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Implementation of a Sweep Line Algorithm for the 
Straight Line Segment Intersection Problem * 

1. Abstract. 

Kurt Mehlhorn and Stefan Näher 
Max-Planck-Institut für Informatik, 

66123 Saarbrücken, Germany 

We describe a robust and efficient implementation of the Bentley-Ottmann sweep 
line algorithm [1] based on the LEDA library of efficient data types and algorithms 
[7]. The program eomputes the planar graph G indueed by a set S of straight line 
segments in the plane. The nodes of G are all endpoints and all proper interseetion 
points of segments in S. The edges of G are the maximal relatively open subsegments 
of segments in S that contain no node of G. All edges are direeted from left to right 
or upwards. The algorithm runs in time O«n + s) logn) where n is the number of 
segments and s is the number of vertices of the graph G. The implementation uses 
exaet arithmetic for the reliable realization of the geometrie primitives and it uses 
floating point filters to reduee the overhead of exaet arithmetie. 
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S G(S) 

Figure 1: A set S of segments and the induced planar graph. 

2. Introduction. 

Let S be a set of n straight-line segments in the plane and let G( S) be the graph 
induced by S. The vertices of G(S) are all endpoints of segments in S and all 
intersection points between segments in S. The edges of G are the ma.ximal relatively 
open and connected subsets of segments in S that contain no vertex of G( S). Figure 
1 shows an example. Note that the graph G(S) contains no parallel edges even if S 
contains segments that overlap. 

Bentley and Ottmann [1] have shown how to compute G(S) in time O((n+m) logn) 
where m is the number of pairs of intersecting segments in S. The algorithm is based 
on the plane-sweep paradigm. We refer the reader to [5, seetion VIllA] 1)0, section 
7.2.3], and [3, section 35.2] for a discussion of the plane sweep paradigm. 

In this paper we describe an implementation of the Bentley-Ottmann algorithm. 
More precisely, we define a procedure 

sweep_segments(list(raLsegment) &seglist, GRAPH(raLpoint,raLsegment) 
&G, bool use_filter = true) 

that takes a list seglist of raLsegments (segments whose enpoints have rational 
coordinates) and computes the graph G induced by it. For each vertex v of G it also 
computes its position in the plane, a raLpoint (a point with rational coordinates), 
and for each edge e of G it computes a segment containing it. The implementation 
is based on the LEDA platform for combinatorial and geometrie computing [7, 9]. 
In LEDA a raLsegment is specified by its two endpoints (of type raLpoint) and 
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a raLpoint is specified by its homogeneous coordinates (X, Y, W) of type Int. The 
type Int is the type of arbitrary precision integers. 

The implementation makes no assumptions about the input, in partieular, segments 
may have length zero, may overlap, several segments may intersect in the same point, 
endpoints of segments may lie in the interior of other segments, and the homogeneous 
coordinates of the endpoints may be arbitrary integers. 

We have achieved this generality by following two principles . 

• We treat degeneracies as first dass citizens and not as an afterthought [2]. In 
partieular, we reformulated the plane-sweep algorithm so that it can handle all 
geometrie situations. The details will be given in section 3. The reformulation 
makes the description of the algorithm shorter since we do not distinguish 
between three kinds of events but have only one kind of event and it also makes 
the algorithmfaster. The algorithmnow runs in time O((n+ 8)logn) where 8 
is the number of vertices of G. Note that 8 :S n+ m and that m can be as large 
as 82• The only previous algorithm that could handle all degeneracies is due 
to Myers [6]. Its expected running time for random segments is O(nlogn+ m) 
and its worst case running time is O( (n + m) log n). 

• We evaluate all geometrie tests exactly. We use arbitrary precision integer 
arithmetie for all geometrie computations. So all tests are computed exactly 
and we do not have to worry about numerieal precision. Of course, we have 
to pay for the overhead of arbitrary precision integer arithmetic. In order to 
keep the overhead low we followed the suggestion of Fortune and van Wyk [4] 
and implemented a floating point filter, Le., all tests are first performed using 
floating point arithmetie (if use_filter is set to tMLe) and only if the result 
of the floating point computation is inconclusive we perform the costly exact 
computation. The floating point filter improves the running time by a factor 
of up to 4 depending on the problem instance. 

We feel that the implementation of the combinatorial part of the algorithm is quite 
elegant but that the implementation of the geometrie part is still cumbersome. This 
is mainly due to the fact that the floating point is visible on the level of the aplication 
program (here the sweep program). We are currently exploring strategies to hide 
the floating point filter from the user. 

This paper is structured as follows. In section 3 we describe the (generalized) plan­
sweep algorithm. Section 4 and 18 give the details of the implement at ion: the 
former section describes the combinatorial part and the latter section describes the 
geometrie primitives. The floating point filter is also discussed there. Section 29 
contains some experimental results. 
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3. The Algorithm. 

In the sweep-line paradigm a line is moved from left to right across the plane and 
the output (here the graph G(S)) is constructed incrementally as it evolves behind 
the sweep line. One maintains two data structures to keep the construction going: 
The so-called Y-structure contains the intersection of the sweep line with the scene 
(here the set S of line segments) and the so-called X-structure contains the events 
where the sweep has to be stopped in order to add to the output or to update 
the X - or Y -structure. In the line segment intersection problem an event occurs 
when the sweep line hits an endpoint of some segment or an intersection point. 
When an event occurs, some nodes and edges are added to the graph G( S), the Y­
structure is updated, and maybe some more events are generated. When the input 
is in general position (no three lines intersecting in a common point, no endpoint 
lying on a segment, no two endpoints or intersections having the same z-coordinate, 
no vertical lines, no overlapping segments) then at most one event can occur for 
each position of the sweep line and there are three clearly distiguishable types of 
events (left endpoint, right endpoint, intersection) with easily describable associated 
actions, cf. [5](section VIll.4). We want to place no restrictions on the input and 
therefore need to proceed slightly differently. We now describe the required changes. 

We define the sweep line by a point p-sweep = (z-sweep, y-sweep). Let € be a 
positive infinitesimal (readers not familiar with infinitesimals may think of € as an 
arbitrarily small positive real). Consider the directed line L consisting of a vertical 
upward ray ending in point (z-sweep + €, y-sweep + €) followed by a horizontal 
segment ending in (z-sweep - €, y_8weep + €) followed by a vertical upward ray. We 
call L the 5weep line. Note that no endpoint of any segment lies on L, that no two 
segments of S intersect L in the same point except if the segments overlap, and that 
no non-vertical segment of S intersects the horizontal part of L. All three properties 
follow from the fact that € is arbitrarily small but positive. Figure 2 illustrates the 
definition of L and the data structures used in the algorithm: The Y -structure, the 
X-structure, and the graph G. 

The Y -structure contains all segments intersecting the sweep line L ordered as their 
intersections with L appear on the directed line L. For segments intersecting L in 
the same point (these segments necessarily have the same underlying line) only the 
segment extending further to the right is stored in the Y -structure. 

In the example of Figure 2 the sweep line intersects the segments 58, 8b 82, 89, 84, 

and 83. The segments 88 and 81 intersect L in the same point and 81 extends further 
to the right. Thus 81 is stored in the Y -structure and 88 is not. The Y -structure 
therefore consists of five items, one each for segments 81182, 89, 84, and 83. 

The X-structure is a sorted sequence. It contains an itemfor each point in StuEuI, 
where St is the set of all start points of segments that lie to the right of L, E is 
the set of all endpoints of segments that intersect L, and I is defined as folIows. 
Every point in I is the intersection 8 n 8' of two segments 8 and 8' adjacent in the 
Y -structure that lies to the right of the sweep line. The ordering of the points in the 
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L 

b 
Y-structure 

<s3,nil> 

< s2,nil > 

X-structure: < a,sit4 >,< b,sit4 >,< c,sit l >,< d,nil >,< e,sit9 > 

< J, sit l >,< 9, sit2 >,< h, sit3 >,< i, sit l > 

Figure 2: A scene of 9 segments. The segments SI and S8 overlap. The Y -structure 
contains segments Sb S2, S9, S4, and S3 and the X -structure contains points a, b, c, 
d, e, J, g, h, and i. An item in the X-structure containing point p is denoted zitp 

and an item in the Y-structure containing segment Si is denoted siti. The vertices 
of the graph G are shown as full circles. 
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X -structure is the lexicographic ordering, i.e., (x, y) is before (x', y') if either x < X' 

or x = X' and y < y'. 

