominated by a subquery with
#P-hard confidence computations. However, our top-k approach is able to prune
answers before the expensive subquery is fully evaluated.

In all queries, Trio and MultiSim exhibit at least 100 times slower perfor-
mance. For MultiSim, the runtime is spent in sampling (except for Q3). The
runtime does not significantly increase with k, but rather depends on the distance
of the k-th and k+1-th answers’ confidences. The smaller the distance, the longer
it takes to run MultiSim.

Figure 7.2: Performance Factors

Performance Factors. In this experiment, we specifically choose query pat-
terns to highlight the features that affect the performance of our top-k approach
against the competing systems. Figure 7.2 depicts runtimes on the IMDB dataset
with uniform confidences for 4 additional query patterns Q5, Q6, Q7, and Q8,
which are again instantiated to 1, 000 queries each. Q5 gives exactly one proof
for each answer candidate. In this case, no pruning in terms of omitting grounding
a proof is possible for our top-k approach. Also, the proof involves an existen-
tially quantified variable, thus prohibiting the use of sorted input lists. As a result,
MayBMS’s bottom-up lineage computation of all answers is much more efficient.
Continuing with Q6, the possibility of three proofs per answer allows for prun-
ing. Also, the lack of existential quantifiers puts our approach in favor of the
competitors. Q7 contains a join of two existential relations and can be considered
as the main case where sorted input lists can yield a significant gain for our ap-
proach which outperforms all others. Finally, in Q8 each answer has up to three
proofs, however their relations overlap requiring Shannon expansions for confi-
dence computations. Since top-k repeatedly invokes these expensive confidence
computations to determine the bounds, the advantages even out with the competi-
tors.

33

Figure 7.3: Scheduling

Scheduling. In the experiment of Figure 7.3, we empirically evaluate our
scheduling techniques based on selectivity estimation (denoted as Sel.), presented
in Section 4.1, and impact (denoted as Imp.), presented in Section 4.2, against two
baselines. First, we implemented a dynamic subgoal scheduling strategy called
“most-bound-first” (aka. ”bound-is-easier” in [37]), which dynamically chooses
the subgoal with the highest amount of arguments bound to constants at each SLD
grounding step (denoted as MBF). Second, we obtained PostgreSQL’s static query
plan (see Appendix A) and forced our system to adhere to this plan (Postgres’
Plan) for our combined top-k grounding and confidence computation strategy.
Using the YAGO dataset, the three query patterns Q9, Q10, and Q11 were in-
stantiated by 100 constants each. We arranged the query patterns by increasing
the nesting depth of subqueries, such that Q9, Q10, and Q11 come with nesting
depths of 1, 2, and 3, respectively.

ForQ9, MBF is outperformed by both the Postgres plan and the scheduler that
is guided by selectivity estimation. However, adding the impact calculations to
the selectivity estimation does not yield any performance gains, but even results
in slight losses. When moving to the higher nesting depths of Q10 and Q11,
the impact calculations start improving the performance of the selectivity-based
scheduler. This is due to the fact that without subqueries (in the case of Q9) the
number of matching tuples to a subgoal dominates the runtime. In contrast, with
higher nesting depth the subgoals that are closer to the query are more influential
to determine the answers’ confidence bounds, which is correctly discovered by the
impact calculations. At the same time, higher nesting depths yield worse runtimes
for the Postgres plan. The reason is that PostgreSQL’s query optimizer is purely
driven by selectivity estimation, thus neglecting the impact of a subgoal on an
answer’s confidence value.

34

(a) Uncertain Views (b) Recursion

Figure 7.4: Experiments

Uncertain Views. In this experiment, we study how our approach can benefit
from uncertain views. Figure 7.4(a) depicts the results of query patterns Q12
and Q13 over the IMDB dataset with uniform confidences. First, Q12 contains
a union of three existential relations. In this case, uncertain views prioritize the
extensional relations and downweight their answers such that less tuples have to
be read from the database, which explains the performance gains. Second, Q13
allows for several proofs per answer, where the views’ confidences decide on their
impact. Therefore, proofs with lower confidences can be omitted speeding up the
grounding process.

Recursion. Figure 7.4(b) depicts the performance of our top-k approach over
the YAGO data set using two recursive query patterns, Q14 and Q15, instantiated
to 50 queries each. We also include the runtime for a full grounding approach
corresponding to an SLD grounding algorithm with lineage tracing, but without
any confidence computations. Q14 computes ancestors of persons utilizing the
hasChild relation, whereas Q15 asks for politicians of nations by recursively fol-
lowing the hasSuccessor relation. For Q14, the runtime increases with k, since
more ancestors being generations away from the queried person have to be com-
puted. However, for Q15 our top-k algorithm takes the same amount of time for
different values of k, which is because more than 10 politicians are known per
country and are ranked in the top-10 results. Also, when full grounding is used
for Q15, the lineage computation of all answers becomes very expensive.

Confidence Distributions. In the previous experiments, we focused on a uni-
form distribution of the confidences. We now proceed by exploring how different
distributions can affect our performance by comparing between uniformly, gaus-
sian, and exponentially distributed confidences. Posing a join query on two exis-
tential relations over the IMBD dataset, the results for each confidence distribution

35

(a) Confidence Distributions (b) Table Materialization

Figure 7.5: Experiments

are depicted in Figure 7.5(a). As k grows, the runtimes increase for all distribu-
tions. Uniform seems to yield a linear increase. The exponential one exhibits the
slowest grow, since there are very few tuples with high confidences. The gaussian
shows a jump at k = 40, since more tuples with similar probabilities exist in this
mode.

Table Materialization. Last, we compare our top-k approach against a full
materialization of all answers performed both by MayBMS and PostgreSQL. We
focus on how the value of k affects runtime. The query asks for directors of Come-
dies using the IMDB data set with uniform confidences (a join between Directed
and hasCategory relations). Our top-k system computes the top-ranked answers
for different values of k. In contrast, MayBMS and PostgreSQL fully materialize
a table containing all results, where PostgreSQL ignores the confidence computa-
tion. When k is below 50, our top-k approach performs faster. For larger values,
the bookkeeping overhead needed for the top-k algorithm starts dominating, such
that it becomes more efficient to compute all answers by a full join.

36

8 Related Work
The increasing amount of uncertain data that has meanwhile become available
practically at Web-scale has driven the development of various PDB engines in re-
cent years, including systems like MystiQ [8], Trio [38], MayBMS [3], Orion [33],
PrDB [31] and SPROUT [22]. Works on intensional query evaluation such as [11,
4, 30, 6, 14, 36] capture the lineage of derived tuples as propositional formulas and
have been shown to be closed and complete under the relational model. To cope
with the challenge of confidence computations, recent work has concentrated on
exploiting safe query plans [8] and read-once formulas [32]. Dalvi and Suciu [7]
define a dichotomy of query plans for which confidence computations can be done
either in polynomial time or are #P-hard. As an alternative way of addressing con-
fidence computations in PDBs, top-k style pruning approaches [25, 34, 12, 21, 24]
have also been proposed. In relational database systems the most influential line of
works for extensional data still is given by the family of threshold algorithms [9],
often also simply referred to as “Fagin’s algorithm”. A comprehensive survey of
top-k queries for relational DBs is presented by Ilyas et al. [15].

