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Abstract

Many geometric algorithms that are usually formulated for points and segments
generalize easily to inputs also containing rays and lines.The sweep algorithm
for segment intersection is a prototypical example. Implementations of such algo-
rithms do, in general, not extend easily. For example, segment endpoints cause
events in sweep line algorithms, but lines have no endpoints. We describe a
general technique, which we call infimaximal frames, for extending implemen-
tations to inputs also containing rays and lines. The technique can also be used
to extend implementations of planar subdivisions to subdivisions with many un-
bounded faces. We have used the technique successfully in generalizing a sweep
algorithm designed for segments to rays and lines and also inan implementation
of planar Nef polyhedra [Nef78, Bie95].

Our implementation is based on concepts of generic programming in C++ and
the geometric data types provided by the C++ Computational Geometry Algo-
rithms Library (CGAL).

KeywordsNef polyhedron, Arrangement, Plane Sweep, Bounding Box



1 Introduction

Many geometric algorithms that are usually formulated for points and segments generalize nicely
to inputs containing also rays and lines. Do implementations generalize as easily? Let us consider
two concrete examples: plane sweep for segment intersection and map overlay.

In the plane sweep algorithm for segment intersection a vertical line is swept across the plane
from left to right. The intersections between the sweep lineand the input segments are kept in a
data structure, the Y-structure. The Y-structure is updated whenever the sweep line encounters a
segment endpoint or an intersection point between two segments. The event points are kept in a
priority queue, the X-structure. The sweep paradigm can clearly also handle rays and lines. Will
an implementation generalize easily, e.g., does LEDA’s implementation [MN99, Section 10.7]
generalize? It does not. For example, the X-structure needsto be initialized with the endpoints
of the segments, but what are the endpoints of lines and segments?

In Section 2 we will argue that the answer is not given by projective geometry (neither stan-
dard nor oriented). We will also argue that enclosing the scene in a fixed geometric frame and
clipping rays and lines at the frame is an unsatisfactory solution. It excludes on-line algorithms,
it requires non-trivial changes in the software structure,and it decreases the effectiveness of
floating point filters. In Section 3 we propose infimaximal frames as a general technique for han-
dling rays and lines. We propose to enclose the scene in a frame of infimaximal size and to clip
rays and lines at the frame. Infimaximal frames support on-line algorithms, require no change in
software structure, and cooperate well with floating point filters.

Our second example concerns map overlay. The texts [dBvKOS97, Section 2.3] and [MN99,
Section 10.8] describe algorithms for maps with a single unbounded face, i.e., all faces (except
the unbounded face) are bounded by simple closed polygons. Again the algorithms readily gen-
eralize to subdivisions with more than one unbounded face, e.g., Voronoi diagrams or arrange-
ments of lines. Will implementations generalize? No, they do not. For example, the standard
data structure for representing maps, namely doubly connected edge lists [PS85, dBvKOS97],
assumes that all face cycles are closed and hence DCELs cannot even represent subdivisions with
several unbounded faces in a direct way. Infimaximal frames offer a simple solution. Enclosing
the scene in an infimaximal frame makes all faces (except the outside of the frame) finite and
hence extends the use of DCELs to subdivisions with several unbounded faces.

This paper is structured as follows. In Section 2 we discuss projective geometry and the
inclusion in concrete geometric frames and argue that theseapproaches are insufficient. In Sec-
tion 3 we introduce infimaximal frames and discuss their mathematics. In Section 4 we describe
our implementation of infimaximal frames. Section 5 discusses our application experience. We
report about the use of infimaximal frames in a sweep algorithm and in the implementation of
Nef polyhedra and we compare the efficiency of our implementation of infimaximal frames with
a realization of concrete geometric frames. We will see thatthere is no loss of efficiency and in
some situations even a gain.
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Figure 1: The left part shows a scene consisting of two parallel vertical segments and one hori-
zontal segment. The sweep line encounters the endpoints in the orderp1, p2, p3, p4, p5, p6. In
the right part the vertical segments are extended to lines. In projective geometry, parallel lines
share endpoints: Oriented projective geometry identifiesp1 with p5 andp2 with p6 and standard
projective geometry identifies all four points. In either case, there is no order on the endpoints
which would allow to sweep the scene.

