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Abstract

Many geometric algorithms that are usually formulated foings and segments
generalize easily to inputs also containing rays and lifdge sweep algorithm
for segment intersection is a prototypical example. Im@etations of such algo-
rithms do, in general, not extend easily. For example, seg@edpoints cause
events in sweep line algorithms, but lines have no endpoiite describe a
general technique, which we call infimaximal frames, foreexiing implemen-
tations to inputs also containing rays and lines. The teghscan also be used
to extend implementations of planar subdivisions to subutins with many un-
bounded faces. We have used the technique successfullypéralezing a sweep
algorithm designed for segments to rays and lines and alan implementation
of planar Nef polyhedra [Nef78, Bie95].

Our implementation is based on concepts of generic progragim C++ and
the geometric data types provided by the C++ Computatiomanitry Algo-
rithms Library (CGAL).
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1 Introduction

Many geometric algorithms that are usually formulated fmnps and segments generalize nicely
to inputs containing also rays and lines. Do implementatgemeralize as easily? Let us consider
two concrete examples: plane sweep for segment interseatid map overlay.

In the plane sweep algorithm for segment intersection acattine is swept across the plane
from left to right. The intersections between the sweep diné the input segments are kept in a
data structure, the Y-structure. The Y-structure is uptlateenever the sweep line encounters a
segment endpoint or an intersection point between two setgn&he event points are kept in a
priority queue, the X-structure. The sweep paradigm caarigl@lso handle rays and lines. Will
an implementation generalize easily, e.g., does LEDAsl@mgntation [MN99, Section 10.7]
generalize? It does not. For example, the X-structure neels initialized with the endpoints
of the segments, but what are the endpoints of lines and seagfe

In Section 2 we will argue that the answer is not given by frtbje geometry (neither stan-
dard nor oriented). We will also argue that enclosing thesae a fixed geometric frame and
clipping rays and lines at the frame is an unsatisfactonytgni. It excludes on-line algorithms,
it requires non-trivial changes in the software structaned it decreases the effectiveness of
floating point filters. In Section 3 we propose infimaximahfies as a general technique for han-
dling rays and lines. We propose to enclose the scene in &faduimfimaximal size and to clip
rays and lines at the frame. Infimaximal frames support o@-dilgorithms, require no change in
software structure, and cooperate well with floating poiterfs.

Our second example concerns map overlay. The texts [dBVROSEction 2.3] and [MN99,
Section 10.8] describe algorithms for maps with a singleounioled face, i.e., all faces (except
the unbounded face) are bounded by simple closed polygayanAhe algorithms readily gen-
eralize to subdivisions with more than one unbounded fage, ¥oronoi diagrams or arrange-
ments of lines. Will implementations generalize? No, theyndt. For example, the standard
data structure for representing maps, namely doubly cdaedezge lists [PS85, dBvKOS97],
assumes that all face cycles are closed and hence DCELste@maepresent subdivisions with
several unbounded faces in a direct way. Infimaximal franfies a simple solution. Enclosing
the scene in an infimaximal frame makes all faces (exceptuk®de of the frame) finite and
hence extends the use of DCELSs to subdivisions with sevatadunded faces.

This paper is structured as follows. In Section 2 we discusgptive geometry and the
inclusion in concrete geometric frames and argue that tapgeoaches are insufficient. In Sec-
tion 3 we introduce infimaximal frames and discuss their mattics. In Section 4 we describe
our implementation of infimaximal frames. Section 5 disesssur application experience. We
report about the use of infimaximal frames in a sweep algoréind in the implementation of
Nef polyhedra and we compare the efficiency of our implententaf infimaximal frames with
a realization of concrete geometric frames. We will seefttinate is no loss of efficiency and in
some situations even a gain.



Figure 1: The left part shows a scene consisting of two pelredirtical segments and one hori-
zontal segment. The sweep line encounters the endpoirts iortlerpy, p2, p3, P4, Ps, Ps- IN
the right part the vertical segments are extended to linregrdjective geometry, parallel lines
share endpoints: Oriented projective geometry identgiesith ps andpz with pg and standard
projective geometry identifies all four points. In eitheseathere is no order on the endpoints
which would allow to sweep the scene.

2 Alternative Approaches

We discuss projective geometry and the inclusion of thees@em concrete geometric frames.
We argue that projective geometry is unable to solve ourlpmland that the inclusion in a
concrete geometric frame is unsatisfactory.