In the example ofFigure 2 we have St = {a,d,e},E = {b,c,f,e,g,i,h} and 1= 
{I, a}. The X -structure therefore contains 9 items, one each for points a, b, c, d, e, 
f, g, h, and i. 

We next define the informations associated with the items of both structures. These 
informations serve to link the items in the X -structure with the items in the Y­
structure and vice versa. In particular, any item in the X-structure is a pair (p,sit) 
where p is a point and sit is either nil or an item in the Y -structure and any item 
in the Y-structure is a pair (s,xit) where s is a segment and zit is either nil or an 
item in the X-structure. Let (p,sit) be any item in the X-structure. If pE 1u E 
then sit is an item in the Y -structure such that the segment associated with sit 
contains p. If pESt \ (I U E) then sit = nil. Next consider an item (s,zit) in 
the Y -structure and let s' be the segment associated with the successor item in the 
Y -structure. If s n s' exists and lies to the right of the sweep line then xit is an item 
in the X -structure and s n s' is the point associated with that item. If s n s' either 
does not exist or does not lie to the right of L then xit = nil. 

In our example, the Y-structure contains the items (sl,ziLf) , (s2,nil) , (s9,nil) , 
(S4 ,ziLa) and (s3,nil) where xita and xitf are the items of the X -structure with 
associated points a and f respectively. Let's turn to the items of the X-structure 
next. All items except (d,nil) point back to the Y-structure. If siLi denotes the 
item (s_i, ... ) ,i E {l, 2, 9,4, 3}, ofthe Y-structure then the items ofthe X-structure 
are (a,sit-4) , (b,sit-4) , (c,siLl) , (d,nil) , (e,siL9) , (f,siL1) , (g,sit~), (h,siL3) 
and (i,siL1) . 

The graph G is the part of G( S) to the left of L. With each vertex of G we store 
its position and with each edge of G we store a segment containing it. 

There is one additional piece of information that we need to keep. For each segment 
s contained in the Y -structure we store the rightmost vertex of G lying on s. 

We can now give the details of the algorithm. Initially, G and the Y -structure are 
empty, and the X -structure contains the left endpoints of all segments in S. 

In order to process an event we proceed as follows. Let (p,sit) be the first item in 
the X -structure. We may assume inductively that all invariants hold for p_sweep = 
(p.x,p.y - 2€). Note that this is true initially, i.e., before the first event is removed 
from the X -structure. We now show how to establish the invariants for p = p....sweep. 
We proceed in seven steps. 

1. We add anode v at position p to our graph G. 

2. We determine all segments in the Y -structure containing the point p. These 
segments form a possibly empty subsequence of the Y -structure. 

3. For each segment in the subsequence we add an edge to the graph G. Its right 
endpoint is v and its other endpoint is the vertex stored with the segment s. 
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4. We delete all segments ending in p from the Y -structure. 

5. We reverse the order of the subsequence in the Y -structure. This amounts to 
moving the sweep line across the point p. 

6. We add all segments starting in p to the Y -structure and then associate the 
node v with all segments in the Y-structure containing v. Ha newly inserted 
segment is collinear to an already existing segment we make sure to only keep 
the segment extending further to the right. 

7. We update the events associated with the items oft he Y-structure. We remove 
the events associated with the predecessor of the subsequence and the last item 
of the subsequence and we generate new events for the predecessor of the first 
item and the last item after the reversal of the subsequence. 

This completes the description of how to process the event (p, ... ) . The invariants 
now hold for p....sweep = p and hence also for p....sweep = (p'.z,p'.y- 2e) where (p', . .. ) 
is the new first element of the X -structure. 
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4. The Implementation. 

The implementation follows the algorithm closely. There are two mam differences . 

• We add two infinitely long horizontal segments with y-coordinate +00 and -00 
respectively. They serve as sentinels and simplify many tests. 

• We maintain all points twice: once by their exact homogeneous coordinates 
and once by floating point approximations to these coordinates. All tests 
are first performed using the floating point approximations and only if the 
floating point filter gives no conclusive result the test is performed using exact 
arithmetic. 

We use sorted sequences, graphs, rational points and segments, big integers, and a 
floating point filter from LEDA, and some functions of the C++ maths library. We 
have to include the corresponding header files. 

(include statements 4) == 
#include <LEDA/ sortseq. h> 
#include <LEDA/ graph. h> 
#include <LEDA/rat_point .h> 
#include <LEDA/rat_segment .h> 
#include <LEDA/Int .h> 
#include <LEDA/Float. h> 
#include <math.h> 

This code is used in section 6. 

5. Let us briefly explain these types; for a detailed discussion we refer the reader 
to the LEDA manual [9]. Int is the type of arbitrary precision integers and Float 
is the type of floating point approximation to integers. The type Float is defined in 
section 24. The types raLpoint and raLsegment realize points and segments in 
the plane with rational coordinates. An raLpoint is specified by its homogeneous 
coordinates of type Int. Hp is a raLpoint then p.X(), p.Y(), and p.W() return 
its homogeneous coordinates and if X, Y, and W are of type Int and W '# 0 then 
raLpoint(X, Y) andraLpoint(X, Y, W) create the raLpoint withhomogeneous 
coordinates (X, Y, 1) and (X, Y, W) respectively. A raLsegment is specified by 
its two endpoints; so if p and q are raLpoints then raLsegment(p, q) constructs 
the directed raLsegment with startpoint p and endpoint q. H s is a raLsegment 
then s.start() and s.end() return the start- and endpoint of s respectively and 
s.eh() and s.dy() return the normalized z- and y-difference of the segment, Le., 
if (pz, py , pw) and (q:z:, qy, qw) are the homogeneous coordinates of the start- and 
endpoint of s then s. eh ( ) returns pz . qw - qz . pw and s. dy ( ) returns py . qw - qy . pw. 
The slope of a segment s is given by s.dyO/ s.dzO, but be careful. The slope might 
be infinite (if the segment is vertical) or undefined (if the segment has length zero). 
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6. The Basic Program Structure. 

Our program has the following structure. 

(include statements 4) 
( global types and declarations 7) 
( geometrie primitives 18) 

void sweep(list(rat_segment) &S, GRAPH(raLpoint,raLsegment) 
&G, bool use_filter = true) 

{ 

} 

( local declarations 9) 
(initialization 10) 

(sweep 12) 

(clean-up 11) 

7. During the sweep we use two local types myPoint and mySegment. Theyare 
extensions of the LEDA types rat_point and raLsegment which we use to make 
the program more efficient. A myPoint consists of a raLpoint plus floating point 
approximations to the homogeneous coordinates of the point. Tests on myPoints, 
e.g. the compare function, are first evaluated using the floating point approximations 
and the exact test is only performed if the floating point filter gives insufficient 
information. The details will be described in section 18. 

A my Segment consists of two myPoints p and q, the underlying LEDA segment 
seg, floating point approximations for the expressions d~ = p~ * qw - q~ * pw and 
dy = py * qw - qy * pw which are often used in the program, and the last node 
lasLnode of the output graph G lying on the segment (intially nil). 

We make both types pointer types to avoid the overhead of copying. Note that 
the objects of both types have multiple occurrences, e.g., in myPoints occur in 
mySegments and also in the X-structure. 

We also need to say something about memory management. Our program allocates 
storage for myPoints and mySegments. LEDA's memory mangement feature is 
used to allocate this storage in big chunks and thus to avoid the overhead of frequent 
calls to malloe . To free the memory again we use different strategies for points and 
segments. A segment (but not its constituent points) is deleted when it is removed 
from the Y-structure. All points are collected in a hand-crafted linear list and are 
deleted in section (clean-up 11) at the end of sweep. 