2 Alternative Approaches

We discuss projective geometry and the inclusion of the scene in a concrete geometric frames.
We argue that projective geometry is unable to solve our problem and that the inclusion in a
concrete geometric frame is unsatisfactory.

2.1 Projective Geometry

Projective geometry provides points at infinity and hence, at first sight, seems to solve all our
problems. There are two versions of projective geometry: the standard version [Cox87] and the
oriented version of Stolfi [Sto91]. In the standard version,there is one point at infinity for every
family of parallel lines, and in the oriented version, thereare two points at infinity for every
family of parallel lines. Neither version allows to sweep the configuration shown in the right part
of Figure 1. In this configuration, a finite segment lies between two vertical parallel lines. Since
the finite segment lies completely to the right of the left vertical line, the left vertical line should
be swept before the finite segment. Similarly, the right vertical line should be swept after the
segment. However, parallel lines share endpoints in projective geometry and hence there is no
way to define a sweep order on the endpoints of lines and segments. We conclude that projective
geometry is unable to solve our problem.
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2.2 Inclusion in a Concrete Geometric Frame

The following argument is typically used to show that an algorithm designed for segments can
also handle rays and lines:

Enclose the input scene in a large enough frame and clip rays and lines at the frame.
Solve the problem for segments and translate back to rays andsegments. The frame
must be large enough such that no interesting geometry is lost. Adding and removing
the frame are simple pre- and postprocessing steps which do not affect the asymptotic
running time of the algorithm.

We next argue that inclusion in a concrete geometric frame isa bad implementation strategy.� The frame must be large enough so that no interesting geometry is lost and hence the frame
size can only be chosen once the input is completely known. Thus on-line algorithms are
excluded. Also, merging different scenes is non-trivial, if constructed with different frame
sizes. It requires to change representations of points.� Implementations have to be changed in a non-trivial way. We first need to make a pass
over the data to determine an appropriate frame size. Next weclip rays and lines at the
frame and replace them by segments. Then we run the algorithmfor segments. Finally, we
need to translate back.� A large concrete frame size makes floating point filters ineffective. In the exact com-
putation paradigm of computational geometry [OTU87, KLN91, Yap93, YD95, Sch], all
geometric predicates are evaluated exactly. Floating point filters are used to make exact
computation efficient [FvW96, MN94, BFS98]. Floating pointfilters are most effective
when point coordinates are small. Clipping rays and lines ona concrete frame introduces
points with large coordinates which make filters less effective. Observe that in an arrange-
ment of lines a single intersection with large coordinates will force the use of a large frame.
Also observe, that lines withk bit coefficients may intersect in points whose coordinates
require 2k bits.

It may seem that frame size can be changed dynamically. For example, one could define
the frame size as a variable. Whenever a ray or line needs to beclipped, the current value of
the variable is taken as the frame size, and whenever interesting geometry happens outside the
current frame, the value of the variable is increased. Also,when the frame size is increased,
the coordinates of all points on the frame must be changed in order to maintain consistency
and hence the approach incurs a large overhead in time if the frame size needs to be adopted
frequently. Infimaximal frames avoid this overhead.

3 Infimaximal Frames

We propose to use a frame of infimaximal size. More precisely,we enclose the scene in a square
box with cornersNW(�R;R), NE(R;R), SE(R;�R), andSW(�R;�R). We leave the value ofR
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unspecified and treatR as an infimaximal number, i.e., a number which is finite but larger than
the value of any concrete real number. Infimaximal numbers are the counterpart of infinitesimal
numbers as, for example, used in symbolic perturbation schemes [EM90].

Before we go into details, we argue that this proposal overcomes the deficiencies of the
concrete frame approach.� Since the value ofR is infimaximal, no interesting geometry lies outside the frame and on-

line problems cause no difficulties. All scenes are constructed with the same infimaximal
frame and hence merging scenes causes no problems.� Implementations do not have to be changed at all. We will define new point classes and
segment classes (extended points and extended segments, respectively). Extended points
are either standard points or points on our infimaximal frameand extended segments are
spanned by extended points. Thus extended segments can model standard segments, rays
and lines. Many LEDA [LED] and CGAL [CGA] algorithms can operate on the new point
and segment classes without any change, see Section 5.1 for examples.� Filters stay effective up to larger input bit sizes. Point coordinates are polynomials inR
and the evaluation of geometric predicates amounts to determining the sign of the highest
non-zero coefficient. These coefficients are smaller than the corresponding values arising
in the computation with a fixed frame size, see Section 4 for details.