2.1 Projective Geometry

Projective geometry provides points at infinity and hentdirst sight, seems to solve all our
problems. There are two versions of projective geometry:standard version [Cox87] and the
oriented version of Stolfi [Sto91]. In the standard verstbere is one point at infinity for every
family of parallel lines, and in the oriented version, thare two points at infinity for every
family of parallel lines. Neither version allows to sweep ttonfiguration shown in the right part
of Figure 1. In this configuration, a finite segment lies betwevo vertical parallel lines. Since
the finite segment lies completely to the right of the lefttioad line, the left vertical line should
be swept before the finite segment. Similarly, the rightigattine should be swept after the
segment. However, parallel lines share endpoints in piggegeometry and hence there is no
way to define a sweep order on the endpoints of lines and seégnWa conclude that projective
geometry is unable to solve our problem.



2.2 Inclusion in a Concrete Geometric Frame

The following argument is typically used to show that an alyon designed for segments can
also handle rays and lines:

Enclose the input scene in a large enough frame and clip ray/brees at the frame.

Solve the problem for segments and translate back to raysegments. The frame
must be large enough such that no interesting geometrytisAdsling and removing

the frame are simple pre- and postprocessing steps whicbt@dfact the asymptotic
running time of the algorithm.

We next argue that inclusion in a concrete geometric franaebiad implementation strategy.

e The frame must be large enough so that no interesting gepmétst and hence the frame
size can only be chosen once the input is completely knowns Din-line algorithms are
excluded. Also, merging different scenes is non-triviadonstructed with different frame
sizes. It requires to change representations of points.

e Implementations have to be changed in a non-trivial way. Vg fieed to make a pass
over the data to determine an appropriate frame size. Nexdliweays and lines at the
frame and replace them by segments. Then we run the algdigtheegments. Finally, we
need to translate back.

¢ A large concrete frame size makes floating point filters eetie. In the exact com-
putation paradigm of computational geometry [OTU87, KLIN¥&p93, YD95, Sch], all
geometric predicates are evaluated exactly. Floatingtitiers are used to make exact
computation efficient [FYW96, MN94, BFS98]. Floating pofilters are most effective
when point coordinates are small. Clipping rays and linea cancrete frame introduces
points with large coordinates which make filters less eifectObserve that in an arrange-
ment of lines a single intersection with large coordinatéfarce the use of a large frame.
Also observe, that lines witk bit coefficients may intersect in points whose coordinates
require X bits.

It may seem that frame size can be changed dynamically. Fampbe, one could define
the frame size as a variable. Whenever a ray or line needs ¢tigped, the current value of
the variable is taken as the frame size, and whenever ititegegeometry happens outside the
current frame, the value of the variable is increased. Algmen the frame size is increased,
the coordinates of all points on the frame must be changeddardo maintain consistency
and hence the approach incurs a large overhead in time ifréineef size needs to be adopted
frequently. Infimaximal frames avoid this overhead.

3 Infimaximal Frames

We propose to use a frame of infimaximal size. More precisedyenclose the scene in a square
box with cornerdN\W(—R,R), NE(R,R), SER, —R), andSW —R, —R). We leave the value d®
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unspecified and tre& as an infimaximal number, i.e., a number which is finite bugdathan
the value of any concrete real number. Infimaximal numberstee counterpart of infinitesimal
numbers as, for example, used in symbolic perturbationrsek¢EM90].

Before we go into details, we argue that this proposal ovaeesothe deficiencies of the
concrete frame approach.

¢ Since the value dRis infimaximal, no interesting geometry lies outside thenfesand on-
line problems cause no difficulties. All scenes are congtriwith the same infimaximal
frame and hence merging scenes causes no problems.

¢ Implementations do not have to be changed at all. We will éafiew point classes and
segment classes (extended points and extended segmspes;tieely). Extended points
are either standard points or points on our infimaximal frame extended segments are
spanned by extended points. Thus extended segments cahstardard segments, rays
and lines. Many LEDA [LED] and CGAL [CGA] algorithms can opée on the new point
and segment classes without any change, see Section 5Xafopkes.

e Filters stay effective up to larger input bit sizes. Poinbrbnates are polynomials iR
and the evaluation of geometric predicates amounts tordeterg the sign of the highest
non-zero coefficient. These coefficients are smaller tharctiresponding values arising
in the computation with a fixed frame size, see Section 4 faailde

3.1 Frame Points and Extended Points

We define extended points in terms of their position with eespo the square box.