(global types and declarations 7) == 
dass MyPointRep; 
static MyPointRep *firsLmyPoint = Oj 
struct MyPointRep { 

raLpoint ptj 
Float :&j 

Float y; 
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Float Wj 
int countj 
MyPointRep *nextj 

MyPointRep(const raLpoint &p) 
{ 

} 

pt =pj 
x = Float(p.X())j 
y = Float(p.Y()); 
W = Float(p.W( )); 
count = Oj 
next = first_myPointj 
firsLmyPoint = this; 

LEDA-MEMORY(MyPointRep) 
}j 
typedef My PointRep *my Point; 
struct MySegmentRep { 

myPoint startj 
my Point end j 
raLsegment segj 
Float dXj 
Float dy; 
node lasLnodej 

MySegmentRep( const raLsegment &s) 
{ 

} 

start = new MyPointRep (s.start()); 
end = new MyPointRep (s .end())j 
seg = Sj 

dx = Float(s.dx()); 
dy = Float(s.dY())j 
las Ln ode = nil j 

MySegmentRep( const my Point &p) 
/ / creates the zero-length segment (p,p) 

{ 

} 

start = pj 
end = pj 
seg = raLsegment(p--pt,p-pt)j 
lasLnode = nil; 

LEDA-MEMORY (MySegmentRep) 
}; 
typedef MySegmentRep *mySegmentj 

See also section 8. 
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This code is used in section 6. 

8. The programs uses three global variables: Infinity is a big integer constant that 
is used as a safe approximation for 00; it will be initialized to apower of two greater 
than the maximal absolute value of any input coordinate. p_sweep is a myPoint 
that defines the current sweep position. use_filter is a flag that indicates whether 
the floating point filter should be applied, i.e;, whether floating point computations 
should be used before doing exact arithmetic. 

(global types and deelarations 7) += 
Int Infinity; 
myPoint p_sweep; 
bool use_filter; 

#if defined (STATISTIeS) 
int cmp_points_count; 
int cmp_points_failed; 
int ezacLcmp_points_count; 
int cmp_segments_count; 
int ezacLcmp-segments_count; 

#endif 

9. In the local declarations section of function sweep we introduce the data types 
for the event queue (X_stru.cture) and for the sweep line (Y -stru.cture). For the X­
structure we use a sorted sequence of points with the lexicographic ordering of their 
coordinates, and for the Y-structure a sorted sequence of segments with the linear 
order defined by the sequence intersections of the segments with the sweep line at 
its current position (p_sweep) from bottom to top. 

The X-structure contains all so far known event points right and above ofthe current 
sweep line position (p....sweep), Le. all start and end points of segments and intersec­
tions of segments being adjacent in the sweep line. The X-structure associates with 
each event point p an item of the Y-structure (seq_item) as information; if there 
are only starting segments at p the information is nil, otherwise the information is 
an item in the Y-structure containing one of the segments passing through or ending 
inp. 

Vice versa we associate with each segment s in the Y-structure that intersects its 
successor in some point p the corresponding item < p, . . . > in the X-structure as 
information. We call this item the current intersection item of s. If s does not 
intersect its successor its current intersection item is nil. Furthermore, we maintain 
for every point p a counter count that gives the number of all segments having < 
p, . .. > as current intersection item. We will use this (:ounter to decide whether 
a point can be removed from the X-structure. It can be removed if count is zero. 
Finally, we store with each segment s the last created node of the output graph 
lasLnode lying on s. 
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(local declarations 9) == 
sortseq(myPoint, seq_item) X_structUTej 
sortseq(mySegment, seq_item) Y -structUTej 

This code is used in section 6. 

10. We now come to the initialization of the data structures. We first compute a 
big integer Injinity that can be used as a safe approximation for 00. We start the 
sweep at (-00, -00). At its initial position the sweep line (i.e. the Y-structure) 
contains two infinitely long horizontal segments (lowersentinel and uppersentinel) 
with y-coordinates -00 and +00 respectively, and the output graph Gis empty. 

We create for each rat_segment in S the corresponding my Segment (reorienting 
if necessary) and insert its left endpoint together with the information nil into the 
X -structure. We use the fact that a sorted sequence contains at most one item for 
every key and that a second insert operation with the same key only changes the 
information of the item to make the left endpoints of all segments unique. This 
makes equality tests between endpoints of segments much cheaper, since now the 
myPoint pointers can be compared directly (using the == operator) instead ofhaving 
to call an expensive compare function. 

Finally, we sort all segments according to their left endpoints into a list S_Sorted by 
calling the LEDA list sorting operation S-Sorted.sort( cmp_seg). Here cmp_seg is a 
compare function defined in section 18. 

(initialization 10) == 
#if defined (STATISTIeS) 

cmp_points_count = Oi 
cmp_points_failed = Oj 
ezacLcmp_points_count = Oj 
cmp_segments_count = Oj 
ezacLcmp_segments_count = Oj 

#endif 
:: use_filter = use_filterj 
/ * compute an upper bound Injinity for the input coordinates * / 
Injinity = 1j 

rat-segment Sj 

forall (s, S) 
while (abs(s.X1 ()) ~ Injinity V abs(s. Y1 ()) ~ Injinity V abs(s.X.~()) ~ 

Injinity V abs(s. Y2()) ~ Injinity) Injinity *= 2j 
p_sweep = new MyPointRep (rat-point( -Injinity, -InjinitY))j 

mySegment uppersentinel = new MySegmentRep (rat-segment( -Injinity, 
Injinity, Injinity, InjinitY))j 

mySegment lowersentinel = new MySegmentRep (rat_segment ( -Injinity, 
- Injinity, Injinity, - Injinity ))j 
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Y..structure . insert ( uppersentinel, nil); 
Y_structure . insert (lowersentinel, nil); 
G.clear( ); 

list (mySegment) S.Sorted; 

forall (s, S) { 

} 

f* mySegments are always oriented from left to right or (if vertical) from 
bottom to top * f 
if (s.X1 () > s.x.~() V (s.X1 () == s.X2() A s. Y1 () > s. Y2())) 

s = raLsegment(s.end(), s.start()); 

mySegment s1 = new MySegmentRep (s); 

SSorted .append (s1 ); 

seq_item it = X..structure . insert ( s1-start, nil); 

s1-start = X_structure .key( it); 
s1-start-count ++ j 

SSorted .sort( cmp_mySeg)j 

This code is used in section 6. 

11. To clean everything up we need to remove the two sentinels and all myPoints. 

(clean-up 11) == 
{ 

delete (uppersentinel); 
delete (lowersentinel); 

myPoint p = firsLmyPoint; 

while (firsLmyPoint =f:. nil) { 

} 

p = firsLmyPoint-nextj 
delete (firsLmyPoint)j 
firsLmyPoint = p; 

#if defined (STATISTICS) 
if (use_filter) { 

} 

cout «: string("compareupoints: uu%6dul u%4du <%5. 2f\%)uu(\ 
%5. 2f \ %ufailed) uu" , cmp_points_count, exacLcmp.;.points_count, 
(100.0 * exacLcmp_points_count)f cmp_points_count, 
(100.0 * cmp_points_failed)f cmp_points_count)j 

newline; 
cout «: string("compareusegments: u%6dul u%4duu <%5. 2f\%)", 

cmp_segments_count, exacLcmp_segments_count, 
(100.0 * exacLcmp_segments_count)f cmp_segments_count)j 

newlinej 

#endif 
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} 
This code is cited in section 7. 

This code is used in section 6. 

12. We now come to the heart of procedure sweep: the processing of events. Let 
event =< p, sit > be the first event in the X-structure and assume inductively that 
our data structure is correct for p.-Sweep = (p.:e,p.y - 2!). Our goal is to to change 
p_sweep to p, i.e., move the sweep line across the point p. We perform the fol1owing 
actions. 

We first add a vertex v with position p to the output graph G. Then, we handle 
all segments passing through or ending at p_sweep. Finally, we insert all segments 
starting at p_sweep into the Y -structure, check for possible intersections between 
pairs of segments now adjacent in the Y-structure, and update the X-structure. 
Mter having processed the event we delete it from the X-structure. 

(sweep 12) == 
while (...,X_structure.empty(» { 

seq_item event = X_structure.min()j 
seq_item sit = X_structure. in! ( event)j 
myPoint p = X_structure.key(event)j 
node v = G. new_node (p--pt )j 

} 

p_sweep = pj 
( handle passing and ending segments 13) 

(insert starting segments and compute new intersections 17) 

X_structure . deLitem ( event )j 

This code is used in section 6. 

