Multi-Party Protocols and Spectral Norms

Vince Grolmusz
Max Planck Institute for Computer Science
and Eötvös University
August 13, 1993
Multi-Party Protocols and Spectral Norms

Vince Grolmusz
Max Planck Institute for Computer Science and Eötvös University
August 13, 1993
Multi-Party Protocols and Spectral Norms

Vince Grolmusz
Max Planck Institute and Eötvös University

ABSTRACT:

Let f be a Boolean function of n variables with L_1 spectral norm $L_1(f) > n^\varepsilon$ for some positive ε. Then f can be computed by a $O(\log L_1(f))$ player multi-party protocol with $O(\log^3 L_1(f))$ communication.

Address: Max Planck Institute for Computer Science, Im Stadtwald, D-66123 Saarbruecken, GERMANY; email: grolmusz@mpi-sb.mpg.de
1. INTRODUCTION

1.1 Multi-party games

The multi-party communication game, defined by Chandra, Furst and Lipton [CFL], is an interesting generalization of the 2-party communication game. In this game, \(k \) players: \(P_1, P_2, \ldots, P_k \) intend to compute a Boolean function \(g(z_1, z_2, \ldots, z_n): \{0,1\}^n \rightarrow \{0,1\} \). On set \(S = \{z_1, z_2, \ldots, z_n\} \) of variables there is a fixed partition of \(k \) classes \(A_1, A_2, \ldots, A_k \), and player \(P_i \) knows every variable, except those in \(A_i \), for \(i = 1, 2, \ldots, k \). The players have unlimited computational power, and they communicate with the help of a blackboard, viewed by all players. Only one player may write on the blackboard at a time. The goal is to compute \(g(z_1, z_2, \ldots, z_n) \), such that at the end of the computation, every player knows this value. The cost of the computation is the number of bits written on the blackboard for the given \(z = (z_1, z_2, \ldots, z_n) \) and \(A = (A_1, A_2, \ldots, A_k) \). The cost of a multi-party protocol is the maximum number of bits communicated for any \(z \) from \(\{0,1\}^n \) and the given \(A \). The \(k \)-party communication complexity, \(C_A^{(k)}(g) \), of a function \(g \), with respect to partition \(A \) is the minimum of costs of those \(k \)-party protocols which compute \(g \). The \(k \)-party symmetric communication complexity \(\sigma(g) \) is defined as

\[
C_A^{(k)}(g) = \max_A C_A^{(k)}(g),
\]

where the maximum is taken over all \(k \)-partitions of set \(\{z_1, z_2, \ldots, z_n\} \).

The theory of the 2-party communication games is well developed (see [L] for a survey), but much less is known about the multi-party communication complexity of functions. As a general upper bound both for two and more players, \(P_1 \) can compute any function of \(A \) with \(n \) bits of communication: \(P_2 \) writes down the \(n \) bits of \(A_1 \) on the blackboard, \(P_1 \) reads it, and computes the value \(g(A) \) at no cost. The additional cost of diffusing the result \(g(A) \) to other players is the binary length of \(g(A) \).

For two players, the communication complexity of a function is known to be between the rank and the logarithm of the rank of a \(2^n \times 2^n \) matrix, containing the values of \(f \) for all possible input allocations. Better upper bounds were given for special classes of functions by Lovász and Saks [LS], using extensively lattice-theory and Moebius functions. For more than two players, no analogue results were known.

Chandra, Furst and Lipton [CFL] proved non-trivial upper and lower bounds for the \(k \)-communication complexity of a specific function, using intricate Ramsey-theoretic arguments.

An important progress was made by Babai, Nisan and Szegedy, [BNS], proving an \(\Omega(\frac{n}{k}) \) lower bound for the \(k \)-party communication complexity of the GIP function. It is proved in [G] that their lower bound is close to the optimal.

We proved in [G3] that any function, computed by a depth-2 MOD \(p \) circuit of size \(N \) can be computed with \(p \) players and \(O(p) \) bits of communication, and the number of communicated bits do not depend on \(N \).