Definition 3.1: A frame pointor non-standard poinis a point on one of the four frame bound-
aries. A point on the left frame boundary has coordinéteR, f (R)), wheref is a function with

| f(R)| < Rfor all sufficiently largeR. Points on the other frame boundaries are defined analo-
gously, i.e., points on the right boundary have coordind®e$(R)), points on the lower bound-
ary have coordinates (R), —R), and points on the upper boundary have coordingtéR), R).

A standard poinis simply a point in the affine plane and has coordinéteg) with x,y € R. An
extended poinis either a standard point or a non-standard point.

Although the definition above makes sense for arbitrary tioncf, we restrict ourselves to
linear functions irR in this paper, as this will suffice to model endpoints of rayd Bnes.

3.2 The Endpoints of Segments, Rays, and Lines

The endpoints of a segment are standard points, a ray hastaeiendpoint and a non-standard
endpoint and a line has two non-standard endpoints.

Consider a lin¢ with line equatiorax+ by+c = 0. If b= 0, the endpoints of the line are
(—c/a,£R). If b # 0, we havey = mx+n, wherem= —a/b andn= —c/b. If |m| < 1, the
line has endpoint§+R, +mR+n), if |[m| > 1, the line has endpoin{s=R/m—n/m, £R), and if
|m| = 1, the line has endpoints-R, —mR+ n) and(R— nmmR) if sign(n) = sign(m), and has
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endpoint§ —R—nm —mR) and(R, mR+ n) if sign(n) # sign(m). The non-standard endpoint of
a ray is determined similarly. We see that the coordinatebe@tndpoints of a line are simple
linear functions irR, our infimaximal.

The endpoints of more complex geometric objects can berdated similarly, but the co-
ordinate expressions become more complex. For exampleatiadolay — x)2 = 5x intersects
the upper frame boundary in poifR+5/2— /5R+ 25/4,R) and the right frame boundary in
point(R,R— v/5R).

We use the coordinate approach described above also in @ernmentation, i.e., the co-
ordinates of frame points are linear functionsRr{recall that we are only dealing with lines
and segments). We have also explored an alternative impkatnan strategy, namely to store
a frame point as a reference to the underlying geometriccopjes an indicator which selects
the appropriate frame point. We found that this strateggdda heavy case switching within
geometric predicates as a point has four different reptatiens (a standard point, a ray tip, the
left endpoint of a line, and the right endpoint of a line) amhte a predicate operating on four
points, e.g., theideof _circle predicate, would have to cope with up tb@ses.

The coordinate approach treats all cases uniformly. Maedvncurs no significant runtime
penalty as we will see in Section 4.

3.3 Predicates on Extended Points

The flow of control in geometric algorithms is determined bg evaluation of geometric pred-
icates. Important predicates are the lexicographic oréipomts (comparexy), the orientation
of a triple of points ¢rientatior), and the incircle test for a quadruple of poinggdgof_circle).
Many! geometric predicates can be evaluated by computing thevmaimple function defined
on the coordinates of the points involved.

For example, the lexicographic order is simply a cascadetpenison of coordinates (sign
of their difference), the orientation of three points is dedl by

1 1 1
orientatior{pl, p2, p3) = sign/x1 X2 X3
yi Y2 Y3
and the side of circle predicate is given by
1 1 1 1
X1 X2 X3 X4

ide of_circle(pl, p2. p3, p4) = si
side of circle(pl, p2, p3, p4) = sign V2 V3 Va

X+Y: X5+Y5 X5+Y5 XG+Y;

What happens when we apply these predicates to extendeld pdine value of the predicate
will become the sign of a function iR. If this sign is independent dr for all large values oR,
the value of the predicate is well defined. For a large clagsexficates and extended points this
will be the case.

The authors know of no predicate that is not.



Lemma 3.1: If a geometric predicate is defined as the sign of a polynomigbint coordinates
and the coordinates of extended points are polynomiaR ithe value of the predicate when
applied to the extended points is well-defined.