13. We first handle all segments passing through or ending in point p. How can 
we find them? 

Recall that the current event is < p, sit > and that sit i= nil iff p E I u E. If 
sit i= nil then p is contained in the segment associated with sit. If sit = nil then 
pE St\(IuE). In this tase there is at most segment in the Y-structure containingp. 
We may determine this segment by looking up the zero-Iength segment (nt,nt) 
in the Y-structure. We explain in section 22 why this works. 

After the lookup we have either sit = nil and then no segment in the Y-structure 
contains p or sit i= nil and then the segment associated with sit contains p. In 
the latter case we determine all such segments and update the graph G and the 
Y-structure. 

We also declare two items siLpred and sit.-Succ and initialize them to nil. If the 
Y -structure contains a segment containing p then siLpred and sit.-Succ will be the 
set to the predecessor and successor item of the subsequence of segments containing 
p, otherwise they stay nil. 
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( handle passing and ending segments 13) = 
seq_item siLsucc = nilj 
seq_item siLpred = nilj 

if (sit = nil) { 
MySegmentRep s(p)j / / create a zero length segment s = (p, p) 

sit = Y_structure .lookup( &s)j 
} 
if (sit =/: nil) { 

( find subsequence of ending or passing segments 14) 

( construct edges and delete ending segments 15) 

(reverse subsequence of segments passing through p 16) 

} 

This code is used in section 12. 

14. Taking sit as an entry point into the Y-structure we determine all segments 
incident to p from the left or from below. These segments form a subsequence of 
the Y-structure. Let siLfirst and sitJast denote the first and the last item of the 
subsequence and let siLpred be the predecessor of sit_first and sit...succ the successor 
of siUast. Note that the information of all items in this subsequence is equal to 
the current event item event, except for sitJast whose information is either nil or 
a different item in the X-structure resulting from an intersection with sit...succ. 

Note also that the identification of the subsequence of segments incident to p takes 
constant time per element of the sequence. Moreover, the constant is small since 
the test whether p is incident to a segment involves no geometrie computation but 
only equality tests between items. 

Note finally that the code is particularly simple due to our sentinel segments: siLfirst 
can never be the first item of the Y-structure and sitJast can never be the last. 

( find subsequence of ending or passing segments 14) = 
seq_item sitJast = sitj 

while (Y ...structure. inf (sitJast) = event) sitJast = Y_structure .succ( sitJast)j 
sit...succ = Y_structure. succ ( sitJast) j 
siLpred = Y...structure. pred ( sit) j 
while (Y_structure.inf(siLpred) = event) siLpred = Y...structure.pred(siLpred)j 

seq_item siLfirst = Y...structure .succ( siLpred)j 

This code is used in section 13. 

15. We can now add edges to the graph G. For each segment in the subsequence 
between siLfirst and siUast inclusive we construct an edge. Let sit be any such 
item and let s be the segment associated with sit. We construct an edge connecting 
s-lasLnode and v and label it with the segment s. We also either delete the item 
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from the Y-structure (if the segment ends at p) or change its information to nil (if 
the segment does not end at p) to reflect the fact that no intersection event is now 
associated with the segment. In the former case we free the storage reserved for the 
segment. 

At the end we have to update variables siLfirst and siUast since the corresponding 
items may have been deleted. 

( construct edges and delete ending segments 15) == 
seq_item il = siLpred; 
seq_item i2 = siLfirst j 

while (i2 ~ sit..succ) { 

} 

mySegment 5 = Y_structure.key(i2)j 

G. new_edge(s-last_node , v, s-seg); 
s-lasLnode = V; 
if (p == s-end) / / ending segment 
{ 

} 

Y Jtructure .deLitem( i2)j 
delete Sj 

else { / / continuing segment 

} 

if (i2 ~ sitJast) Y...structure.change_inf(i2, nil)j 
il = i2j 

i2 = Lstructure .succ( il )j 

siLfirst = Y_structure .succ( siLpred)j 
sitJast = Y_structure. pred ( sitJUCC ); 

This code 'is used in section 13. 

.. 

16. All segments remaining in the subsequence pass through node V and moving the 
sweep line through p_sweep inverses the order of the segments in the subsequence. 
The subsequence is non-empty iff sitJast ~ sit..pred. Reversing the subsequence 
destroys the adjacency of pairs (sit..pred ,sit..first) and (sitJast ,sit..succ) in the Y­
structure and hence we have to set the current intersection event of siLpred and 
siUast (Le. the associated information in the Y-structure) to nil, decrement the 
corresponding counters, and delete the items from the X-structure if the counters 
are zero now. If the subsequence is empty we only need to change the intersection 
event associated of siLpred to nil. Finally, we reverse the subsequence by calling 
Y_structure . reverse-items ( sit..first , sitJast). 

(reverse subsequence of segments passing through p 16) == 
seq_item xit = Y Jtructure . inf ( siLpred); 

if (xit ~ nil) { 
if (-- X...structure .key( zit )-count == 0) X_structure. deLitem (xit); 
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Y_structure . change_in! ( siLpred, nil); 
} 
if (sitJast =fi siLpred) { 

} 

zit = Lstructure. in! ( sit_last); 
if (zit =fi nil) { 

} 

if (--X_structure .key(zit)-count == 0) X-structure.deLitem(zit); 
Y _structure . change_in! ( sitJast, nil); 

Y_structure . reverse_items ( siLfirst, siUast ); 

This code is used in section 13. 

17. The last step in handling the event point p is to insert all segments starting at 
p into the Y -structure and to test the new pairs of adjacent items (siLpred , ... ) and 
( ... ,sit...succ) for possible intersections. If there were no segments passing through or 
ending in p then the items sit_succ and siLpred are still nil and we have to compute 
them now. 

We use the sorted list S..sorted to find all segments to be inserted. As long as the 
first segment seg in S_Sorted starts at point p we remove it from the list, insert it 
into the Y -structure, add its right endpoint to the X -structure, and set seg-last_node 
to v. Ifthe segment has length zero we simply discard it and if sit-Succ and siLpred 
are still undefined (nil) then we use the first inserted segment to define them. In 
this case, we also have t1> change the possible current intersection event of siLpred 
to nil since it is no longer adjacent to sit-succ. If all segments starting in p have 
length zero then siLsucc and siLpred remain undefined. 

We need to say more c1early how to insert a segment sinto the Y -structure. If the 
Y -structure contains no segment with the same underlying line then we simply add 
the segment. Otherwise, let s' be the segment in the Y-structure with the same 
underlying llne. We replace s by s' if s' extends further to the right than s and do 
not hing otherwise. 

Mter having inserted all segments starting at p, we test whether siLsucc (siLpred) 
intersects its predecessor (successor) in the Y -structure. 

(insert starting segments and compute new interseetions 17) == 
while (.S_Sorted.empty() I\p == S..sorted.head( )-start) { 

mySegment Seg = S..sorted.pop(); 
/* first insert the right endpoint of Seg into the X-structure */ 
seq_item end_it = X_structure.insert(Seg-end, nil)j 

Seg-end = X_structure .key( end_it); 
Seg-end-count ++; 
/ * note that the following test uses the fact that two endpoints are equal if an 
only if the corresponding pointer values (my Points) are equal * / 
if (Seg-start == Seg-end) / / Seg has length zero, nothing to do 

17 



} 

{ 

} 

delete Segj 
continuej 

sit = Y_structure .locate (Seg )j 
if (compare(Seg, Y...structure.key(sit))::j:. 0) { 

} 

/ * Seg is not collinear with the segment associated with sit. We simply insert 
Seg into the Y-structure */ 
sit = Y_structure.inserLat(sit, Seg, nil); 
Seg-lasLnode = Vj 

else { 

} 

/* Seg is collinear with the segment associated with sit. H Seg is longer then 
we use Seg and otherwise we do nothing. * / 
mySegment Seg_old = Y_structure .key( sit); 

if (compare(Seg-end,Seg_old-end) > 0) { 

} 

/* Seg extends further to the right or above replace Seg_old by Seg. */ 
Seg_old-seg = Seg-seg; 
Seg_old-end = Seg-end; 

delete Seg; / / not needed anymore 

X_structure . change_in! (end_it, sit); 
if (siLsucc == nil) { 

} 

sit....succ = Y....structure .succ( sit); 
siLpred = Y_structure .pred (sit); 
/ * siLpred · is no longer adjacent to siLsucc we have to change its current 
intersection event to nil and delete the corresponding item in the X-structure 
if necessary * / 
seq_item zit = Y_structure.in!(siLpred)j 

if (zit ::j:. nil) { 

} 

if (--X....structure.key(:cit)-count == 0) X_structure.deLitem(zit); 
Y_structure . change_in! (siLpred, nil); 

/ * compute possible intersections * / 
if (siLsucc ::j:. nil) / / v is an isolated vertex otherwise 
{ 

} 

compute_intersection( X....structure, Y...structure, siLpred); 
sit = Y_structure .pred( siLsucc); 
if (sit ::j:. siLpred) compute_intersection( X_structure, Y....structure, sit)j 

This code is used in section 12. 
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18. Geometrie Primitives. 