In this paper we give a general non-trivial upper bound to the symmetric multi-party communication complexity of arbitrary Boolean functions. Our bound depend on the \(L_1 \) spectral norm of function \(f \).
1.2 Spectral Norms

There is a vast literature on representing the Boolean functions by polynomials above some field (see, e.g. [ABFR], [Be], [BRS], [BS], [LMN], [NS], [Sm]). One reason for this may be that the polynomials offer a more developed machinery than the “pure” Boolean functions. One tool in this machinery is the Fourier–transform of Boolean functions [LMN], [BS], [KKL], [NS]:

Let us represent Boolean function \(f \) as a function \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \) where \(-1\) stays for “true”. The set of all real valued functions over \(\{-1, 1\}^n \) forms a \(2^n \) dimensional vector–space over the reals with an inner product:

\[
<f, g> = 2^{-n} \sum_{x \in \{-1, 1\}^n} f(x)g(x).
\]

Let us define for \(\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in \{0, 1\}^n \)

\[
X^\alpha = \prod_{i=1}^{n} x_i^{\alpha_i}.
\]

The monomials \(X^\alpha \) for \(\alpha \in \{0, 1\}^n \) form an orthonormal basis:

\[
<X^\alpha, X^\alpha> = 1
\]

\[
<X^\alpha, X^\beta> = 0, \text{ for } \alpha \neq \beta.
\]

Consequently, any function \(h : \{-1, 1\}^n \rightarrow \mathbb{R} \) can be uniquely expressed as

\[
(1) \quad h(x_1, x_2, ..., x_n) = \sum_{\alpha \in \{0, 1\}^n} a_\alpha X^\alpha
\]

The right-hand-side of equation (1) is called the Fourier–transform of function \(h \). Set \(\{a_\alpha : \alpha \in \{0, 1\}^n\} \) is called spectral coefficients or the spectrum of \(h \).

Note. If \(h \) is a Boolean function, then

\[
a_\alpha = Pr(h(x) = X^\alpha) - Pr(h(x) \neq X^\alpha)
\]

where \(x \) is chosen uniformly and randomly in \(\{-1, 1\}^n \).

Several spectral norms of \(h \) can be defined:

The \(L_1 \) norm of \(h \) is:

\[
L_1(h) = \sum_{\alpha \in \{0, 1\}^n} |a_\alpha|
\]

The \(L_2 \) norm:

\[
L_2(h) = \left(\sum_{\alpha \in \{0, 1\}^n} a_\alpha^2 \right)^{\frac{1}{2}} = <h, h>^{\frac{1}{2}}
\]

3
and the L_∞ norm:
\[L_\infty(h) = \max_{\alpha \in \{0,1\}^n} |a_\alpha|. \]

We mention here some nice results concerning the spectral and computability properties of Boolean functions.

Linial, Mansour and Nisan [LMN] proved that if f is a Boolean function computed by a depth-d size-M Boolean circuit, then
\[\sum_{\alpha \in \{0,1\}^n} a_\alpha^2 \leq M 2^{-\frac{1}{4}d^\frac{1}{3}}, \]
\[\sum_{i=1}^n a_i \geq \epsilon \]
i.e. the L_2 norm of the end-segments of the Fourier-transform of f are exponentially small.

Bruck and Smolensky [BS] proved that if f is a Boolean function with small L_1 norm, then it can be represented as the sign of a sparse polynomial. More exactly:

Theorem 1. ([BS] Theorem 1, Lemma 1)

*Given an $f : \{-1,1\}^n \rightarrow \{-1,1\}$ with its Fourier-transform
\[f(x) = \sum_{\alpha \in \{0,1\}^n} a_\alpha x^\alpha. \]

Let
\[p_\alpha = \frac{|a_\alpha|}{L_1(f)} \]
for $\alpha \in \{0,1\}^n$, and let
\[Z_i = \text{sgn} \ (a_\alpha)x_\alpha \text{ with probability } p_\alpha. \]

Define
\[G(x) = \sum_{i=1}^N Z_i, \text{ where } N = 2nL_1^2(f). \]

Then
\[\Pr(\forall x \in \{-1,1\}^n : f(x) = \text{sgn} \ (G(x))) > 0. \]
1.3 Our Results

Our main result is the following

Theorem 2. Let f be an arbitrary Boolean function of n variables. Then the k-party symmetric communication complexity of f,

$$C^{(k)}(f) = O \left(k^2 \log \left(nL_1(f) \right) \left\lceil \frac{nL_1^2(f)}{2^k} \right\rceil \right).$$

Corollary 3. Let f be an arbitrary Boolean function of n variables. Let $k = \Omega(\log(nL_1(f)))$. Then

$$C^{(k)}(f) = O(\log^3(nL_1(f))).$$

In other words, if f is a Boolean function with its L_1 spectral norm bounded by a polynomial in n, then its symmetric k-party communication complexity is at most $O(\log^3 n)$, with $k = \Omega(\log n)$. Or, in another setting:

Corollary 4. Suppose that $L_1(f) > n^\epsilon$ for some $\epsilon > 0$. Then there exists a multi-party protocol with $\Omega(\log L_1(f))$ players and of $O(\log^3 L_1(f))$ communication which computes f.