3.1 Frame Points and Extended Points

We define extended points in terms of their position with respect to the square box.

Definition 3.1: A frame pointor non-standard pointis a point on one of the four frame bound-
aries. A point on the left frame boundary has coordinates(�R; f (R)), wheref is a function withj f (R)j � R for all sufficiently largeR. Points on the other frame boundaries are defined analo-
gously, i.e., points on the right boundary have coordinates(R; f (R)), points on the lower bound-
ary have coordinates( f (R);�R), and points on the upper boundary have coordinates( f (R);R).
A standard pointis simply a point in the affine plane and has coordinates(x;y) with x;y2 R. An
extended pointis either a standard point or a non-standard point.

Although the definition above makes sense for arbitrary function f , we restrict ourselves to
linear functions inR in this paper, as this will suffice to model endpoints of rays and lines.

3.2 The Endpoints of Segments, Rays, and Lines

The endpoints of a segment are standard points, a ray has a standard endpoint and a non-standard
endpoint and a line has two non-standard endpoints.

Consider a linè with line equationax+by+ c= 0. If b = 0, the endpoints of the line are(�c=a;�R). If b 6= 0, we havey = mx+ n, wherem= �a=b andn = �c=b. If jmj < 1, the
line has endpoints(�R;�mR+n), if jmj> 1, the line has endpoints(�R=m�n=m;�R), and ifjmj= 1, the line has endpoints(�R;�mR+n) and(R�nm;mR) if sign(n) = sign(m), and has
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endpoints(�R�nm;�mR) and(R;mR+n) if sign(n) 6= sign(m). The non-standard endpoint of
a ray is determined similarly. We see that the coordinates ofthe endpoints of a line are simple
linear functions inR, our infimaximal.

The endpoints of more complex geometric objects can be determined similarly, but the co-
ordinate expressions become more complex. For example, theparabola(y� x)2 = 5x intersects
the upper frame boundary in point(R+5=2�p5R+25=4;R) and the right frame boundary in
point (R;R�p5R).

We use the coordinate approach described above also in our implementation, i.e., the co-
ordinates of frame points are linear functions inR (recall that we are only dealing with lines
and segments). We have also explored an alternative implementation strategy, namely to store
a frame point as a reference to the underlying geometric object plus an indicator which selects
the appropriate frame point. We found that this strategy leads to heavy case switching within
geometric predicates as a point has four different representations (a standard point, a ray tip, the
left endpoint of a line, and the right endpoint of a line) and hence a predicate operating on four
points, e.g., thesideof circle predicate, would have to cope with up to 24 cases.

The coordinate approach treats all cases uniformly. Moreover, it incurs no significant runtime
penalty as we will see in Section 4.

3.3 Predicates on Extended Points

The flow of control in geometric algorithms is determined by the evaluation of geometric pred-
icates. Important predicates are the lexicographic order of points (comparexy), the orientation
of a triple of points (orientation), and the incircle test for a quadruple of points (sideof circle).
Many1 geometric predicates can be evaluated by computing the signof a simple function defined
on the coordinates of the points involved.

For example, the lexicographic order is simply a cascaded comparison of coordinates (sign
of their difference), the orientation of three points is defined by

orientation(p1; p2; p3) = sign

������ 1 1 1
x1 x2 x3

y1 y2 y3

������
and the side of circle predicate is given by

sideof circle(p1; p2; p3; p4) = sign

�������� 1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

x2
1+y2

1 x2
2+y2

2 x2
3+y2

3 x2
4+y2

4

��������
What happens when we apply these predicates to extended points? The value of the predicate

will become the sign of a function inR. If this sign is independent ofR for all large values ofR,
the value of the predicate is well defined. For a large class ofpredicates and extended points this
will be the case.

1The authors know of no predicate that is not.
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Lemma 3.1: If a geometric predicate is defined as the sign of a polynomialin point coordinates
and the coordinates of extended points are polynomials inR, the value of the predicate when
applied to the extended points is well-defined.