It remains to define the geometrie primitives used in the implement at ion. We need 
four: 

• a compare function for myPoints which orders points according to the lexi­
cographic ordering of their coordinates. It defines the linear order used in the 
X-structure. 

• a compare-function for mySegments which given two segments intersecting 
the sweep line L determines the order of the intersections on L. It defines the 
linear order used in the Y -structure. 

• a second compare function cmp_mySeg for mySegments which orders seg­
ments according to the order of their left endpoint. It is used to sort the list 
SSorted in the beginning. 

• a function compute_intersection that decides whether two segments intersect 
and if so whether the intersection is to the right of the sweep line. If both tests 
are positive it also makes the required changes to the X - and Y -structure. 

We define the compare functions for myPoints and mySegments in two steps. 
We first write two function templates cmp_points and cmp_segments for comparing 
points and segments given by their homogenous coordinates, independently from 
the actual (numerical) type of the coordinates. These templates can be used to 
compare points and segments with coordinates of any integer type inLtype that 
supports addition, subtraction, multiplication, and a special sign function Sign( z ) 
that returns +1 if z > 0, ° if z = 0, -1 if z < 0, and a special integer value 
NO_IDEA if the test cannot be performed in a conclusive way. 

We start with writing a compare function cmp_points (zl , y1 , w1 , z2 , y2, w2) that 
compares two points with homogeneous coordinates (Z1. Y1. W1) and (Z2' Y2, W2). A 
point (Z1. Y1, W1) precedes a point (Z2, Y2, W2) if the pair (Zl/W1' Y1/Wl) lexicograph­
ically precedes the pair (Z2/W2, y2/W2)' Le., if (Zl W2 > Z2W1) or (ZlW2 = Z2W1 and 
Y1 W2 > Y2W1). 

(geometrie primitives 18) == 
template{ elass inLtype) inline int cmp_points (eonst inLtype & zl , eonst 

inLtype&y1 ,eonst inLtype&w1, eonst inLtype&z2, eonst 
inLtype&y2, eonst inLtype&w2) 

{ 
int s = Sign(zl * w2 - z2 * w1); 

return (s '" 0) ? s : Sign(y1 * w2 - y2 * w1); 
} 

See also sections 19, 20, 21, and 23. 

This code is used in section 6. 
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19. Next we write the compare function cmp_segments for segments. 

A segment is stored as the pair of its endpoints and a point is stored by its homo­
geneous coordinates, i.e., as a tripie (X, Y, W) of integers (type Int). The z- and 
y-coordinates of the point are X /W and Y /W respectively. cmp_segments takes the 
coordinates of two segments S1 and S2 intersecting the sweep line L. We assume 
that both segments have non-zero length and treat the case that one of them has 
zero length in the next section. If both segments have the same underlying line then 
we return O. So let us assume that the underlying lines are different. Let I denote 
the verticalline through p_sweep. Qnly one of the segments can be vertical. If 81 

is vertical and hence intersects L in (z....sweep, y_sweep + e) then 81 is before 82 iff 
p_sweep is below I n s2. If 82 is vertical then 81 is before S2 iff I n 81 is not above 
p_sweep. Assume now that neither S1 nor 82 is vertical. If I n 81 and In 82 are 
distinct then 81 is before 82 Hf I n 81 is below In s2. If I n s1 and In 82 are identical 
and not above p_sweep then 81 is before 82 iff 81 has the smaller slope. Finally, if 
the intersections are identical and above p_8weep then s1 is before 82 Hf 81 has the 
larger slope. 

(geometrie primitives 18) +== 
template(class inLt'ype) int cmp_segments(const inLtype&pz, const 

inLtype&py, const inLtype&pw, const inLtype&spz, const 
inLtype &spy, const inLtype &spw, const inLtype &sqz, const 
inLtype &sqy, const inLtype &sqw, const inLtype &rz , const 
inLtype &ry ,const inLtype &rw ,const inLtype &th , const 
inLtype&dy, const inLtype&sth, const inLtype&sdy) 

{ / * We first test whether the underlying lines are identical. The lines are iden­
tical ifthe three slopes dy/dz, sdy/sdz, and mdy/mdz are equal */ 

inLtype T1 = dy * sth - sdy * thj 

int sign1 = Sign( T1 )j 

if (sign1 == 0 V sign1 == NOJDEA) { 
inLtype mth = sqz * pw - pz * sqw j 
inLtype mdy = sqy * pw - py * sqw j 

} 

int sign2 = Sign(dy * mdz - mdy * th)j 

if (sign2 == 0 V sign2 == NOJDEA) { 
int sign3 = Sign(sdy *-mdz - mdy * sth)j 

if (sign3 == 0 V sign3 == NOJDEA) 
return (sign3 == 01\ sign3 == 01\ sign3 == 0) ? 0 : NOJDEAj 

} 

/ * The underlying lines are differentj in particular, at most one of the lines is 
vertical. We first deal with the cases that one of the lines is vertical. A segment 
(p, q) is vertical iff pz * qw - qz * pw is equal to zero. Since dz is an optimal 
fioating point approximation of this integer value, a segment is vertical iff its 
th-value is zero. * / 

if (dz == 0) { 
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} 

} 

j * dx = 0, i.e., 51 is vertical and 52 is not verticalj 1 n 52 is above p-sweep iff 
(spyjspw + sdyjsdz(rzjrw - spzjspw) - ryjrw) > Oj in this case we return 
-1 *j 
int i = Sign((spy * sdz - spz * sdy) * rw + (sdy * TZ - ry * sdx) * spw)j 

if (i == NOJDEA) return NO_IDEAj 
return (i ~ 0) ? 1 : -lj 

if (sdz == 0) { 

} 

j* sdz = 0, i.e., 52 is vertical but 51 is not verticalj we return -1 if 1 n 51 is 
below or equal to p_sweep iff (py j pw + dy j dz (rz j rw - pz j pw) - ry j rw) ~ O. 

*j 
int i = Sign ((py * dx - pz * dy) * rw + (dy * TZ - ry * dx ) * pw ) j 
if (i == NOJDEA) return NOJDEAj 
return (i ~ 0) ? -1 : 1j 

j* Neither 51 nor 52 is vertical. We compare 1 n 51 and 1 n 52. We have 

py dy rz pz spy sdy rz spz 
y(l n 51) - y(l n 52) = - + -(- - -) - - - -(- - -). 

pw dz rw pw spw sdz rw spw 

H the difference is non-zero then we return its sign. H the difference is zero then 
we return -1 iff the common intersection is not above p_sweep and 51 has the 
smaller slope or the intersection is above p_sweep and 51 has the larger slope. 

*j 
inUype T2 = sdz * spw * (py * dz * rw + dy * (TZ * pw - pz * rw )) - dz * pw * 

(spy* sdz * rw + sdy * (TZ * spw - spz * rw))j 

int sign2 = Sign( T2)j 

if (sign2 == NO_IDEA) return NOJDEAj 
if (sign2 :f:. 0) ret urn sign2 j 

j* Now we know that the difference is zero, i.e., 51 and 52 intersect in a point 
I. We compare slopes: 
51 has larger slope than 52 iff Tl * du * dz > Oj note that orienting the lines 
from left to right makes all dz values non-negative , i.e., 51 has larger slope 
than 52 iff sign( Tl) = 1 *j 

inUype Ta = (py * dz - pz * dy) * rw + (dy * TZ - ry * dx) * pw j 
j* The common intersection I is above .p_sweep iff T3 * rw * dz * pw > O. In 
this case we return -sign( Tl) and sign( Tl) otherwise. Note that all dx and 
w values are non-negative i.e., sign( Ta * rw * dx * pw) = sign( Ta) *j 
int signa = Sign( Ta)j 

if (signa == NO_IDEA) return NOJDEAj 
ret urn (signa ~ 0) ? signl : - signl j 

20. Finally, we define the compare functions for myPoints and mySegments by 
first calling cmp_points and cmp_segments on the floating point filter coordinates 
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(of type Float) of the corresponding points and segments. In the case that these 
calls do not return a reliable result (i.e. return NOJDEA) we call them again with 
the exact coordinates (of type Int). 