Most top-k approaches in the context of PDBs consider separate numerical
attributes for capturing the confidence and the score of input tuples, where usually
only the latter is used for ranking purposes. Soliman et al. [34] were the first
to discuss the different semantics under which one can interpret uncertain top-k
queries in such a setting and defined two types of queries, namely U-topK and
U-kRanks. Recently, Ge et al. [12] studied the tradeoffs between reporting tuples
of a high score and tuples of a high probability, while Li et al. [21] proposed a
unified ranking approach by considering both the scores and confidences of tuples.

Very few works however consider top-k ranking by the marginal probabilities
of query answers. Ré et al. [25] compute the top-k answers using MCMC-style
sampling techniques. In this case, the correct ranking of the top-k answers is guar-
anteed while marginal probabilities are approximated only to the extent needed for
computing the top-k answer set. To achieve this, the authors introduce the mul-
tisimulation algorithm which runs several Monte-Carlo simulations [18] in par-
allel for approximating the probability of each candidate answer. Very recently,

37

Olteanu and Wen [24] have further developed the idea of decomposing proposi-
tional formulas for deriving bounds based on a combination of partially expanded
OBDDs and shared query plans, which can be exploited by top-k algorithms for
early candidate pruning. While our bounding approach for propositional formu-
las is related to the one presented there, we more generally consider bounds for
first-order lineage formulas, thus having a focus on the case when views are not
materialized. With regard to computing bounds on confidences of lineage formu-
las, there are three major pieces of work [10, 23, 29], which we build upon for
the propositional lineage case. However, we found the consideration of first-order
lineage formulas to be a key to also incorporate pruning techniques known from
managing extensional data [9] into a PDB setting.

With respect to uncertain views, in [16] MarkoViews were introduced recently,
which build on [26] and allow views to express arbitrary correlations among its
input tuples. Being more expressive than our uncertain views, they require po-
tentially very large lineage formulas to be expressed, whereas our views merely
add a conjunction with one additional random variable per grounding step to the
lineage formulas.

38

9 Conclusions
We presented processing strategies for efficient top-k queries which lie at the in-
tersection of probabilistic databases and probabilistic Datalog. Our approach does
not assume safe query plans nor read-once lineage formulas, and it is able to return
the exact top-k answers according to their marginal probabilities in many cases
when exact confidence computations for these answers are intractable. More-
over, by focusing on non-materialized views, our pruning strategies can effectively
help to avoid extensive data materialization and thus can contribute to reduced
data computations. Extensions of our framework allow us to adopt top-k pruning
strategies and sequential access patterns known from managing extensional data,
and they even help to improve the runtime in the presence of recursive rules. In
future work, our methods could be combined with techniques from [24] which we
expect to enable even better performance gains.

39

Appendix A

A.1 Data

A.1.1 MayBMS / Postgres
We first create 6 tables, named actedIn, directed, edited, hasCategory,
produced and written, using the following SQL commands. We query these
tables for the Postgres measurements where no confidence computations take
place.

CREATE TABLE a c t e d I n (Id i n t e g e r , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , Conf f l o a t 8) ;

CREATE TABLE d i r e c t e d (Id i n t e g e r , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , Conf f l o a t 8) ;

CREATE TABLE e d i t e d (Id i n t e g e r , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , Conf f l o a t 8) ;

CREATE TABLE h a s C a t e g o r y (Id i n t e g e r , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , Conf f l o a t 8) ;

CREATE TABLE produced (Id i n t e g e r , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , Conf f l o a t 8) ;

CREATE TABLE w r i t t e n (Id i n t e g e r , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , Conf f l o a t 8) ;

Then we load the IMDB data using the copy command and create the correspond-
ing uncertain tables using the “pick tuples” operation from MayBMS. A com-
pressed file (637 MB) containing the data is available online 1.

1http://www.mpi-inf.mpg.de/∼miliaraki/probtopk/
imdb-uni-maybms.zip

40

http://www.mpi-inf.mpg.de/~miliaraki/probtopk/imdb-uni-maybms.zip
http://www.mpi-inf.mpg.de/~miliaraki/probtopk/imdb-uni-maybms.zip

COPY e d i t e d FROM ’ EDITEDuniform−mb . t x t ’ w i th d e l i m i t e r ’\ t ’ ;

COPY a c t e d I n FROM ’ ACTEDINuniform−mb . t x t ’ w i th d e l i m i t e r ’\ t ’ ;

COPY d i r e c t e d FROM ’ DIRECTEDuniform−mb . t x t ’ w i th d e l i m i t e r ’\ t ’ ;

COPY h a s C a t e g o r y FROM ’HASCATEGORYuniform−mb . t x t ’ w i th d e l i m i t e r
’\ t ’ ;

COPY produced FROM ’PRODUCEDuniform−mb . t x t ’ w i th d e l i m i t e r ’\ t ’ ;

COPY w r i t t e n FROM ’ WRITTENuniform−mb . t x t ’ w i th d e l i m i t e r ’\ t ’ ;

CREATE TABLE e d i t e d p r o b AS (PICK TUPLES FROM e d i t e d
i n d e p e n d e n t l y wi th p r o b a b i l i t y c on f) ;

CREATE TABLE a c t e d I n p r o b AS (PICK TUPLES FROM a c t e d I n
i n d e p e n d e n t l y wi th p r o b a b i l i t y c on f) ;

CREATE TABLE d i r e c t e d p r o b AS (PICK TUPLES FROM d i r e c t e d
i n d e p e n d e n t l y wi th p r o b a b i l i t y c on f) ;

CREATE TABLE h a s C a t e g o r y p r o b AS (PICK TUPLES FROM h a s C a t e g o r y
i n d e p e n d e n t l y wi th p r o b a b i l i t y c on f) ;

CREATE TABLE p r o d u c e d p r o b AS (PICK TUPLES FROM produced
i n d e p e n d e n t l y wi th p r o b a b i l i t y c on f) ;

CREATE TABLE w r i t t e n p r o b AS (PICK TUPLES FROM w r i t t e n
i n d e p e n d e n t l y wi th p r o b a b i l i t y c on f) ;

For each relation REL, we create indices on each attribute except confidence.
CREATE INDEX REL id idx ON REL (i d) ;

CREATE INDEX REL arg1 idx ON REL (a r g1) ;

CREATE INDEX REL arg2 idx ON REL (a r g2) ;

An additional relation called dummy is created to allow the union between un-
certain tables where subqueries return a different number of columns since confi-
dence fields are also considered. The following commands are used:
CREATE TABLE dummyCERT (Id i n t e g e r , Dummyconf f l o a t 8) ;

INSERT INTO dummyCERT VALUES (1 , 1 . 0) ;

CREATE TABLE dummy AS (PICK TUPLES FROM dummyCERT i n d e p e n d e n t l y
wi th p r o b a b i l i t y dummyconf) ;

41

A.1.2 Trio
In the case of Trio, we create the Trio tables using the following TriQL commands:

CREATE TRIO TABLE EDITED (Id i n t , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , u n c e r t a i n (Arg1 , Arg2)) w i th c o n f i d e n c e s ;
CREATE TRIO TABLE ACTEDIN (Id i n t , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , u n c e r t a i n (Arg1 , Arg2)) w i th c o n f i d e n c e s ;
CREATE TRIO TABLE DIRECTED (Id i n t , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , u n c e r t a i n (Arg1 , Arg2)) w i th c o n f i d e n c e s ;
CREATE TRIO TABLE HASCATEGORY (Id i n t , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , u n c e r t a i n (Arg1 , Arg2)) w i th c o n f i d e n c e s ;
CREATE TRIO TABLE PRODUCED (Id i n t , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , u n c e r t a i n (Arg1 , Arg2)) w i th c o n f i d e n c e s ;
CREATE TRIO TABLE WRITTEN (Id i n t , Arg1 varchar (1 0 2 3) , Arg2
varchar (1 0 2 3) , u n c e r t a i n (Arg1 , Arg2)) w i th c o n f i d e n c e s ;

Then, we load the IMDB data using insert statements. The TriQL scripts used for
this purpose can be found online 2. Similar to MayBMS, we also create indices
for all attributes.