Proof. Assume that the predicate is defined as the sign of a polynomial P. Substituting the point
coordinates intoP gives us a polynomial inR. For sufficiently large values ofR, the sign of this
polynomial is given by the sign of the highest non-zero coefficient.

We give an example. Consider the orientation of two standardpoints p1 = (x1;y1), p2 =(x2;y2) and one non-standard pointp3 = (�R;mR+n) on the left frame segment. We obtain:

orientation(p1; p2; p3) = sign ( [m(x2�x1)+(y2�y1)℄R+ [n(x2�x1)+(x1y2�x2y1)℄ )
If the coefficient ofR is non-zero, its sign determines the orientation, and if thecoefficient ofR
is zero, the constant term determines the orientation. The latter is the case if the non-standard
point is the endpoint of a line parallel to the line throughp1 andp2.

Lemma 3.2: The values of the predicatescomparexy, orientation, andsideof circle are well
defined for endpoints of segments, rays and lines.

Proof. Predicatescomparexy, orientation, andsideof circle are defined as signs of polynomials
in point coordinates and the coordinates of endpoints of segments, rays, and lines are linear
polynomials inR, our infimaximal.

3.4 Extended Segments

We introduce extended segments as a unified view of segments,rays, and lines. Recall that our
goal is to extend programs written for segments to rays and lines. Thus we need a unified view
of segments, rays, and lines.

A segment is defined by a pair of (standard) points. An extended segment is defined by a pair
of extended points. We have to be a bit more careful. We cannotgive meaning to every pair of
extended points, but only to those pairs which correspond toa segment, ray, or line.

Definition 3.2 (extended segment):A pair of distinct extended points(p1; p2) defines anex-
tended segment (esegment)if one of the following conditions holds:

1. both points are standard points.

2. both points are non-standard and are the endpoints of a common line.

3. one point is standard and one is non-standard and they are the endpoints of a common ray.

4. both points are non-standard points and lie on the same frame box segment.
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Extended segments defined by items 1) to 3) are called standard and extended segments
defined by item 4) are called non-standard. Standard esegments correspond to objects of affine
geometry, non-standard segments do not. For every fixed value of R, a non-standard segment
corresponds to a well-defined geometric object.

3.5 Intersections of Extended Segments

An extended segment represent either a standard segment, a ray, a line, or a segment on one of
the frame boundaries. We define the intersection point of twoesegments as follows. If for every
fixed sufficiently large value ofR, the corresponding geometric objects intersect in a singlepoint,
this point is the point of intersection. Otherwise the intersection is undefined. Observe that if
the intersection lies on the frame for every sufficiently large value ofR, the intersection is indeed
one of our frame points and hence this definition makes sense.

We next show that the standard analytical methods for handling intersections of segments
apply to extended segments.

Consider two non-trivial segmentss1 = (p1;q1) ands2 = (p2;q2) and their underlying lines`1 and `2. The segments intersect in a single point iff2 the endpoints ofsi do not lie on the
same side3 of `1�i for i = 1;2. Thus, the test whether two segments intersect amounts to four
evaluations of the orientation predicate. We have already argued that the orientation predicate
extends and hence the test whether two segments intersect extends.

Consider next the computation of the intersection pointp of s1 ands2. The coordinates ofp
are rational functionsrx andry of the coordinates ofp1 to q2. Rational expressionsEx andEy in
the coordinates ofp1 to q2 representing functionsr1 andr2 are well known and easily obtained.
Simply derive the line equations for`1 and`2 and then solve a linear system to obtainEx and
Ey

4: `i � aix+biy+ci = 0

where

ai = ypi�yqi; bi = xqi�xpi; ci = xpiyqi�xqiypi

Then the point of intersectionp is defined by the expressions:

Ex = (b1c2�b2c1)=(a1b2�a2b1); Ey = (a2c1�a1c2)=(a1b2�a2b1)
What is the situation for two extended segments? The intersection point is an extended point

and for every fixed value ofR, rx(R) andry(R) are the coordinates of the intersection point. If the
intersection point is a standard point,rx;y(R) does not depend onR, and if the intersection point
is non-standard5, one of the functionsrx;y(R) is the identity function and the other has absolute

2For simplicity, we are ignoring the possibility that the underlying lines are identical and the two segments share
an endpoint. The discussion is easily extended to also handle this situation.