2. PROOF OF THEOREM 2

Let f be an arbitrary Boolean function. By Theorem 1, there exists a (fixed, “deterministic”) function $G(z)$ such that

$$\forall z \in \{-1,1\}^n \quad f(z) = \text{sgn} \ G(z)$$

holds. $G(z)$ is of the form

$$G(z) = \sum_{i=1}^N Z_i,$$

where $N = 2nL_1^2(f)$. Let $G_1(z)$ be the sum of Z_i’s with positive sign, and let $G_2(z)$ be the sum of $(-Z_i)$’s, where Z_i has a negative sign. So:

$$G(z) = G_1(z) - G_2(z),$$

and G_1 has N_1 terms, G_2 has N_2 terms, $N_1 + N_2 = N$.

Let us observe that $G_j(z)$ is the sum of N_j terms of form

$$X^\alpha = \prod_{i=1}^n z_i^{\alpha_i} = \prod_{i: \alpha_i = 1} z_i$$

for $j = 1, 2$.

5
Clearly,

\[X^\alpha = \begin{cases}
-1, & \text{if } |\{i : x_i = -1, \alpha_i = 1\}| \text{ is odd} \\
1 & \text{otherwise}
\end{cases} \]

For \(j = 1, 2 \) let \(b_j \) the number (counting the possible multiplicity) of those terms \(X^\alpha \) in \(G_j(z) \) for which \(|\{i : x_i = -1, \alpha_i = 1\}| \) is odd. Then \(G_j(z) = (N_j - b_j) - b_j = N_j - 2b_j \), so:

\[G(z) = G_1(z) - G_2(z) = N_1 - N_2 + 2b_2 - 2b_1. \]

Let us denote

\[y_i = \begin{cases}
1, & \text{if } x_i = -1 \\
0, & \text{if } x_i = 1
\end{cases} \]

then

\[X^\alpha = -1 \iff \sum_{i=1}^{n} y_i \alpha_i = 1 \mod 2. \]

Let us form a matrix \(M^{(j)} \) with \(N_j \) rows and \(n \) columns, for \(j = 1, 2 \). Each row is corresponded to a term \(X^\alpha \) in \(G_j(z) \), and the \(i \)th entry of that row is \(y_i \alpha_i \).

Obviously, the number of those rows of \(M^{(j)} \) which have odd sum is equal to \(b_j \).

Suppose now that we are given Boolean function \(f(x_1, x_2, \ldots, x_n) \), players \(P_1, P_2, \ldots, P_k \) and a \(k \)-partition \(A = (A_1, A_2, \ldots, A_k) \) of the set \(\{x_1, x_2, \ldots, x_n\} \). We assume that player \(P_\ell \) knows function \(f \), partition \(A \), functions \(G_1(z) \), \(G_2(z) \), and the values of all variables, except those in \(A_\ell \), for \(\ell = 1, 2, \ldots, k \). Then the players, without any communication can compute privately matrices \(M^{(1)} \) and \(M^{(2)} \), and exactly those entries of these matrices will be not known for player \(P_\ell \) which were corresponded to variables in class \(A_\ell \). The set of these entries will be called \(B_\ell \), for \(\ell = 1, 2, \ldots, k \). The following lemma shows a protocol by which the players can first compute \(b_1 \) and then \(b_2 \), and consequently, \(G(z) \) and \(f(z) = \text{sgn } G(z) \), by equation (3).

Lemma 5. Let \(M \in \{0, 1\}^{m \times n} \), \(M = \{m_{ij}\} \), and let \(B = \{B_1, B_2, \ldots, B_k\} \) a partition of the set \(\{m_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\} \), such that player \(P_\ell \) knows every \(m_{ij} \) except those in \(B_\ell \), for \(\ell = 1, 2, \ldots, k \). Then there exists a \(k \)-party protocol which computes the number of the rows with odd sum in \(M \) with communicating

\[O(k^2 \log m \left[\frac{m}{2^k}\right]) \]

bits.

Proof. First, the players compute a matrix \(Q \in \{0, 1\}^{m \times k} \) from \(M \), with no communication: for each row of \(M \) a row of \(Q \) is corresponded; the first element of row \(j \) of \(Q \) is the mod 2 sum of those entries of the \(j \)th row of \(M \) which are the elements of \(B_1 \) at the same time. Analogously, the \(i \)th element of row \(j \) of \(Q \) is the mod 2 sum of those entries of the \(j \)th row of \(M \) which are the elements of \(B_i \) at the same time.