A.2 Queries

A.2.1 Q1 (non-repeating hierarchical, safe)
Using Datalog notation we express the query as follows:
level2(X,Y) : −edited(X,Y), directed(X,Z).

level2(X,Y) : −produced(X,Y), written(X,Z).

level1(X,Y) : −actedIn(X,Y).

level1(X,Y) : −level2(X,Y).

?− level1(X,CONSTANT).

We express Q1 using the following commands in the query language of MayBMS
which extends SQL:

CREATE TABLE l e v e l 2 AS SELECT DISTINCT person , movie FROM (
SELECT DISTINCT e d i t . a rg1 AS person , e d i t . a rg2 AS movie FROM
e d i t e d p r o b e d i t , d i r e c t e d p r o b d i r WHERE e d i t . a rg1 = d i r . a rg1) AS

l e v e l 2 a WHERE movie = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT prod .
a rg1 AS person , prod . a rg2 AS movie FROM p r o d u c e d p r o b prod ,
w r i t t e n p r o b w r i t WHERE prod . a rg 1 = w r i t . a rg1) AS l e v e l 2 b WHERE
movie = CONSTANT;

2http://www.mpi-inf.mpg.de/∼miliaraki/probtopk/imdb-uni-trio.
zip

42

http://www.mpi-inf.mpg.de/~miliaraki/probtopk/imdb-uni-trio.zip
http://www.mpi-inf.mpg.de/~miliaraki/probtopk/imdb-uni-trio.zip

CREATE TABLE l e v e l 1 AS SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n p r o b a c t , dummy d WHERE a c t . a r g2 = CONSTANT) AS l e v e l 1 a
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT person
, movie FROM l e v e l 2) AS l e v e l 1 b ;

SELECT DISTINCT person , con f () FROM l e v e l 1 GROUP BY p e r s o n ;

In Postgres queries are posed at the certain tables and no confidence computation
takes place.

CREATE TABLE l e v e l 2 AS SELECT DISTINCT person , movie FROM (
SELECT DISTINCT e d i t . a rg1 AS person , e d i t . a rg2 AS movie FROM
e d i t e d e d i t , d i r e c t e d d i r WHERE e d i t . a rg1 = d i r . a rg1) AS l e v e l 2 a
WHERE movie = CONSTANT

UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT prod .
a rg1 AS person , prod . a rg2 AS movie FROM produced prod , w r i t t e n
w r i t WHERE prod . a rg1 = w r i t . a rg1) AS l e v e l 2 b WHERE movie =
CONSTANT;

CREATE TABLE l e v e l 1 AS SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n a c t WHERE a c t . a rg2 = CONSTANT) AS l e v e l 1 a
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT person
, movie FROM l e v e l 2) AS l e v e l 1 b ;

SELECT DISTINCT p e r s o n FROM l e v e l 1 GROUP BY p e r s o n ;

In Trio we use the TriQL language to express Q1. We need to create multiple
tables. In all cases constants are pushed into the selections. Note that there are
constants for which Trio returns the error ”ERROR: MAXTUPS or MAXALTS
too small”.

CREATE TABLE l e v e l 2 a AS (SELECT e d i t . a rg1 AS person , e d i t . a rg2
AS movie FROM e d i t e d e d i t , d i r e c t e d d i r WHERE e d i t . a rg1 = d i r .
a rg1 AND e d i t . a rg2 = CONSTANT
compute c o n f i d e n c e s) ;

CREATE TABLE l e v e l 2 b AS (SELECT prod . a rg1 AS person , prod . a rg2
AS movie FROM produced prod , w r i t t e n w r i t WHERE prod . a rg1 = w r i t
. a rg1 AND prod . a rg2 = CONSTANT
compute c o n f i d e n c e s) ;

CREATE TABLE l e v e l 2 AS (SELECT DISTINCT ∗ FROM l e v e l 2 a compute
c o n f i d e n c e s)
UNION (SELECT DISTINCT person , movie FROM l e v e l 2 b compute
c o n f i d e n c e s) ;

43

CREATE TABLE l e v e l 1 a AS (SELECT person , movie FROM l e v e l 2 , r u l e s
WHERE r u l e s . r u l e = 1) ;

CREATE TABLE l e v e l 1 b AS (SELECT a rg1 AS person , a rg2 AS movie
FROM a c t e d i n a c t WHERE a c t . a r g2 =CONSTANT compute c o n f i d e n c e s) ;

CREATE TABLE l e v e l 1 AS (SELECT DISTINCT person , movie FROM
l e v e l 1 a compute c o n f i d e n c e s)
UNION (SELECT DISTINCT person , movie FROM l e v e l 1 b compute
c o n f i d e n c e s) ;

SELECT DISTINCT p e r s o n FROM l e v e l 1 compute c o n f i d e n c e s ;

A.2.2 Q2 (repeating hierarchical, non-safe)
Using Datalog notation we express the query as follows:
query(X,Y) : −actedIn(X,Y), hasCategory(Y,Action).
query(X,Y) : −produced(X,Y), hasCategory(Y,Action), hasCategory(Y,Drama).
query(X,Y) : −written(X,Y), hasCategory(Y,Drama).

?− query(X,CONSTANT).

In MayBMS we express Q2 using the following commands in MayBMS query
language. First, we create a table to compute the union of 3 subqueries, one for
each rule, and then query this table. Relation dummy is included so that each sub-
query returns the same number of columns (including confidence values) allowing
union operation.

CREATE TABLE query AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n P r o b a c t , h a s C a t e g o r y P r o b c a t , dummy d WHERE a c t . a rg2 =
c a t . a rg 1 AND c a t . a rg2 = ‘ ‘ Action ’ ’) AS s1 WHERE s1 . movie =
CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT prod .
a rg1 AS person , prod . a rg2 AS movie FROM producedProb prod ,
h a s C a t e g o r y P r o b ca t1 , h a s c a t e g o r y P r o b c a t 2 WHERE prod . a rg2 =
c a t 1 . a rg 1 AND prod . a rg2 = c a t 2 . a rg1 AND c a t 2 . a rg2 = ‘ ‘ Action ’ ’
AND c a t 1 . a rg 2 = ‘ ‘ Drama ’ ’) AS s2 WHERE s2 . movie = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT w r i t .
a rg1 AS person , w r i t . a rg2 AS movie FROM w r i t t e n P r o b w r i t ,
h a s C a t e g o r y P r o b c a t , dummy d WHERE w r i t . a rg2 = c a t . a rg1 AND c a t .
a rg2 = ‘ ‘ Drama ’ ’) AS s3 WHERE s3 . movie = CONSTANT;

SELECT DISTINCT person , con f () FROM query GROUP BY p e r s o n ;

44

In Postgres queries are posed at the certain tables and no confidence computation
takes place.