3An oriented line has three sides: left, on, and right.
4Note that the rational expressions are not unique. One can easily expand the quotient by an arbitrary factor.
5intersect a line or ray with the non-standard esegment that contains an endpoint.
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value at mostR for sufficiently largeR. We may also apply the rational expressionsEx to Ey to
the coordinates of the endpoints of the esegmentsp1 to q2. We obtain representations for rational
functions inR, our infinitesimal. For every fixed value ofR, we haverx;y(R) = Ex;y(R) and hence
the rational functions must simplify to the canonical representation of non-standard points. We
have thus shown:

Lemma 3.3: Let intersection(p1;p2;q1;q2) be the partial function that returns the coordinates
of the intersection point of the segmentss(p1; p2) ands(q1;q2). Then intersectionis correct
when applied to extended segments.

4 Implementation

We implemented extended points in C++ and used them togetherwith CGAL and LEDA. We
report about the use in Section 5.1. Our implementation wentthrough three versions.

In the first version, we used the representation alluded to atthe end of Section 3.2. An ex-
tended point was represented by a reference to the underlying geometric object plus an indicator
which selects a frame point. Predicates and geometric constructions used case switching based
on the representation. We soon realized that this approach is too cumbersome and that the com-
plicated control structure of our predicates mames it difficult to ensure correctness.

Versions two and three use the coordinate representation based on arithmetic in a polynomial
ring. We implemented a number typeRPolynomialmodelingZ[R℄ the ring of polynomials in
a variableR. Our type offers the ring operations+, �, �, polynomial division and the gcd
operation, as described in [Coh93, Knu98], and a sign function. The sign function returns the
sign of the highest non-zero coefficient.

We obtained Extended points and segments by combining our number typeRPolynomial
with the geometry kernel of CGAL. The geometry kernels of CGAL are parameterized by an
arithmetic type. Objects may either be represented by theirCartesian or their homogeneous
coordinates. We use the homogeneous kernel as it only requires a ring type (the Cartesian kernel
requires a number type that is a field). We instantiated two dimensional homogeneous points
with our number typeRPolynomial, and added some additional construction code for points
from standard points and oriented lines. No work was required for the geometric predicates as
predicate evaluation amounts to sign computation of arithmetic expressions and we defined the
sign function of our ring type according to Section 3.3.

A slight modification was required for the intersection code. The CGAL kernel does not au-
tomatically cancel common factors in the representation ofpoints, i.e., it is not guaranteed that
the gcd of the homogeneous coordinates of a point is equal to one6. For our situation this im-
plied that point representations could contain redundant polynomial factors and hence non-linear
polynomials. Correctness was not impaired, but running times were miserable. We remedied
the situation by insisting that representations are alwaysin their reduced form, i.e., whenever a
point is constructed the gcd of the homogeneous coordinatesis computed and a common factor

6It cannot do so since the notion of gcd does not make sense for every ring type.
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is canceled. This ensures that the polynomials in point representations stay linear as argued in
Section 3.5.

Our second implementation has the strong appeal of very modular programming and thereby
its correctness was very simple to achieve. We have used it heavily as a backup checker for the
more elaborate techniques used in our third version.

In the third version we optimized the representation of points and the evaluation of predi-
cates. This forced us to write our own classesepointandesegmentand to write code for the
evaluation of predicates. In the representation of points we exploit that the normalizing coordi-
nate is an integer (and never a polynomial of degree one). In order to optimize the evaluation
of predicates, we derived closed form expressions for the polynomials arising in the predicates
and incorporated filter technology. For example theorientation predicateof three homogeneous
pointspi = (mxiR+nxi;myiR+nyi;wi) i = 1;2;3, amounts to computing the sign of a quadratic
polynomialA �R2+B �R+C in our infimaximalR, where

A = (mx1w3my2�mx1w2my3+mx3w2my1�mx2w3my1�mx3w1my2+mx2w1my3)
B = (mx1w3ny2�mx1w2ny3+nx1w3my2�mx2w3ny1�nx1w2my3+mx2w1ny3�

nx2w3my1+mx3w2ny1+nx2w1my3�mx3w1ny2+ny3w2my1�ny3w1my2)
C = nx2w3ny1+nx1w3ny2+nx2w1ny3�nx1w2ny3+ny3w2ny1�ny3w1ny2

We use a two stage filtering scheme to determine the sign of thecoefficients. We first evaluate
the coefficients using interval arithmetic (CGAL number type Intervalnt). If interval arithmetic
is not able to determine the sign, our code resorts to multi-precision integer arithmetic. The gain
in runtime can be seen in section 5.2.