(geometrie primitives 18) +== 
int compare (const my Point &a, const my Point &b) 
{ 
/ * floating point filter version for my Points * / 

#if defined (STATISTICS) 
cmp_points_count ++ j 

#endif 

int c = NOJDEAj 
/ * if not explicitely turned off we first use floating point arithmetie * / 
if (use_filter) c = cmp_points ( a-z, a-y, a-w, b--z, b--y, b-w) j 
/* if the floating point computation is not reliable, Le., the result is NOJDEA 
we use exact arithmetic (Int) * / 
if (c == NO_IDEA) { 

c = cmp_points(a-pt.X(), a-pt.Y(), a-pt.W(), lrpt.X(), b-pt.Y(), b-pt.W())j 
#if defined (STATISTICS) 

ezacLcmp_points_count ++; 
if (cmp_points( double ( a-z), double ( a-y), double ( a-w), double(b--z), 

double(b--y),double(b-w)) =1= c) cmp_points_failed++; 
#endif 

} 
return Cj 

} 
int compare(const mySegment &s1, const mySegment &s2) 
{ 

int c = NOJDEAj 
/ * if not explicitely turned off we first try the floating point computation * / 

#if defined (STATISTICS) 

cmp_segments_count ++; 
#endif 

if (use_filter) c = cmp_segments( s1-start-z, s1-start-y, s1-start-w, 
s2-start-z, s2-start-y, s2-start-w, s2-end-z, s2-end-y, s2-end-w, 
p_sweep-z, p..sweep-y, p..sweep-w, s1-tk, s1-dy, s2-tk, s2-dY)j 

/ * H the result is not reliable we call the exact compare for the underlying 
raLsegments. * / 
if (c == NO_IDEA) { 

c = cmp_segments(s1-seg.X1 (), s1-seg. Y1 (), s1-seg. W1 (), s2-seg.X1 (), 
s2-seg. Y1 (), s2-seg. W1 (), s2-seg.X2(), s2-seg. Y2(), s2-seg. W2(), 
p_sweep-pt.X( ),p..sweep-pt.Y(), p..sweep-pt.W(), s1-seg .tk(), 
s1-seg.dy(), s2-seg.dz(), s2-seg.dy()); 

#if defined (STATISTICS) 
ezacLcmp_segments_count ++ j 
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#endif 
} 
return Cj 

} 

21. For the initialization of the list S-Sorted we need a seeond eompare function 
cmp_mySeg for mySegments. It simply eompares the left endpoints. 

(geometrie primitives 18) += 
int cmp_mySeg(const mySegment &s1 ,const mySegment &s2) 
{ 

} 

int c = NOJDEAj 

if (use_filter) / / floating point eompare 
c = cmp_points( s1-start-z, s1-start-y, s1-start-w, s2-start-z, s2-start-y, 

s2-start-w )j 
if (c == NO_IDEA) / / exaet eompare 

c = cmp_points(s1-seg.X1 (), s1-seg. Y1 (), s1-seg. W1 (), s2-seg.X1 (), 
s2-seg. Y1 (), s2-seg. W1 ()); 

return c; 

22. What does eompare do when one of the segments, say s1, has both end­
points equal to p_sweep and the Y-strueture eontains at most one segment eontain­
ing p_sweep. That's exaet1y the situation in seetion 13. When s2 eontains p_sweep 
the underlying lines are found identical and eompare returns O. When s2 does not 
eontain p_sweep then the underlying lines are declared different. Also s1 is de­
clared vertieal and s2 is not vertieal sinee it would otherwise eontain p_sweep. We 
now eompare 1 n s2 and p_sweep and return the result. We eonclude that the call 
Y_structure .locate (s) where s is the zero-length segment (p-opt, p-opt) in seetion 13 
has the desired effect. 

23. Finally, we define a function compute_intersection that takes an item sitO of 
the Y-structure and determines whether the segment associated with sitO interseets 
the segment associated with the sueeessor of sitO right or above of the sweep line. 
H so it updates the X- and the Y-strueture. 

The function first tests whether the underlying straight lines interseet right or above 
of the sweep line by eomparing their slopes. This test is performed with floating 
point arithmetic and repeated with exaet arithmetie if the floating point test gives 
no reliable result. H the segments do interseet right or above of the sweep line it is 
checked whether the point of intersection lies on both segments, Le., is not larger 
than the endpoints of the segments. 
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(geometrie primitives 18) +== 
void compute_intersection( sortseq {my Point , seq_item) &X_structure, 

sortseq{mySegment, seq_item) & Y_structure, seq_item sitO) 
{ 

seq_item sitl = Y_structure . succ ( sitO); 
mySegment segO = Y_structure .key( sitO); 
mySegment segl = Y_structure .key( sitl ); 
/* segl is the successor of segO in the Y-structure, hence, the underlying lines 
intersect right or above of the sweep line iff the slope of segO is larger than the 
slope of segl. */ 
if (use_filter) { 

int i = Sign (segO-dy * segl-dz - segl-dy * segO-dz ); 

if (i == -1 V i == 0) return; 
/* slope(sO) ~ slope(sl) */ 

} 
raLsegment sO = segO-seg; 
raLsegment sl = segl-seg; 
Int w = sO.dy() * sl.dz() - sl.dy() * sO.dz(); 

if (sign(w) > 0) / / slope(sO) > slope(sl) 
{ 

Int cl = sO .x.~() * sO. Yl () - sO.Xl () * sO. Y2(); 
Int c2 = sl .X2( ) * sl . Yl ( ) - sl .Xl ( ) * sl . Y2( ); 
/ * The underlying lines intersect in a point right or above of the sweep line. 
We still have to test whether it lies on both segments. * / 
Int z = c2 * sO.dz() - cl * sl.dz(); 
Int dO = z * sO. W2() - sO.X2() * W; 

if (sign( dO) > 0) return; 
if (z * sl . W2() > sl.X2( ) * w) return; 

Int y = c2 * sO.dy() - cl * sl.dy(); 

if (sign( dO) == 0 1\ Y * sO. W2 ( ) > sO. Y2 ( ) * w) return; 

myPoint Q == new MyPointRep (raLpoint(z, y, w)); 
seq_item zit = X...structure.insert(Q,sitO); 

X_structure .key( zit )-count ++; 
Y...structure . change_in! ( sitO , zit ); 

} 
} 
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24. A Floating Point Filter. 

The type Float provides a clean and efficient way to approximately compute with 
large integers. Consider an expression E with integer operands and operators +,-, 
and *, and suppose that we want to determine the sign of E. In general, the integer 
arithmetic provided by our machines does not suffice to evaluate E since interme­
diate results might overflow. Resorting to arbitrary precision integer arithmetic is 
a costly process. An alternative is to evaluate the expression using floating point 
arithmetic, i.e., to convert the operands to doubles and to use floating-point addi­
tion, subtraction, and multiplication. Of course, only an approximation E of the 
true value E· is computed. However, E might still be able to tell us something 
about the sign of E. H E is far away from zero (the forward error analysis carried 
out in the next section gives a precise meaning to "far away") then the signs of 
E and E agree and if E is zero then we may be able to conclude under certain 
circimstances that E is zero. Again, forward error analysis can be used to say what 
'certain circumstances' are. The type Float encapsulates this kind of approximate 
integer arithmetic. Any integer (= object of type Int) can be converted to a Float, 
Float s can be added, subtracted, multiplied, and their sign can be computed: for 
any Float z the function Sign( z) returns either the sign of z (-1 if z < 0, 0 if 
z = 0, and +1 if z > 0) or the special value NOJDEA. Hz approximates X, i.e., X 
is the integer value abtained by an exact computation, then Sign(z) '# NOJDEA 
implies that Sign(z) is actually the sign of X if Sign(z) = NOJDEA then no claim 
is made about the sign of X. 
Declaration 

Float z declares z as a variable of type Float 

Operations 

Float Float (Int i) 
Float +(Float a, Float b) 
Float - (Float a, Float b) 
Float *(Float a, Float b) 
{ -1,0, + 1, NOJDEA } Sign(Float z) 

converts i to a float 
Addition 
Subtraction 
Multiplication 
as described above 

A Float is represented by a double (its value) and an error bound. An operation on 
Float s performs the corresponding operation on the values and also computes the 
error bound for the result. For this reason the cost of a Float operation is ab out 
four times the cost of the corresponding operation on doubles. Rules 5 to 10 below 
are used to compute the error bounds. 