CREATE TABLE query AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n a c t , h a s C a t e g o r y c a t WHERE a c t . a rg2 = c a t . a rg1 AND c a t .
a rg2 = ‘ ‘ Action ’ ’) AS one WHERE one . movie = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT prod .
a rg1 AS person , prod . a rg2 AS movie FROM produced prod ,
h a s C a t e g o r y ca t1 , h a s c a t e g o r y c a t 2 WHERE prod . a rg2 = c a t 1 . a rg1
AND prod . a rg2 = c a t 2 . a rg1 AND c a t 2 . a rg2 = ‘ ‘ Action ’ ’ AND c a t 1 .
a rg2 = ‘ ‘ Drama ’ ’) AS two WHERE two . movie = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT w r i t .
a rg1 AS person , w r i t . a rg2 AS movie FROM w r i t t e n w r i t ,
h a s C a t e g o r y c a t WHERE w r i t . a rg2 = c a t . a rg1 AND c a t . a rg2 = ‘ ‘
Drama ’ ’) AS t h r e e WHERE t h r e e . movie = CONSTANT;

SELECT DISTINCT p e r s o n FROM que ry ;

In Trio the following TriQL commands are used:

CREATE TABLE query1 AS (SELECT a c t . a r g1 AS person , a c t . a rg2 AS
movie FROM a c t e d i n a c t , h a s c a t e g o r y c a t WHERE a c t . a rg2 = c a t .
a rg1 AND c a t . a r g2 = ‘ ‘ Action ’ ’ AND c a t . a rg1 = CONSTANT) ;

CREATE TABLE query2 AS (SELECT prod . a rg1 AS person , prod . a rg2 AS
movie FROM produced prod , h a s c a t e g o r y ca t1 , h a s c a t e g o r y c a t 2

WHERE prod . a rg 2 = c a t 1 . a rg1 AND prod . a rg2 = c a t 2 . a rg1 AND c a t 1 .
a rg2 = ’ A c t i on ’ AND c a t 2 . a rg2 = ‘ ‘ Drama ’ ’ AND prod . a rg2 = CONSTANT)
;

CREATE TABLE query3 AS (SELECT w r i t . a rg1 AS person , w r i t . a rg2 AS
movie FROM w r i t t e n w r i t , h a s c a t e g o r y c a t WHERE w r i t . a rg2 = c a t .

a rg1 AND c a t . a r g2 = ‘ ‘ Drama ’ ’ AND c a t . a rg1 = CONSTANT) ;

CREATE TABLE query12 AS (SELECT DISTINCT p e r s o n FROM query1
compute c o n f i d e n c e s)
UNION (SELECT DISTINCT p e r s o n FROM query2 compute c o n f i d e n c e s) ;

CREATE TABLE query AS (SELECT DISTINCT p e r s o n FROM query12
compute c o n f i d e n c e s)
UNION (SELECT DISTINCT p e r s o n FROM query3 compute c o n f i d e n c e s) ;

SELECT DISTINCT p e r s o n FROM que ry compute c o n f i d e n c e s ;

45

A.2.3 Q3 (head hierarchical, non-safe)
Using Datalog notation we express the query as follows:
level(X,Y) : −directed(X,Y), expensiveSubquery(A,B).

level(X,Y) : −edited(X,Y).

expensiveSubquery(A,B) : −actedIn(X,A), written(X,Y), hasCategory(Y,B).

level(X,Y) : −produced(X,Y), hasCategory(Y, Z).

?− level(CONSTANT , Y).

In MayBMS we express Q3 using the following commands in MayBMS query
language:

CREATE TABLE l e v e l 2 AS SELECT DISTINCT person , movie FROM (
SELECT DISTINCT e d i t . a rg1 AS person , e d i t . a rg2 AS movie FROM
e d i t e d p r o b e d i t , d i r e c t e d p r o b d i r WHERE e d i t . a rg1 = d i r . a rg1) AS

s 1 l e v e l 2 WHERE movie = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT prod .
a rg1 AS person , prod . a rg2 AS movie FROM p r o d u c e d p r o b prod ,
w r i t t e n p r o b w r i t WHERE prod . a rg 1 = w r i t . a rg1) AS s 3 l e v e l 2 WHERE
movie = CONSTANT;

CREATE TABLE t o p l e v e l AS SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n p r o b a c t , dummy d WHERE a c t . a r g2 = CONSTANT) AS
t o p l e v e l 1
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT person
, movie FROM l e v e l 2) AS t o p l e v e l 2 ;

SELECT DISTINCT person , con f () FROM t o p l e v e l GROUP BY p e r s o n ;

In Postgres queries are posed at the certain tables and no confidence computation
takes place.

CREATE TABLE l e v e l 2 AS SELECT person , movie FROM (SELECT e d i t .
a rg1 AS person , e d i t . a rg2 AS movie FROM e d i t e d e d i t , d i r e c t e d
d i r WHERE e d i t . a rg1 = d i r . a r g1) AS s 1 l e v e l 2 WHERE movie =
CONSTANT
UNION SELECT person , movie FROM (SELECT prod . a rg1 AS person ,
prod . a rg2 AS movie FROM produced prod , w r i t t e n w r i t WHERE prod .
a rg1 = w r i t . a rg1) AS s 3 l e v e l 2 WHERE movie = CONSTANT;

CREATE TABLE t o p l e v e l AS SELECT person , movie FROM (SELECT a c t .
a rg1 AS person , a c t . a rg2 AS movie FROM a c t e d I n a c t WHERE a c t .
a rg2 = CONSTANT) AS t o p l e v e l 1
UNION SELECT person , movie FROM (SELECT person , movie FROM l e v e l 2
) AS t o p l e v e l 2 ;

46

SELECT DISTINCT p e r s o n FROM t o p l e v e l GROUP BY p e r s o n ;

In Trio the following TriQL commands are used:

CREATE TABLE e x p e n s i v e AS (SELECT a c t . a rg2 AS movie , c a t . a rg2 AS
g e n r e FROM a c t e d i n a c t , w r i t t e n w r i t , h a s c a t e g o r y c a t WHERE a c t

. a rg1 = w r i t . a rg1 AND w r i t . a rg 2 = c a t . a rg1 compute c o n f i d e n c e s) ;

CREATE TABLE l e v e l 1 AS (SELECT d i r . a r g1 AS person , d i r . a rg2 AS
movie FROM d i r e c t e d d i r , e x p e n s i v e exp WHERE d i r . a rg1 = CONSTANT

compute c o n f i d e n c e s) ;

CREATE TABLE l e v e l 2 AS (SELECT e d i t . a rg1 AS person , e d i t . a rg2 AS
movie FROM e d i t e d e d i t WHERE e d i t . a r g1 = CONSTANT compute

c o n f i d e n c e s) ;

CREATE TABLE l e v e l 3 AS (SELECT prod . a rg1 AS person , prod . a rg2 AS
movie FROM produced prod , h a s c a t e g o r y c a t WHERE prod . a rg2 = c a t

. a rg1 AND prod . a rg1 = CONSTANT compute c o n f i d e n c e s) ;

CREATE TABLE l e v e l 1 2 AS (SELECT DISTINCT person , movie FROM
l e v e l 1 compute c o n f i d e n c e s)
UNION (SELECT DISTINCT person , movie FROM l e v e l 2 compute
c o n f i d e n c e s) ;

CREATE TABLE l e v e l 1 2 3 AS (SELECT DISTINCT person , movie FROM
l e v e l 1 2 compute c o n f i d e n c e s)
UNION (SELECT DISTINCT person , movie FROM l e v e l 3 compute
c o n f i d e n c e s) ;

SELECT DISTINCT movie FROM l e v e l 1 2 3 compute c o n f i d e n c e s ;

A.2.4 Q4 (general unsafe)
Using Datalog notation we express the query as follows:
unsafe(A,B) : −edited(A, Y), produced(X,Y), written(X,B), hasCategory(U, action).
unsafe(A,B) : −actedIn(A,B).
unsafe(A,B) : −directed(A,B).