Proof. Assume that the predicate is defined as the sign of a polymnémiubstituting the point
coordinates intd gives us a polynomial iRR. For sufficiently large values d&, the sign of this
polynomial is given by the sign of the highest non-zero coffit. O

We give an example. Consider the orientation of two stangardts p1 = (X1,y1), p2 =
(X2,y2) and one non-standard poipg = (—R, mR+n) on the left frame segment. We obtain:

orientatiorfpl, p2,p3) =sign ( [M(x2—x1)+ (y2—y1)|R
+ [N —x1)+ (Xay2—Xoy1)] )

If the coefficient ofR is non-zero, its sign determines the orientation, and ifcthefficient ofR
is zero, the constant term determines the orientation. dtterlis the case if the non-standard
point is the endpoint of a line parallel to the line throyghand p».

Lemma 3.2: The values of the predicate®mparexy, orientation andsideof_circle are well
defined for endpoints of segments, rays and lines.

Proof. Predicategomparexy, orientation andsideof_circle are defined as signs of polynomials
in point coordinates and the coordinates of endpoints omeeds, rays, and lines are linear
polynomials inR, our infimaximal. ]

3.4 Extended Segments

We introduce extended segments as a unified view of segmiagss,and lines. Recall that our
goal is to extend programs written for segments to rays aresliThus we need a unified view
of segments, rays, and lines.

A segment is defined by a pair of (standard) points. An extesdgment is defined by a pair
of extended points. We have to be a bit more careful. We cagimetmeaning to every pair of
extended points, but only to those pairs which correspordsiegment, ray, or line.

Definition 3.2 (extended segment)A pair of distinct extended point§s, p2) defines arex-
tended segment (esegmahtne of the following conditions holds:

1. both points are standard points.
2. both points are non-standard and are the endpoints of emoartine.

3. one point is standard and one is non-standard and thely@aentipoints of a common ray.

4. both points are non-standard points and lie on the sameefleox segment.



Extended segments defined by items 1) to 3) are called sthrzohat extended segments
defined by item 4) are called non-standard. Standard ese¢gmo@mespond to objects of affine
geometry, non-standard segments do not. For every fixe@ @R, a non-standard segment
corresponds to a well-defined geometric object.

3.5 Intersections of Extended Segments

An extended segment represent either a standard segmegt,aaline, or a segment on one of
the frame boundaries. We define the intersection point ofasegments as follows. If for every
fixed sufficiently large value dR, the corresponding geometric objects intersect in a sipgjlet,
this point is the point of intersection. Otherwise the isg&tion is undefined. Observe that if
the intersection lies on the frame for every sufficientlgvalue oR, the intersection is indeed
one of our frame points and hence this definition makes sense.

We next show that the standard analytical methods for hagdlitersections of segments
apply to extended segments.

Consider two non-trivial segmenss = (p1,d1) ands; = (p2,gz) and their underlying lines
/1 and/,. The segments intersect in a single point ifie endpoints of do not lie on the
same sid@of /1_; fori = 1,2. Thus, the test whether two segments intersect amountaito f
evaluations of the orientation predicate. We have alreagyeal that the orientation predicate
extends and hence the test whether two segments intersentiex

Consider next the computation of the intersection ppinf s; ands,. The coordinates op
are rational functions, andry of the coordinates gb; to .. Rational expressiorts, andEy in
the coordinates op; to g representing functiong andr, are well known and easily obtained.
Simply derive the line equations fdi and/, and then solve a linear system to obt&pand
Ey*:

li= aXx+by+c=0
where
& = Ypi — Yqi> bi = Xgi — Xpi, Ci = XpiYqi — XqiYpi
Then the point of intersectiopis defined by the expressions:
Ex = (b1co — bocy1) /(a1by — agb1), Ey = (axc1 —a1C2) /(aghy — agby)

What is the situation for two extended segments? The irtBosepoint is an extended point
and for every fixed value @&, ry(R) andry(R) are the coordinates of the intersection point. If the
intersection point is a standard poing,(R) does not depend dR, and if the intersection point
is non-standarj one of the functionsy(R) is the identity function and the other has absolute

2For simplicity, we are ignoring the possibility that the @miging lines are identical and the two segments share
an endpoint. The discussion is easily extended to also bahidl situation.

3An oriented line has three sides: left, on, and right.

“Note that the rational expressions are not unique. One ily eapand the quotient by an arbitrary factor.