25. Floating Point Numbers. 

A floating point number is a number of the form 

·We misuse notation and use E to denote the expression and its value. 
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where e E [emin .. em,,:] is the ezponent, and m is the mantissa. The mantissa is a 
rational number of the form 

m = V· L mi' 2- i
, 

l~i~l 

where v E {-1, 1} is the sign, 1 is the mantissa length, and the mi's are the digits of 
the mantissa. We have ffiä E {O, 1} and either m = 0 or ml = 1. One also says that 
the mantissa is normalized. We also assume that 1 ~ emax' The latter assumption 
implies that all integers whose absolute value is less than 21+1 can be presented as 
floating point numbers. 

Let :F denote the set of all floating point numbers; the set :F clearly depends on 
the exponent range [emin .. em,,:] and the mantissa length 1. In our examples, we 
use 1 = 53, emin = -1022, and ema:t = 1023. This choice corresponds to the IEEE 
double precision floating point standard. 

The absolute values of all non-zero floating point numbers lie between min...abs = 
2emia-l and maz_abs = (1- 2-1)2emu:. Call areal number representable if it is either 
o or its absolute value lies in the interval [min_abs, maz...abs] and let the size size( a) 
of areal number a be the smallest power of two larger than its absolute value,i.e., 

size(a) = { 2!10 SI"g 
ifa=O 
ifa;60 

Then size(a)/2 ~ lai ~ size(a). Ha number a is representable then there is a 
floating point number fl(a) E :F such that 

la - tl(a)1 ~ 1/2.2-1 • size(a) ~ 2-11al (1) 

The number f 1 ( a) ca.n be obtained from a by rounding in the 1-th most significant 
position. We call fl(a) a floating point approximation of a and use eps to denote 
2-1• Note that fl(a) is a floating point number that is closest to a. The set :F 
of floating point numbers is not closed under the arithmetic operations addition, 
subtraction, and multiplication, Le., if fI and !2 are floating point numbers and op 
is any one of the arithmetic operations then fIoP!2 does not necessarily belong to 
:F. The machine implementation of the operation (we use ES,9, and 0 to denote 
the implementation of +, -, and . respectively) therefore returns a floating point 
approximation of the exact result, Le., a number j such that 

Ij - fIop!21 ~ 1/2' eps . size(fIoP!2) ~ eps . I fIoP!2 I (2) 

or equivalently 

j = (1 + e) . (fIoP!2) 

for some e with lei ~ eps. 

Note that if flop!2 is a floating point number then j = fIop!2 since the computed 
result is the floating point number closest to the exact result. In particular, if fI 
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and 12 are both powers of 2 then 11 <:) h = h . h and jf h = 12 and 11 is apower of 
2 then h EB h = h + h = 2 . h. The floating point operations EB and <:) also satisfy 
a monotonicity property, namely, jf h ~ g1 and h ~ g2 then h EB 12 ~ g1 EB g2 and 
h <:) h ~ g1 <:) g2· For the second inequality we also need h ~ 0 and h ~ o. 
We next turn to expression evaluation. Let E be an arithmetic expression, e.g., 
E = a . b - c . d. When we evaluate E using floating point arithmetic we obtain 
E = a <:) b e c <:) d. What is the relationship between the exact value E and the 
computed value E? We have 

The error 

a<:)b 

c<:) d 

a<:)bec<:)d 

(1 + €1) . a· b 

(1 + €2) . C· d 

(1 + €3)( a <:) b - c <:) d) 

E (a· b· (1 + €1) - C· d· (1 + €2))(1 + €3) 

E + E . €3 + (a . b . €1 - C • d . €2)( 1 + €3)' 

E - E = E . €3 + a . b . €1 - C • d . €2 + (a . b . €l - C • d . €2) . €3 

is therefore essentially the sum of the errors introduced by considering the three 
operations individually. In addition, there is a 'high-order' term. 

One can drop the higher-order term by expressing the error in terms of upper bounds 
on the inputs of an expression rather than the actual input values themselves. This 
leads to weaker but more managable error bounds. 

26. A Floating Point Filter. 

Throughout this section E denotes an expression involving real operands and the 
arithmetic operations addition, subtraction, and multiplication. We use E to also 
denote the value of the expression. We assume that the operands and more generally 
the values of all subexpressions to be representable and use (E) to denote the value of 
the expression when evaluated with floating point arithmetic, Le., first all operands 
are replaced by their floating point approximations and then all operations by their 
floating point counterparts. Our goal is to derive an easily computed bound for the 
difference between the computed value E and the exact value E. 

To this end we define for every expression E its measure mes(E) and its index 
ind(E) . The measure mes(E) is apower of two which bounds the size of E and E 
from above, Le., 

size(E) ~ mes(E) and size(E) ~ mes(E) (3) 
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The index ind(E) bounds the difference of the computed result E and the exact 
value E as a multiple of eps . mes(E), Le., 

IE - EI ~ ind(E)· eps· mes(E). (4) 

The crucial observation is now that both quantities are easily computed inductively. 
Here are the rules: 

H E = a, where ais a representable real number, then 

and 

if E = E l ± E2 then 

and 

mes(E) = size(a) 

ind(E) = { 1/~ ifaEF 
otherwise 

mes(E) = 2· max(mes(El ), mes(E2)) 

ind(E) = (1 + ind(El ) + ind(E2))/2, 

and if E = E l . E2 then 

mes(E) = mes(El )· mes(E2) 

and 

ind(E) = 1/2 + ind(Et) + ind(E2). 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Lemma 1 Let E be an expression with real operands and assume that the values 0/ 
all subexpressions 0/ E are representable. Then rules (5) to (10) compute quantities 
mes(E) and ind(E) satisfying (3) and (4). 

Proof: : If E = a, where a is areal, then E = /l( a). Clearly, lai ~ size( a) and 
l!l(a)1 ~ size(a) (note however that lai ~ size(fl(a)) does not always hold). This 
establishes (3). Inequality (1) implies (4). 

HE = E l opE2 then let E, EI, and E2 be the computed values for E, E l , and E2. 
Then IEil ~ mes(Ei), IEil ~ size(Ei) ~ mes(Ei), and lEi - Eil ~ ind(Ei) . eps . 
mes(Ei). Use err(Ei) to abreviate Ei - Ei. 

Assume first that E = El + E2; the argument for subtraction is analogous. Clearly, 
size(E) = size(El + E 2) ~ 2· max(size(El ), size(E2)) ~ 2· (mes(E l ), mes(E2)) = 
mes(E) and size(E) = size(El EBE2) ~ size(max(size(El ), size(E2))EBmax(size(El ), size(E2))) ~ 
size(2·max(mes(Et}, mes(E2))) ~ size(mes(E)) = mes(E) where the first inequal-
ity follows from the monotonicity of EB and the second inequality follows from the 
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fact that equal powers of two are added exact1y. Similar reasoning shows that 
size(EI + E 2 ) ~ mes(E). We turn to the error bound next. We have 

IE - EI = IE d9 E 2 - (EI + E 2 ) + EI + E2 - EI - E 2 1 

~ 1/2· eps . size(EI + E2 ) + err(EI ) + err(E2 ) 

~ (1/2· mes(E) + ind(EI) . mes(EI ) + ind(E2 ) • mes(E2 )) • eps 
= (1 + ind(EI ) + ind(E2 ))/2· mes(E) . eps, 

where the first inequality follows from (2). 