?− unsafe(CONSTANT , Y).

In MayBMS we express Q4 using the following commands in MayBMS query
language:

CREATE TABLE u n s a f e AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT e d i t . a rg1 AS person , prod . a rg2 AS movie FROM
e d i t e d P r o b e d i t , p roducedProb prod , w r i t t e n P r o b w r i t ,
h a s C a t e g o r y P r o b c a t WHERE e d i t . a r g 2 = prod . a rg2 AND prod . a rg1 =

47

w r i t . a rg1 AND c a t . a rg2 = ‘ ‘ Action ’ ’) AS u n s a f e o n e WHERE
u n s a f e o n e . p e r s o n = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT a c t .
a rg1 AS person , a c t . a rg2 AS movie FROM a c t e d I n P r o b a c t , dummy d1
, dummy d2 , dummy d3) AS u n s a f e t w o WHERE u n s a f e t w o . p e r s o n =
CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT d i r .
a rg1 AS person , d i r . a rg2 AS movie FROM d i r e c t e d P r o b d i r , dummy
d1 , dummy d2 , dummy d3) AS u n s a f e t h r e e WHERE u n s a f e t h r e e . p e r s o n
= CONSTANT) ;

SELECT DISTINCT movie , con f () FROM u n s a f e GROUP BY movie ;

In Postgres queries are posed at the certain tables and no confidence computation
takes place.

CREATE TABLE u n s a f e AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT e d i t . a rg1 AS person , prod . a rg2 AS movie FROM
e d i t e d P r o b e d i t , p roducedProb prod , w r i t t e n P r o b w r i t ,
h a s C a t e g o r y P r o b c a t WHERE e d i t . a r g 2 = prod . a rg2 AND prod . a rg1 =
w r i t . a rg1 AND c a t . a rg2 = ‘ ‘ Action ’ ’) AS u n s a f e o n e WHERE
u n s a f e o n e . p e r s o n = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT a c t .
a rg1 AS person , a c t . a rg2 AS movie FROM a c t e d I n P r o b a c t) AS
u n s a f e t w o WHERE u n s a f e t w o . p e r s o n = CONSTANT
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT d i r .
a rg1 AS person , d i r . a rg2 AS movie FROM d i r e c t e d P r o b d i r) AS
u n s a f e t h r e e WHERE u n s a f e t h r e e . p e r s o n = CONSTANT) ;

SELECT DISTINCT movie FROM u n s a f e ;

In Trio the following TriQL commands are used:

CREATE TABLE u n s a f e 1 AS (SELECT e d i t . a rg1 AS person , w r i t . a rg2
AS movie FROM e d i t e d e d i t , p roduced prod , w r i t t e n w r i t ,
h a s c a t e g o r y c a t WHERE e d i t . a rg2 = prod . a rg2 AND prod . a rg1 = w r i t
. a rg1 AND c a t . a rg2 = ’ Ac t io n ’ AND e d i t . a rg1 = CONSTANT compute
c o n f i d e n c e s) ;

CREATE TABLE u n s a f e 2 AS (SELECT a c t . a rg1 AS person , a c t . a rg2 AS
movie FROM a c t e d i n a c t WHERE a c t . a rg 1 = CONSTANT compute
c o n f i d e n c e s) ;

CREATE TABLE u n s a f e 3 AS (SELECT d i r . a rg1 AS person , d i r . a rg2 AS
movie FROM d i r e c t e d d i r WHERE d i r . a rg1 = CONSTANT compute
c o n f i d e n c e s) ;

CREATE TABLE u n s a f e 1 2 AS (SELECT DISTINCT person , movie FROM
u n s a f e 1 compute c o n f i d e n c e s)

48

UNION (SELECT DISTINCT person , movie FROM u n s a f e 2 compute
c o n f i d e n c e s) ;

CREATE TABLE u n s a f e AS (SELECT DISTINCT person , movie FROM
u n s a f e 1 2 compute c o n f i d e n c e s)
UNION (SELECT DISTINCT person , movie FROM u n s a f e 3 compute
c o n f i d e n c e s) ;

SELECT DISTINCT movie FROM u n s a f e compute c o n f i d e n c e s ;

A.2.5 Q5 (one proof)
Using Datalog notation we express the query as follows:
query(A,B) : −actedIn(X,A), directed(X,B).

?− query(A,CONSTANT).

In MayBMS we express Q5 using the following query:

SELECT movie1 , con f () FROM SELECT DISTINCT a c t . a rg2 AS movie1 ,
d i r . a rg2 AS movie2 FROM a c t e d i n p r o b a c t , d i r e c t e d p r o b d i r WHERE
a c t . a rg 1 = d i r . a rg1 AS o n e p r o o f WHERE movie2 = CONSTANT;

In Postgres query is posed at the certain tables and no confidence computation
takes place.

SELECT movie FROM SELECT DISTINCT a c t . a rg2 AS movie1 , d i r . a rg2
AS movie2 FROM a c t e d i n a c t , d i r e c t e d d i r WHERE a c t . a rg1 = d i r .
a rg1 AS o n e p r o o f WHERE movie2 = CONSTANT;

In the case of Trio, we first create a table and then run the query, as follows.

CREATE TABLE o n e p r o o f AS (SELECT a c t . a rg2 AS movie1 , d i r . a rg2 AS
movie2 FROM a c t e d i n a c t , d i r e c t e d d i r WHERE a c t . a rg1 = d i r . a rg1

AND d i r . a rg2 =CONSTANT compute c o n f i d e n c e s) ;

SELECT DISTINCT movie1 FROM o n e p r o o f compute c o n f i d e n c e s ;

A.2.6 Q6 (three proofs)
Using Datalog notation we express the query as follows:
query(X,Y) : −written(X,Y), directed(X,Y).
query(X,Y) : −level2(X,Y).
level2(X,Y) : −actedIn(X,Y), hasCategory(Y, action).
level2(X,Y) : −produced(X,Y).