Sintersect a line or ray with the non-standard esegment tretains an endpoint.
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value at mosR for sufficiently largeR. We may also apply the rational expressi@ido Ey to
the coordinates of the endpoints of the esegmpnte g2. We obtain representations for rational
functions inR, our infinitesimal. For every fixed value Bf we haveyy(R) = Exy(R) and hence
the rational functions must simplify to the canonical reyergation of non-standard points. We
have thus shown:

Lemma 3.3: Let intersectioripl, p2 gl q2) be the partial function that returns the coordinates
of the intersection point of the segmerst$;, p2) ands(qi,g2). Thenintersectionis correct
when applied to extended segments.

4 Implementation

We implemented extended points in C++ and used them togefitleiICGAL and LEDA. We
report about the use in Section 5.1. Our implementation wWentigh three versions.

In the first version, we used the representation alluded theaénd of Section 3.2. An ex-
tended point was represented by a reference to the undgdgiometric object plus an indicator
which selects a frame point. Predicates and geometric maisins used case switching based
on the representation. We soon realized that this appreaci icumbersome and that the com-
plicated control structure of our predicates mames it diffito ensure correctness.

Versions two and three use the coordinate representatssdlmn arithmetic in a polynomial
ring. We implemented a number typPPolynomialmodelingZ[R] the ring of polynomials in
a variableR. Our type offers the ring operations, —, *, polynomial division and the gcd
operation, as described in [Coh93, Knu98], and a sign fanctiThe sign function returns the
sign of the highest non-zero coefficient.

We obtained Extended points and segments by combining aubeutypeRPolynomial
with the geometry kernel of CGAL. The geometry kernels of QG#e parameterized by an
arithmetic type. Objects may either be represented by thaitesian or their homogeneous
coordinates. We use the homogeneous kernel as it only esgairing type (the Cartesian kernel
requires a number type that is a field). We instantiated twoedsional homogeneous points
with our number typeRPolynomial and added some additional construction code for points
from standard points and oriented lines. No work was reduioe the geometric predicates as
predicate evaluation amounts to sign computation of aetimrexpressions and we defined the
sign function of our ring type according to Section 3.3.

A slight modification was required for the intersection coilee CGAL kernel does not au-
tomatically cancel common factors in the representatiopaifts, i.e., it is not guaranteed that
the gcd of the homogeneous coordinates of a point is equaidd &or our situation this im-
plied that point representations could contain redundalynmmial factors and hence non-linear
polynomials. Correctness was not impaired, but runningsirwere miserable. We remedied
the situation by insisting that representations are ahvimylseir reduced form, i.e., whenever a
point is constructed the gcd of the homogeneous coordimatesnputed and a common factor

81t cannot do so since the notion of gcd does not make sensgdoy ng type.



is canceled. This ensures that the polynomials in pointasgtations stay linear as argued in
Section 3.5.

Our second implementation has the strong appeal of very lmaogrogramming and thereby
its correctness was very simple to achieve. We have useavilfi@s a backup checker for the
more elaborate techniques used in our third version.

In the third version we optimized the representation of fsoand the evaluation of predi-
cates. This forced us to write our own clasep®intand esegmenand to write code for the
evaluation of predicates. In the representation of poirgexploit that the normalizing coordi-
nate is an integer (and never a polynomial of degree one)rderdo optimize the evaluation
of predicates, we derived closed form expressions for tignpaials arising in the predicates
and incorporated filter technology. For example ¢hientation predicatef three homogeneous
points pi = (MR+ nyi, MR+ nyi,wi) i = 1,2, 3, amounts to computing the sign of a quadratic
polynomialA- R?+ B-R+C in our infimaximalR, where

A = (MxAw3my2 —mxdw2my3+ mx3w2myl — mx2w3myl — mx3wlmy2 + mx2wlmy3)

B = (mxaw3ny2—mxiw2ny3+ nxiw3my2 — mx2w3nyl — nxIw2my3-+ mx2wlny3 —
nN2w3myl + mx3w2nyl + nx2wlmy3 — mxX3wlny2 + ny3w2myl — ny3wlmy2)

C = nw3nyl+ nxiw3ny2-+ nx2wlny3 —nxiw2ny3-+ ny3w2nyl — ny3wlny2

We use a two stage filtering scheme to determine the sign afdegicients. We first evaluate
the coefficients using interval arithmetic (CGAL numberdayptervalnt). If interval arithmetic
is not able to determine the sign, our code resorts to megitipion integer arithmetic. The gain
in runtime can be seen in section 5.2.