5 Discussion

We come to the evaluation of our results. We discuss functionality in Section 5.1 and efficiency
in Section 5.2.

5.1 Applications

We describe two applications, the first one being used in our second.
The first application is the computation of arrangements of segments, rays, and lines. We use

the generic sweep algorithm of LEDA [Gen] together with epoints and esegments. Only minimal
changes of code were required.

The second application is an implementation of planar Nef polyhedra; in fact, this application
made us think about the problem of making rays and lines look like segments. A planar Nef
polyhedron is any set that can be obtained from the open halfspaces by a finite number of set
complement and set intersection operations. The set of Nef polyhedra is closed under the Boolean
set operations and under the topological operations boundary, closure, and interior. Figure 2
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Figure 2: The left part shows a halfspace pruned in the frame.The right part shows a complicated
Nef polyhedron consisting of diverse faces and low dimensional features (a ray taken from a face
and an isolated vertex). All vertices are embedded via extended points. All points on the square
boundary are non-standard points.

shows two Nef polyhedra enclosed into a frame. We view Nef polyhedra as embedded into a
infimaximal frame. This makes all faces (except for the outside of the frame) bounded and allows
us to represent planar Nef polyhedra by the attributed planemaps7 of LEDA. The position of a
vertex is given by an epoint and all edges of a Nef polyhedron correspond to esegments. All
faces have circular closed face cycles.

We implemented an overlay engine for plane maps that works for both the bounded affine
scenario as well as the unbounded Nef structure. The engine is based on the generic sweep
algorithm mentioned above; instantiating it with the an affine geometry kernel (e.g. LEDA’s or
CGAL’s) makes it work for bounded maps and instantiating it with extended points and segments
makes it work for Nef polyhedra.

Binary operations on two Nef polyhedraN1, N2 are realized in three phases: we first calculate
the overlay ofN1 andN2 and transfer the marks of the input objects to the overlay objects; we
then use a binary selection predicate on the marks, and we finally simplify the obtained structure
towards a minimal representation. The third step is as described in [RO90] or [MN99, Section
10.8].

The details of the implementation of Nef polyhedra can be found in [Pla].

5.2 Efficiency

We present runtime results. We performed the following experiments. Starting fromn random
halfspaces (the coefficients of the boundary line are randomintegers in[0;n℄ and one of the half-
spaces is chosen at random) we built a Nef polyhedron by symmetric difference operations. We

7An plane map is a bidirected graph in which the edges incidentto each node are cyclically ordered [MN99,
Section 8.4]. Each node, edge and face carries a mark bit indicating whether it is contained in the Nef polyhedron
or not.
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#lines op #V #E #F naive filtered rgpn rgp

10 � 67 121 56 0.64 0.065 0.075 0.125
10 \ 162 217 61 0.74 0.09 0.08 0.93
10 [ 160 213 60 0.75 0.09 0.07 0.92
20 � 230 437 209 2.31 0.26 0.285 2.3
20 \ 622 831 241 2.89 0.36 0.3 19.2
20 [ 577 744 205 2.93 0.36 0.3 19.6
30 � 499 964 467 4.01 0.48 0.575 -1
30 \ 1375 1821 514 7 0.92 0.8 -1
30 [ 1410 1894 540 7.55 0.9 0.76 -1
40 � 862 1680 820 8.7 1.05 1.25 -1
40 \ 2395 3171 900 12.8 1.67 1.43 -1
40 [ 2509 3370 960 12.9 1.71 1.42 -1
50 � 1326 2600 1275 12.1 1.54 1.83 -1
50 \ 3828 5111 1470 21.1 2.88 2.41 -1
50 [ 3809 5073 1455 20.7 2.85 2.35 -1
100 � 5149 10195 5048 49.8 6.76 8.29 -1
100 \ 15188 20296 5826 92.6 13.5 13.1 -1
100 [ 15088 20073 5731 92.4 13.6 13.4 -1
150 � 11476 22799 11325 146 21.2 24.2 -1
150 \ 34223 45801 13214 217 33.7 39.8 -1
150 [ 33717 44785 12881 217 34.1 40.2 -1
200 � 20302 40401 20100 207 33.8 40 -1
200 \ 60043 79905 22909 415 66 101 -1
200 [ 60551 80886 23352 410 67.1 100 -1