?− query(X,CONSTANT)

49

In MayBMS we express Q6 using the following commands in MayBMS query
language:
CREATE TABLE l e v e l 2 AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n p r o b a c t , h a s C a t e g o r y P r o b c a t WHERE a c t . a rg2 = c a t . a rg1
AND c a t . a rg2 = ‘ ‘ Action ’ ’ AND c a t . a rg 1 = CONSTANT) AS l e v e l 1 2
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT prod .
a rg1 AS person , prod . a rg2 AS movie FROM producedProb prod , dummy

d WHERE prod . a rg2 = CONSTANT) AS l e v e l 2 2) ;

CREATE TABLE query AS SELECT DISTINCT person , movie FROM (SELECT
DISTINCT w r i t . a rg1 AS person , w r i t . a rg2 AS movie FROM

w r i t t e n p r o b w r i t , d i r e c t e d p r o b d i r WHERE w r i t . a rg1 = d i r . a rg1
AND w r i t . a rg2 = d i r . a rg2 AND w r i t . a rg 2 = CONSTANT) AS query
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT person
, movie FROM l e v e l 2) AS l e v e l 2 ;

SELECT DISTINCT person , con f () FROM query GROUP BY p e r s o n ;

In Postgres queries are posed at the certain tables and no confidence computation
takes place.
CREATE TABLE l e v e l 2 AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n a c t , h a s C a t e g o r y c a t WHERE a c t . a rg2 = c a t . a rg1 AND c a t .
a rg2 = ’ Ac t i on ’ AND c a t . a rg 1 = CONSTANT) AS l e v e l 1 2
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT prod .
a rg1 AS person , prod . a rg2 AS movie FROM produced prod WHERE prod
. a rg2 = CONSTANT) AS l e v e l 2 2) ;

CREATE TABLE query AS SELECT DISTINCT person , movie FROM (SELECT
DISTINCT w r i t . a rg1 AS person , w r i t . a rg2 AS movie FROM w r i t t e n

w r i t , d i r e c t e d d i r WHERE w r i t . a rg1 = d i r . a rg1 AND w r i t . a rg2 =
d i r . a rg2 AND w r i t . a rg2 = CONSTANT) AS que ry
UNION SELECT DISTINCT person , movie FROM (SELECT DISTINCT person
, movie FROM l e v e l 2) AS l e v e l 2 ;

SELECT DISTINCT p e r s o n FROM que ry GROUP BY p e r s o n ;

In Trio the following TriQL commands are used:

CREATE TABLE l e v e l 2 p r o d u c e d 2 AS (SELECT prod . a rg1 AS person ,
prod . a rg2 AS movie FROM produced prod WHERE prod . a rg2 =CONSTANT
compute c o n f i d e n c e s) ;

CREATE TABLE l e v e l 2 a c t c a t 2 AS (SELECT a c t . a rg1 AS person , a c t .
a rg2 AS movie FROM a c t e d i n a c t , h a s c a t e g o r y c a t WHERE a c t . a rg2 =

c a t . a rg1 AND c a t . a rg2 = ‘ ‘ Action ’ ’ AND c a t . a rg1 = CONSTANT
compute c o n f i d e n c e s) ;

50

CREATE TABLE l e v e l 2 a l l 2 AS (SELECT DISTINCT ∗ FROM
l e v e l 2 p r o d u c e d 2 compute c o n f i d e n c e s)
UNION (SELECT DISTINCT ∗ FROM l e v e l 2 a c t c a t 2 compute c o n f i d e n c e s)
;

CREATE TABLE q u e r y l e v e l 2 AS (SELECT person , movie FROM
l e v e l 2 a l l 2 compute c o n f i d e n c e s) ;

CREATE TABLE q u e r y w r i t d i r AS (SELECT w r i t . a rg1 AS person , w r i t .
a rg2 AS movie FROM w r i t t e n w r i t , d i r e c t e d d i r WHERE w r i t . a rg1 =
d i r . a rg1 AND w r i t . a rg2 = d i r . a rg2 AND w r i t . a rg2 = CONSTANT
compute c o n f i d e n c e s) ;

CREATE TABLE q u e r y a l l AS (SELECT DISTINCT p e r s o n FROM
q u e r y l e v e l 2 compute c o n f i d e n c e s)
UNION (SELECT DISTINCT p e r s o n FROM q u e r y w r i t d i r compute
c o n f i d e n c e s) ;

SELECT DISTINCT p e r s o n FROM q u e r y a l l compute c o n f i d e n c e s ;

A.2.7 Q7 (join of existential relations)
Using Datalog notation we express the query as follows:
?− produced(X,CONSTANT), written(X,Y).

In MayBMS we express Q7 by creating first a table joining the two relations and
then pose the query.
CREATE TABLE j o i n o n l y AS (SELECT DISTINCT prod . a rg1 AS person ,
w r i t . a rg2 AS movie FROM producedProb prod , w r i t t e n P r o b w r i t

WHERE prod . a rg 1 = w r i t . a rg1 AND prod . a rg2 = CONSTANT) ;

SELECT DISTINCT person , movie , c o n f () FROM j o i n o n l y GROUP BY
person , movie ;

In Postgres we pose the following query:
SELECT DISTINCT prod . a rg1 AS person , w r i t . a rg2 AS movie FROM
produced prod , w r i t t e n w r i t WHERE prod . a rg1 = w r i t . a rg1 AND prod
. a rg2 = CONSTANT

In Trio the following TriQL commands are used:
CREATE TABLE j o i n o n l y AS (SELECT prod . a rg1 AS person , w r i t . a rg2
AS movie FROM produced prod , w r i t t e n w r i t WHERE prod . a rg1 = w r i t .
a rg1 AND prod . a rg2 =CONSTANT compute c o n f i d e n c e s) ;

SELECT DISTINCT person , movie FROM j o i n o n l y compute c o n f i d e n c e s ;

51

A.2.8 Q8 (non-read-once)
Using Datalog notation we express the query as follows:
query(X,Y) : −actedIn(X,Y), hasCategory(Y,Action).
query(X,Y) : −produced(X,Y), hasCategory(Y,Action).
query(X,Y) : −produced(X,Y), hasCategory(Y,Z), notEquals(Z,Action).

?− query(X,CONSTANT)

In MayBMS we express Q8 by creating first a table joining the two relations and
then pose the query.

CREATE TABLE query AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n p r o b a c t , h a s c a t e g o r y p r o b c a t WHERE a c t . a rg2 = c a t . a rg1
AND c a t . a rg2 = ‘ ‘ Action ’ ’) AS one WHERE one . movie = CONSTANT
UNION SELECT DISTINCT two . pe r son , two . movie FROM(SELECT DISTINCT

prod . a rg1 AS person , prod . a rg2 AS movie FROM p r o d u c e d p r o b prod ,
h a s c a t e g o r y p r o b c a t WHERE prod . a r g2 = c a t . a rg1 AND c a t . a rg2 = ‘ ‘

Action ’ ’) AS two WHERE two . movie = CONSTANT
UNION SELECT DISTINCT t h r e e . pe r son , t h r e e . movie FROM (SELECT
DISTINCT prod . a rg1 AS person , prod . a rg2 AS movie FROM
p r o d u c e d p r o b prod , h a s c a t e g o r y p r o b c a t WHERE prod . a rg2 = c a t . a rg1
AND c a t . a rg2 != ‘ ‘ Action ’ ’) AS t h r e e WHERE t h r e e . movie = CONSTANT)
;

SELECT DISTINCT person , con f () FROM query GROUP BY p e r s o n ;

In Postgres we pose the following query:

CREATE TABLE query AS (SELECT DISTINCT person , movie FROM (
SELECT DISTINCT a c t . a rg1 AS person , a c t . a rg2 AS movie FROM
a c t e d I n a c t , h a s c a t e g o r y c a t WHERE a c t . a rg2 = c a t . a rg1 AND c a t .
a rg2 = ‘ ‘ Action ’ ’) AS one WHERE one . movie = CONSTANT
UNION SELECT DISTINCT two . pe r son , two . movie FROM(SELECT DISTINCT

prod . a rg1 AS person , prod . a rg2 AS movie FROM produced prod ,
h a s c a t e g o r y c a t WHERE prod . a rg 2 = c a t . a rg1 AND c a t . a rg2 = ’ Ac t i on ’
) AS two WHERE two . movie = CONSTANT
UNION SELECT DISTINCT t h r e e . pe r son , t h r e e . movie FROM (SELECT
DISTINCT prod . a rg1 AS person , prod . a rg2 AS movie FROM produced
prod , h a s c a t e g o r y c a t WHERE prod . a r g2 = c a t . a rg1 AND c a t . a rg2 != ‘ ‘
Action ’ ’) AS t h r e e WHERE t h r e e . movie = CONSTANT) ;