5 Discussion

We come to the evaluation of our results. We discuss funalitynn Section 5.1 and efficiency
in Section 5.2.

5.1 Applications

We describe two applications, the first one being used in ecorsd.

The first application is the computation of arrangement&ghsents, rays, and lines. We use
the generic sweep algorithm of LEDA [Gen] together with ep®and esegments. Only minimal
changes of code were required.

The second application is an implementation of planar Nsfrmira; in fact, this application
made us think about the problem of making rays and lines ld@kdegments. A planar Nef
polyhedron is any set that can be obtained from the opengaalés by a finite number of set
complement and set intersection operations. The set oftgpdra is closed under the Boolean
set operations and under the topological operations beynd@sure, and interior. Figure 2



Figure 2: The left part shows a halfspace pruned in the frarne.right part shows a complicated
Nef polyhedron consisting of diverse faces and low dimemaiteatures (a ray taken from a face
and an isolated vertex). All vertices are embedded via ebe@points. All points on the square
boundary are non-standard points.

shows two Nef polyhedra enclosed into a frame. We view Neyipedra as embedded into a
infimaximal frame. This makes all faces (except for the asif the frame) bounded and allows
us to represent planar Nef polyhedra by the attributed ptame< of LEDA. The position of a
vertex is given by an epoint and all edges of a Nef polyhedamespond to esegments. All
faces have circular closed face cycles.

We implemented an overlay engine for plane maps that wonkbdith the bounded affine
scenario as well as the unbounded Nef structure. The engibased on the generic sweep
algorithm mentioned above; instantiating it with the anreffgeometry kernel (e.g. LEDA's or
CGAL’s) makes it work for bounded maps and instantiatingithwextended points and segments
makes it work for Nef polyhedra.

Binary operations on two Nef polyhedXa, N are realized in three phases: we first calculate
the overlay ofN; andN, and transfer the marks of the input objects to the overlagaibj we
then use a binary selection predicate on the marks, and wky fivaplify the obtained structure
towards a minimal representation. The third step is as testin [RO90] or [MN99, Section
10.8].

The details of the implementation of Nef polyhedra can baébin [Pla].

5.2 Efficiency

We present runtime results. We performed the following expents. Starting fronm random
halfspaces (the coefficients of the boundary line are randtegers in0,n] and one of the half-
spaces is chosen at random) we built a Nef polyhedron by syrionakéference operations. We

’An plane map is a bidirected graph in which the edges inciteetich node are cyclically ordered [MN99,
Section 8.4]. Each node, edge and face carries a mark bittidg whether it is contained in the Nef polyhedron
or not.
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| #lines| op|| #V | #E | #F | naive] filtered| rgpn | rgp |

10 | @ 67 121 56 0.64 | 0.065 | 0.075| 0.125
10 | N 162 217 61 0.74| 0.09 | 0.08 | 0.93
10 | U 160 213 60 0.75| 0.09 | 0.07 | 0.92
20 | @ 230 437 209 || 231 | 0.26 | 0.285]| 2.3
20 [N 622 831 241 | 2.89 | 0.36 0.3 | 19.2
20 | U ST77 744 205 || 2.93| 0.36 0.3 | 196
30 | @ | 499 964 | 467 | 4.01| 0.48 | 0575 -1
30 | N | 1375| 1821 | 514 7 0.92 0.8 -1
30 | U || 1410 | 1894 | 540 | 7.55| 0.9 0.76 | -1
40 | @ 862 | 1680 | 820 8.7 105 | 125 -1
40 | n || 2395 | 3171 | 900 | 128 | 167 | 143 | -1
40 | U || 2509 | 3370 | 960 | 129 | 1.71 | 142 | -1
50 | @ || 1326 | 2600 | 1275 | 12.1| 154 | 183 | -1
50 | N | 3828 | 5111 | 1470 | 21.1| 2.88 | 241 | -1
50 | U || 3809 | 5073 | 1455 | 20.7| 2.85 | 235 | -1
100 | @ || 5149 | 10195| 5048 | 49.8| 6.76 | 829 | -1
100 | n || 15188| 20296| 5826 | 92.6 | 135 | 131 | -1
100 | U || 15088| 20073| 5731 || 924 | 136 | 134 | -1
150 | @ || 11476| 22799| 11325| 146 | 21.2 | 242 | -1
150 | N || 34223| 45801| 13214 217 | 33.7 | 39.8 | -1
150 | U || 33717| 44785| 12881 217 | 34.1 | 40.2 | -1
200 | @ | 20302| 40401| 20100| 207 | 33.8 40 -1
200 | N || 60043| 79905| 22909| 415 66 101 -1
200 | U || 60551| 80886| 23352| 410 | 67.1 | 100 -1