Clearly, the number of rows with odd sum in \(M \) and in \(Q \) is the same. Moreover, player \(P_\ell \) knows every column of matrix \(Q \), except column \(\ell \), for \(\ell = 1, 2, \ldots, k. \)

With an additional assumption Lemma 6 gives a protocol with \(O(k^2 \log m) \) communication:
Lemma 6. Let \(\beta \in \{0, 1\}^k \). Suppose it is known to each player that \(\beta \) does not occur as a row of \(Q \). Then there exists a \(k \)-party protocol which computes the number of the odd rows with a communication of \(O(k^2 \log m) \) bits.

Proof. Without restricting the generality we may suppose that \(\beta \) is the all-1 vector of length \(k \).

Let \(ODD(\gamma_1 \gamma_2 \ldots \gamma_\ell) \) and \(EVEN(\gamma_1 \gamma_2 \ldots \gamma_\ell) \) denote the number of those rows of \(Q \) which have odd (respectively, even) sums, and they begin with \(\gamma_1 \gamma_2 \ldots \gamma_\ell, \ell \leq k, \ \gamma_i \in \{0, 1\} \). For example, \(P_1 \) do not know the first column of \(Q \), but he can communicate \(ODD(0) + EVEN(1) \) if \(P_1 \) counts those rows which has odd sum in its second through \(k \)th position. Similarly \(P_2 \) can communicate \(ODD(10) + EVEN(11) \) if he counts those rows which begins with 1, and the sum of their first, 3rd, 4th,..,\(k \)th elements is odd.

This observation motivates the following protocol:

PROTOCOL ODDCOUNT

The goal: to compute \(b \), the number of rows with odd sum in \(Q \). Number \(b \) will be the sum of values \(u_i \) announced by player \(P_i, i = 1, 2, \ldots, k \).

\(P_1 \) announces \(u_1 = ODD(0) + EVEN(1) \).

remark: \(b = u_1 + ODD(1) - EVEN(1) \).

\(P_2 \) announces \(u_2 = ODD(10) + EVEN(11) - EVEN(10) - ODD(11) \).

remark: \(b = u_1 + u_2 - 2EVEN(11) + 2ODD(11) \).

\(P_3 \) announces \(u_3 = 2ODD(110) + 2EVEN(111) - 2EVEN(110) - 2ODD(111) \).

remark: \(b = u_1 + u_2 + u_3 - 4EVEN(111) + 3ODD(111) \).

\(\ldots \)

\(P_i \) announces \(u_i = 2^{i-2}ODD(11\ldots10) + 2^{i-2}EVEN(11\ldots11) - 2^{i-2}EVEN(11\ldots10) - 2^{i-2}ODD(11\ldots11) \).

remark: \(b = \sum_{j=1}^{i} u_j - 2^{i-1}EVEN(11\ldots1) + (2^{i-1} - 1)ODD(11\ldots1) \), where the bit-sequences in each bracket have length \(i \).

After \(P_k \) announces \(u_k \) the players privately add up the \(u_i \)'s from \(i = 1 \) through \(k \). Let us remark that

\[b = \sum_{j=1}^{k} u_j - 2^{k-1}EVEN(11\ldots1) + (2^{k-1} - 1)ODD(11\ldots1). \]

However, as we assumed at the beginning, there are no all-1 rows in \(Q \), so

\[b = \sum_{j=1}^{k} u_j. \]
and we are done. Each u_i can be communicated using $O(k \log m)$ bits, so the total communication is $O(k^2 \log m)$. \blacksquare

Now we return to the proof of Lemma 5. Let us divide the rows of matrix Q into blocks of $2^{k-1} - 1$ contiguous rows plus a leftover of at most $2^{k-1} - 1$ rows. The players cooperatively determine the number of the odd rows in each block, and then privately add up the results.

Next we show how to obtain the number of the odd rows for a single block at the cost of $O(k^2 \log m)$ bits of communication. P_1 knows all the columns, except the first, so he knows at most $2^{k-1} - 1$ rows of length $k - 1$ in a block, so he can find an $\beta' \in \{0, 1\}^{k-1}$, $\beta' = (\beta_2, \beta_3, \ldots, \beta_k)$ which is not a row of the $k - 1$ column wide part of the block seen by P_1. Let $\beta = (1, \beta_2, \beta_3, \ldots, \beta_k)$. Then β does not occur as a row in this block. So if P_0 communicates β, and they play protocol ODDCOUNT of Lemma 6 for a given block. They use $k^2 \log m$ bits for a block, and, since there are at most $\left\lceil \frac{m}{2^{k-1} - 1} \right\rceil$ blocks, the total communication is

$$O\left(k^2 \log m \left\lceil \frac{m}{2^k} \right\rceil \right).$$

\blacksquare
REFERENCES

[G] V. Grolmusz: The BNS Lower Bound for Multi-Party Protocols is Nearly Optimal, to be appeared in "Information and Computation".