SELECT DISTINCT p e r s o n FROM que ry ;

In Trio the following TriQL commands are used:

CREATE TABLE query1 AS (SELECT a c t . a r g1 AS person , a c t . a rg2 AS
movie FROM a c t e d i n a c t , h a s c a t e g o r y c a t WHERE a c t . a rg2 = c a t .
a rg1 AND c a t . a r g2 = ’ Ac t i on ’ AND c a t . a r g1 =CONSTANT compute
c o n f i d e n c e s) ;

52

CREATE TABLE query2 AS (SELECT prod . a rg1 AS person , prod . a rg2 AS
movie FROM produced prod , h a s c a t e g o r y c a t WHERE prod . a rg2 = c a t

. a rg1 AND c a t . a rg2 = ’ Ac t io n ’ AND c a t . a rg1 = CONSTANT compute
c o n f i d e n c e s) ;

CREATE TABLE query3 AS (SELECT prod . a rg1 AS person , prod . a rg2 AS
movie FROM produced prod , h a s c a t e g o r y c a t WHERE prod . a rg2 = c a t

. a rg1 AND c a t . a rg2 <> ’ Ac t i o n ’ AND c a t . a rg1 = CONSTANT compute
c o n f i d e n c e s) ;

CREATE TABLE q u e r y a l l 1 AS (SELECT DISTINCT ∗ FROM query1 compute
c o n f i d e n c e s)

UNION (SELECT DISTINCT ∗ FROM query2 compute c o n f i d e n c e s) ;

CREATE TABLE q u e r y a l l AS (SELECT DISTINCT ∗ FROM q u e r y a l l 1
compute c o n f i d e n c e s)
UNION (SELECT DISTINCT ∗ FROM query3 compute c o n f i d e n c e s) ;

SELECT DISTINCT p e r s o n FROM q u e r y a l l compute c o n f i d e n c e s ;

A.2.9 Q9 (nesting-depth = 1)
Using Datalog notation we express the query as follows:
query(X,Y) : −diedIn(X,Y), bornIn(X,Y).
query(X,Y) : −livesIn(X,Y), isMarriedTo(Z, Y).
query(X,Y) : −isCitizenOf(X,Y).
query(X,Y) : −politicianOf(X,Y).

?− query(X,CONSTANT)

PostgreSQL’s query plan is obtained by:

EXPLAIN
(SELECT DISTINCT a rg1 FROM
((SELECT t 1 . arg1 , t 1 . a rg2 FROM l i v e s I n AS t 1 JOIN i s M a r r i e d T o AS

t 2 ON t 1 . a r g2 = t 2 . a rg2)
UNION (SELECT t 1 . arg1 , t 1 . a rg 2 FROM d i e d I n AS t 1 JOIN b o r n I n AS
t 2 ON t 1 . a rg2 = t 2 . a rg2 AND t 1 . a rg 1 = t 2 . a rg1)
UNION (SELECT arg1 , a rg2 FROM p o l i t i c i a n O f)
UNION (SELECT arg1 , a rg2 FROM i s C i t i z e n O f))
AS x WHERE a r g2 = ’CONSTANT’)

A.2.10 Q10 (nesting-depth = 2)
Using Datalog notation we express the query as follows:
query(X,Y) : −isCitizenOf(X,Y), diedOnDate(X,Z).

53

query(X,Y) : −bornIn(X,Y).
query(X,Y) : −politicianOf(X,Y), hasChild(X,Z).
query(X,Y) : −level2(X,Y).
level2(X,Y) : −diedIn(X,Y).
level2(X,Y) : −livesIn(X,Y).

?− query(X,CONSTANT)

PostgreSQL’s query plan is obtained by:

EXPLAIN
(SELECT DISTINCT a rg1 FROM
((SELECT arg1 , a rg2 FROM b o r n I n)
UNION (SELECT t 1 . arg1 , t 1 . a rg 2 FROM i s C i t i z e n O f AS t 1 JOIN
d i e d I n AS t 2 ON t 1 . a rg1 = t 2 . a rg1)
UNION (SELECT arg1 , a rg2 FROM
((SELECT arg1 , a rg2 FROM d i e d I n)
UNION SELECT arg1 , a rg2 FROM l i v e s I n) AS z)
UNION (SELECT t 1 . arg1 , t 1 . a rg 2 FROM p o l i t i c i a n O f AS t 1 JOIN
h a s C h i l d AS t 2 ON t 1 . a rg1 = t 2 . a r g1))
AS x WHERE a r g2 = ’CONSTANT’)

A.2.11 Q11 (nesting-depth = 3)
Using Datalog notation we express the query as follows:
query(X,Y) : −livesIn(X,Z), diedOnDate(X,Y).
query(X,Y) : −level2(X,Y).
level2(X,Y) : −bornOnDate(X,Y), bornIn(X,Z).
level2(X,Y) : −level3(X,Y)
level3(X,Y) : −createdOnDate(X,Y)
level3(X,Y) : −writtenInY ear(X,Y)

?− query(X,CONSTANT)

PostgreSQL’s query plan is obtained by:

EXPLAIN
(SELECT DISTINCT a rg1 FROM
((SELECT t 2 . arg1 , t 2 . a rg2 FROM l i v e s I n AS t 1 JOIN d iedInOnDate
AS t 2 ON t 1 . a rg 1 = t 2 . a rg2)
UNION ((SELECT t 1 . arg1 , t 1 . a r g2 FROM bornOnDate AS t 1 JOIN
b o r n I n AS t 2 ON t 1 . a rg1 = t 2 . a rg2)
UNION (SELECT arg1 , a rg2 FROM c r e a t e d O n D a t e
UNION SELECT arg1 , a rg2 FROM w r i t t e n I n Y e a r)))
AS x WHERE a r g2 = ’CONSTANT’)

A.2.12 Q12 (with uncertain views)
Using Datalog notation we express the query as follows:

54

query(X,Y) : −actedIn(X,Y).
query(X,Y) : −produced(X,Y).
query(X,Y) : −edited(X,Y).

?− query(CONSTANT , Y)

For the uncertain view setting, we attached the confidences 0.1, 0.2, and 1.0 to the
rules (from top to bottom).

A.2.13 Q13 (with uncertain views)
Using Datalog notation we express the query as follows:
query(X,Y) : −level(X,Y).
query(X,Y) : −edited(X,Y).
level(X,Y) : −actedIn(X,Y), hasCategory(Y,Action).
level(X,Y) : −directed(X,Y), written(X,Z).

?− query(CONSTANT , Y)

For the uncertain view setting, we attached the confidences 0.2, 1.0, 1.0, and 1.0
to the rules (from top to bottom).

A.2.14 Q14 (recursion)
Using Datalog notation we express the query as follows:
ancestor(X,Y) : −hasChild(X,Y).
ancestor(X,Y) : −hasChild(X,Y), ancestor(Y, Z).

?− ancestor(CONSTANT , Y)

A.2.15 Q15 (recursion)
Using Datalog notation we express the query as follows:
politician(A,B) : −hasPredecessor(A,C), politician(C,B).
politician(A,B) : −politicianOf(A,B).