Table 1: Running times

put the halfspaces at the leaves of a balanced binary tretbbeméd the symmetric difference
of the two children at each internal node. In the root we olatdia Nef polyhedro® of com-
plexity ©(n?). The polyhedron is essentially the arrangement defined dptiindary lines; a
vertex, edge, face of the arrangement belongB i it is contained in an even number of the
halfspace® We then took two Nef polyhedra obtained in this way and fairieirintersection
andunion We performed this experiment for different valuesnafinging from 10 to 200. Ta-
ble 1 shows the results. The line markedresents the complexity and times for the recursive
synthesis of the Nef polyhedron. The columns labeled #V,a#d, #F give the actual number
of nodes, edges and faces of the resulting arrangemena(aevirom the formulas above are
due to degeneracies). The lines labefedndU present the results of the corresponding binary
operation.

8The exact number (assuming non-degeneracy and taking jeetslon the frame into account) of vertices,
edges, and facesign—1)/2+ 2n+4,n(n+ 1) + 2n+ 4, andn(n+ 1) /2 + 2, respectively.
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We show the running times for four different implementasioiihe first two columns show
the running times of our second and third implementatiorpoirs and esegments. The column
(marked asaive uses CGAL's homogeneous kernel instantiated with thetsipgRPolynomial
which in turn uses LEDA's multi-precision integer arithneetColumnfiltered shows the running
times for version three which uses filtered predicates asritbes! in Section 4. A comparison of
the first two columns shows that our third implementation iscmsuperior to the second.

We also wanted a comparison with the approach based on aeterfcame. LEDA of-
fers a typerat genpolygonwhich is closed under regularized boolean operations (alagged
boolean operation discards isolated lower dimensionalifea by replacing the true result of a
boolean operation by the closure of the interior of the t@suld allows only a single unbounded
face. Regularized boolean operations lead to a simpletagpal structure than general boolean
operations. We enclosed our halfspaces into a concrete eggaorframe (whose size we in-
ferred from the computation of the Nef polygon) and then aiet the same set of operation.
Ratgenpolygonsalso use LEDA's sweep for the overlay of two maps. The lasirool (labeled
rpg) shows the running times oht polygons A dash indicates that the experiment was not
run due to the excessively large running times. The excelydbad behavior ofat genpolygon
surprised us. We traced it to the fact that LEDA does not nbmeh point representations au-
tomatically. We added a normalization step after each pioperation. The resulting running
times are shown in colummgn.

A comparison of columnéltered andrpg shows that the implementation described in this
paper is slightly faster than LEDAsat genpolygonsfor the synthesis step and slightly slower
for the union and intersection. Fore= 200 we are faster for all three operations. Our explanation
is as follows (we admit that we are not completely sure whratheexplanation is the right one):
the use of a concrete geometric frame forces us to use la@elinate values for the frame
points. The coefficients of our polynomials are smaller (mamaller in the early synthesis
steps). Fon = 200 the coordinate values in the geometric frame becomeage that the filter
in LEDA's rational geometry kernel start to loose its effeehess. The filter in epoints stays
effective.

It is also interesting to compare columnaiveandrpg. Forn = 10, rpg is superior, for
n= 20, the two implementations are about the same, and forrlarg@ivewins by a large mar-
gin due to the fact that we reduce the polynomial coordingpeasentation of naive epoints on
construction by a polynomial division. Remember thatripggcode does not use any reduction.

6 Conclusion

We have shown that our approach to a dynamic frame offersaogan to the problem of non-
compact structures. Its main advantage is the transpaasliihng of geometric configurations
that appear in the standard affine plane but also on the framee mtroducing extended points.
Available program code for standard affine problems can Isdyeased as long as the used
geometric predicates are extensible to extended pointexedded segments. The application
of our framework separates the geometric issues of the featdtion from the control structure
of the implemented algorithm. On the other side our runtiesuits show that infimaximal
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frames can be used without introducing a relevant runtinegleaad compared to standard affine

geometry.
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