Table 1: Running times

put the halfspaces at the leaves of a balanced binary tree andformed the symmetric difference
of the two children at each internal node. In the root we obtained a Nef polyhedronP of com-
plexity Θ(n2). The polyhedron is essentially the arrangement defined by the boundary lines; a
vertex, edge, face of the arrangement belongs toP iff it is contained in an even number of the
halfspaces8. We then took two Nef polyhedra obtained in this way and formed their intersection
andunion. We performed this experiment for different values ofn ranging from 10 to 200. Ta-
ble 1 shows the results. The line marked� presents the complexity and times for the recursive
synthesis of the Nef polyhedron. The columns labeled #V, #E,and #F give the actual number
of nodes, edges and faces of the resulting arrangement (deviation from the formulas above are
due to degeneracies). The lines labeled\ and[ present the results of the corresponding binary
operation.

8The exact number (assuming non-degeneracy and taking the objects on the frame into account) of vertices,
edges, and faces isn(n�1)=2+2n+4,n(n+1)+2n+4, andn(n+1)=2+2, respectively.

11



We show the running times for four different implementations. The first two columns show
the running times of our second and third implementation of epoints and esegments. The column
(marked asnaive) uses CGAL’s homogeneous kernel instantiated with the ringtypeRPolynomial
which in turn uses LEDA’s multi-precision integer arithmetic. Columnfilteredshows the running
times for version three which uses filtered predicates as described in Section 4. A comparison of
the first two columns shows that our third implementation is much superior to the second.

We also wanted a comparison with the approach based on a concrete frame. LEDA of-
fers a typerat genpolygonwhich is closed under regularized boolean operations (a regularized
boolean operation discards isolated lower dimensional features by replacing the true result of a
boolean operation by the closure of the interior of the result) and allows only a single unbounded
face. Regularized boolean operations lead to a simpler topological structure than general boolean
operations. We enclosed our halfspaces into a concrete geometric frame (whose size we in-
ferred from the computation of the Nef polygon) and then executed the same set of operation.
Ratgenpolygonsalso use LEDA’s sweep for the overlay of two maps. The last column (labeled
rpg) shows the running times ofrat polygons. A dash indicates that the experiment was not
run due to the excessively large running times. The excessively bad behavior ofrat genpolygon
surprised us. We traced it to the fact that LEDA does not normalized point representations au-
tomatically. We added a normalization step after each binary operation. The resulting running
times are shown in columnrpgn.

A comparison of columnsfiltered andrpg shows that the implementation described in this
paper is slightly faster than LEDA’srat genpolygonsfor the synthesis step and slightly slower
for the union and intersection. Forn= 200 we are faster for all three operations. Our explanation
is as follows (we admit that we are not completely sure whether our explanation is the right one):
the use of a concrete geometric frame forces us to use large coordinate values for the frame
points. The coefficients of our polynomials are smaller (much smaller in the early synthesis
steps). Forn= 200 the coordinate values in the geometric frame become so large that the filter
in LEDA’s rational geometry kernel start to loose its effectiveness. The filter in epoints stays
effective.

It is also interesting to compare columnsnaiveand rpg. For n = 10, rpg is superior, for
n= 20, the two implementations are about the same, and for larger n, naivewins by a large mar-
gin due to the fact that we reduce the polynomial coordinate representation of naive epoints on
construction by a polynomial division. Remember that therpg code does not use any reduction.

6 Conclusion

We have shown that our approach to a dynamic frame offers one solution to the problem of non-
compact structures. Its main advantage is the transparent handling of geometric configurations
that appear in the standard affine plane but also on the frame when introducing extended points.
Available program code for standard affine problems can be easily used as long as the used
geometric predicates are extensible to extended points andextended segments. The application
of our framework separates the geometric issues of the frameaddition from the control structure
of the implemented algorithm. On the other side our runtime results show that infimaximal
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frames can be used without introducing a relevant runtime overhead compared to standard affine
geometry.
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