?− politician(A,CONSTANT)

A.2.16 Confidence Distributions
Using Datalog notation we express the query as follows:
?− hasCategory(Y,Talk − Show), produced(X,Y)

A.2.17 Table Materialization
Using Datalog notation we express the query as follows:
?− directed(X,Z), hasCategory(Z,Comedy)

55

In MayBMS we first create a table joining the two relations and then pose the
query to compute the confidences.

CREATE TABLE c o m e d y d i r e c t o r s AS SELECT DISTINCT d i r . a rg1 AS
d i r e c t o r , c a t . a rg1 AS movie FROM d i r e c t e d p r o b d i r ,
h a s c a t e g o r y p r o b c a t WHERE d i r . a r g2 = c a t . a rg1 AND c a t . a rg2 = ‘ ‘
Comedy ’ ’ ;

SELECT DISTINCT d i r e c t o r , movie , c o n f () FROM c o m e d y d i r e c t o r s
GROUP BY d i r e c t o r , movie ;

In Postgres we use the following SQL commands:

CREATE TABLE c o m e d y d i r e c t o r s AS SELECT DISTINCT d i r . a rg1 AS
d i r e c t o r , c a t . a rg1 AS movie FROM d i r e c t e d d i r , h a s c a t e g o r y c a t

WHERE d i r . a r g2 = c a t . a rg1 AND c a t . a rg 2 = ‘ ‘ Comedy ’ ’ ;

SELECT DISTINCT d i r e c t o r , movie FROM c o m e d y d i r e c t o r s ;

56

Bibliography
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-

Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and query-
ing of sets of possible worlds. Theor. Comput. Sci., 78(1):159–187, 1991.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational
processing of uncertain data. In ICDE, pages 983–992, 2008.

[4] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In VLDB, pages 953–964, 2006.

[5] J. Boulos, N. N. Dalvi, B. Mandhani, S. Mathur, C. Ré, and D. Suciu. MYS-
TIQ: a system for finding more answers by using probabilities. In SIGMOD,
pages 891–893, 2005.

[6] P. Buneman and W. C. Tan. Provenance in databases. In SIGMOD, pages
1171–1173, 2007.

[7] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilis-
tic structures. In PODS, pages 293–302, 2007.

[8] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
The VLDB Journal, 16:523–544, 2007.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for mid-
dleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[10] R. Fink and D. Olteanu. On the optimal approximation of queries using
tractable propositional languages. In ICDT, pages 174–185, 2011.

[11] N. Fuhr. Probabilistic Datalog - a logic for powerful retrieval methods. In
SIGIR, pages 282–290, 1995.

57

[12] T. Ge, S. B. Zdonik, and S. Madden. Top-k queries on uncertain data: on
score distribution and typical answers. In SIGMOD, pages 375–388, 2009.

[13] G. Gottlob and C. H. Papadimitriou. On the complexity of single-rule data-
log queries. Inf. Comput., 183(1):104–122, 2003.

[14] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In
PODS, pages 31–40, 2007.

[15] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query process-
ing techniques in relational database systems. ACM Comput. Surv., 40(4),
2008.

[16] A. Jha and D. Suciu. Probabilistic databases with MarkoViews. To appear
in PVLDB 2012.

[17] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explanations
for robust query evaluation in probabilistic databases. In SIGMOD, pages
841–852, 2011.

[18] R. M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and
reliability problems. In FOCS, pages 56–64, 1983.

[19] A. Kimmig, G. V. den Broeck, and L. D. Raedt. An algebraic prolog for
reasoning about possible worlds. In AAAI, 2011.

[20] C. Koch and D. Olteanu. Conditioning probabilistic databases. PVLDB,
1(1):313–325, 2008.

[21] J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in proba-
bilistic databases. PVLDB, 2(1):502–513, 2009.

[22] D. Olteanu, J. Huang, and C. Koch. Sprout: Lazy vs. eager query plans for
tuple-independent probabilistic databases. In ICDE, pages 640–651, 2009.

[23] D. Olteanu, J. Huang, and C. Koch. Approximate confidence computation
in probabilistic databases. In ICDE, pages 145–156, 2010.

[24] D. Olteanu and H. Wen. Ranking in probabilistic databases: Complexity and
efficient algorithms. To appear in ICDE 2012.

[25] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on proba-
bilistic data. In ICDE, pages 886–895, 2007.

[26] M. Richardson and P. Domingos. Markov logic networks. Machine Learn-
ing, 62(1-2):107–136, 2006.

58

[27] T. Rölleke and N. Fuhr. Probabilistic reasoning for large scale databases. In
BTW, pages 118–132, 1997.

[28] D. Roth. On the hardness of approximate reasoning. Artif. Intell., 82:273–
302, April 1996.

[29] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. ACM, 27:633–655, 1980.

[30] A. D. Sarma, M. Theobald, and J. Widom. Exploiting lineage for confidence
computation in uncertain and probabilistic databases. In ICDE, pages 1023–
1032, 2008.

[31] P. Sen, A. Deshpande, and L. Getoor. PrDB: managing and exploiting rich
correlations in probabilistic databases. VLDB J., 18(5):1065–1090, 2009.

[32] P. Sen, A. Deshpande, and L. Getoor. Read-once functions and query evalu-
ation in probabilistic databases. PVLDB, 3(1):1068–1079, 2010.

[33] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. E. Hambrusch, and
R. Shah. Orion 2.0: native support for uncertain data. In SIGMOD, pages
1239–1242, 2008.

[34] M. Soliman, I. Ilyas, and K. Chen-Chuan Chang. Top-k query processing in
uncertain databases. In ICDE, pages 896 –905, 2007.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In WWW, pages 697–706, 2007.

[36] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthe-
sis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[37] J. D. Ullman and M. Y. Vardi. The complexity of ordering subgoals. In
PODS, pages 74–81, 1988.

[38] J. Widom. Trio: A system for data, uncertainty, and lineage. In Managing
and Mining Uncertain Data. Springer, 2008.

59

	Introduction
	Contributions

	Computational Model
	Probabilistic Database
	Views
	Queries
	Lineage
	Deductive Grounding with Lineage
	Confidence Computations
	Expressiveness

	Confidence Bounds
	Bounds for Propositional Lineage
	Bounds for First-Order Lineage

	Subgoal Scheduling
	Selectivity Estimation
	Impact of Subgoals
	Benefit-oriented Subgoal Scheduling

	Top-k Algorithm
	Top-k with Dynamic Subgoal Scheduling
	SLD Resolution with Lineage Tracing
	Final Result Ranking

	Extensions
	Sorted Input Relations
	Recursive Rules

	Experiments
	Data Sets, Confidence Distributions, and Queries
	Results

	Related Work
	Conclusions
	
	Data
	MayBMS / Postgres
	Trio

	Queries
	Q1 (non-repeating hierarchical, safe)
	Q2 (repeating hierarchical, non-safe)
	Q3 (head hierarchical, non-safe)
	Q4 (general unsafe)
	Q5 (one proof)
	Q6 (three proofs)
	Q7 (join of existential relations)
	Q8 (non-read-once)
	Q9 (nesting-depth = 1)
	Q10 (nesting-depth = 2)
	Q11 (nesting-depth = 3)
	Q12 (with uncertain views)
	Q13 (with uncertain views)
	Q14 (recursion)
	Q15 (recursion)
	Confidence Distributions
	Table Materialization