Assume next that E = EI . E2 • We leave it to the reader to show that size( E) ~ 
mes(E), size(E) ~ mes(E), and size(EI . E2 ) ~ mes(E). For the error bound we 
obtain 

IE - EI = lEI 0 E 2 - EI . E2 + (EI + err(EI ))· (E2 + err(E2 )) - EI· E2 1 

~ 1/2· eps . size(EI . E 2 ) + err(EI ) ·IE21 + IEII· err(E2 ) 

~ (1/2· mes(E) + ind(EI) . mes(EI ) . size(E2 ) + size(EI ) . ind(E2) • mes(E2 ) • eps 
= (1/2 + ind(EI ) + ind(E2 )) • eps· mes(E) 

This completes the proof of the lemma. I 

How are we going to use the error estimates? Assume that E is an expression 
involving integral operands and operators +, -, and *. Assume further that we 
want to know the sign of E. We evaluate E using floating point arithmetic, i.e., we 
convert the operands into floating point numbers and then use the floating point 
operations $, 8, and 0, and we alsocompute the quantities mes(E) and ind(E) 
using rules (5) to (10). Let E be the computed floating point approximation for E. 
Note that Eis an integer. We have: 
If lEI> ind(E) ·mes(E)· eps then sign(E) = sign(E), i.e., the sign of Eis reliable. 
This follows immediately from IE - EI ~ ind(E)· mes(E)· eps. 
If lEI ~ ind(E)· mes(E) . eps < 1 then E = E = O. This follows from IE - EI ~ 
ind( E) . mes( E) . eps and the fact that E and E are iritegers. 
If lEI ~ ind(E)· mes(E)· eps and ind(E)· mes(E)· eps ~ 1 then the signs of E and 
E may be different. 

27. Implementation. 

The filter is realized by a data type (dass) Float in C++. Float, can be used in 
the same way as the built-in numerical type double. The only exception is that the 
result of some tests may be unreliable. In particular there is a function Sign(Float 
z) that tries to compute the signof z. Possible results are -1, 0, +1 and NOJDEA. 
The last value indicates that the sign of z could not be computed. 

Each instance of type Float has three data members: num, mes, and ind. num is 
the floating-point approximation of the integer z to be represented, mes = mes( z ) 
and ind = ind(z) are the bounds defined in the previous section. We define initial­
ization and operations +, -, * following the rules given in Lemma 1. 
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(Float.h 27) == 
#indude <LEDJ./basic. h> 
#indude <LEDJ./Int .h> 
#indude <math. h> 

const double epsO = ldezp (1, -53); 11 machine € = 2-53 

const int NOJDEA = 2; 
dass Float { 

double num; double mes; ßoat ind; 

Float (double d, double m, ßoat i) { num = d; mes = m; ind = i; } 

public: Float () { num = 0; mes = 0; ind = 0; } 

Float (Int i) 
{ 1* rules (5) and (6). Note that ldezp(l,z) is 2:1: and that Rog(i) is lloglilJ 

for i i- 0 and -1 for i = O. Thus Rog(i - 1) + 1= [logil for i > O. *1 

} 

if (i == 0) { num = 0; mes = 0; ind = 0; } 
else { 

} 

num = i.todouble( ); 
mes = (i > 0) ? ldezp(l, log ( i) + 1) : ldezp(l, log ( -i) + 1); 
ind = (mes ~ 53) ? 0 : 0.5; 

operator double () const { return num; } 
friend Float operator+( const Float &a, const Float &b) 
{ 11 rules (7) and (8) 

} 

return Float(a.num + b.num, 2 * ((a.mes > b.mes) ? a.mes : b.mes), 
(a.ind + b.ind + 1)/2); 

friend Float operator - (const Float &a, const Float &b) 
{ 11 rules (7) and (8) 

} 

return Float(a.num - b.num, 2 * ((a;mes > b.mes)? a.mes: b.mes), 
(a.ind + b.ind + 1)/2); 

friend Float operator * (const Float &a, const Float &b) 
{ 11 tules (9) and (10) 

return Float(a.num * b.num, a.mes * b.mes, (a.ind + b.ind + 0.5)); 
} 
friend int Sign( const Float &1) 
{ 

} 
}; 

double eps = f. ind * f. mes * epsO; 
if (f.num > eps) return +1; 
if (f .num < -eps) return -1; 
if (eps < 1) return 0; 
return NOJDEA; 
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28. Note that the quantities mes and ind are eomputed using double- and single­
precision floating point arithmetic respeetively. We might therefore ineur rounding 
error in the eomputation of ind and the eomputation of mes might overflow. Note 
however, that ind is always a sum of powers of two and that the exponent of the 
smallest power is related to the depth of nesting of the expression defining the 
number. Renee we have rounding error in the eomputation of ind only for expression 
of depth more than 20. Such expressions do not oeeur in the sweep program. The 
quantitity mes is always apower of two and henee its eomputation is exaet. It 
might overflow however, if mes exeeeds 21024• This will make the floating point 
ineffective but not ineorreet sinee any overflown value is set to 00 aeeording to the 
IEEE-floating point standard. Namely, if mes = 00 then eps in Sign evaluates to 
00 and henee Sign returns NO_IDEA. 
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29. Experiments and Efficiency. 

We performed tests on three kinds of test data: difficult inputs, random inputs and 
hand-crafted e.xamples. 

• Difficult inputs: Let size be a random k-bit integer and let y = 2size/n. 
We intersect n segments where the i-th segment has endpoints (size + rd, 
2· size - i· y + ry1) and (3size + r:z:2, 2size + i· y + ry2) where rd, r:z:2, ry1, 
ry2 are random integers in [-s, s 1 for some small integer s. 

• Random inputs: We generated n (between 1 and several hundred) segments 
with random coordinates between -size and size for some parameter size. For 
size we used large values to test the correctness and efficiency of the floating 
point filter and the long integer arithmetic and small values to test our claim 
that we can handle all degeneracies (a set of 100 segments whose endpoints 
have integer coordinates between -3 and +3 is highly degenerate). 

• Hand-crafted e.xamples: We handcrafted some examples that e.xhibited a lot 
of degeneracies. We also asked students to break the code and offered DM 
100.- for the first counter-example. We have not paid yet. 

Table 1 gives the result for the difficult inputs with s = 3, k = 10,15,20"",100, and 
n = 100. It lists the number of intersection and the running times with and without 
the floating point filter. Furthermore it gives the percentage of the comparisons of 
points in the X-structure that were left undecided by the floating point filter (failure 
rate) and the percentage of tests where the floating point computation would have 
decided incorrectly (error rate). 

Comparing the :z:-coordinates of two intersection points is tantamount to testing the 
sign of a fifth degree homogeneous polynomial in the coordinates of the segment 
endpoints. These coordinates are of the form size + r:z:, 3size + r:I:, 2size + i· y + ry, 
2size - i . Y + ry. Thus, if we write the polynomial in terms of the perturbations r:z: 
and ry we essentially obtain a term of order sizes independent of the perturbations 
(this term is actually zero but has maximal size in intermediate results) plus a term 
or order size4 times a linear function in the perturbations plus a term of order size3 

times a quadratic function in the perturbations . . .. Since the input coordinates are 
not equal to size but vary between size and 3size the various terms are actually 
spread out over some orders of magnitude. 

In the floating point filter analysis the error bound 5 is ab out 3sizes . 2-53• We 
conclude that the floating point filter becomes worthless for k about 50 and that 
we are starting to loose the linear terms for k about 40. For smaller k the filter 
fails only in those rare cases where the second order term must decide. This is weil 
reflected in Table 1. 

Table 2 gives the results for 100 segments whose endpoints have random k bit coor­
dinates. The experiments inidicate that the floating point filter reduces the running 
time of the program by a factor of up to 4. Why does the failure rate jump so 
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k V without filter with filter faUures errors 
10 1323 0.78 0.37 0.05% 0.00% 
15 1323 0.68 0.40 0.04% 0.00% 
20 1314 0.70 0.38 0.12% 0.05% 
25 1325 0.77 0.42 0.08% 0.05% 
30 1318 0.75 0.45 1.48% 0.73% 
35 1321 1.03 0.52 0.94% 0.39% 
40 1312 1.27 0.55 2.17% 1.02% 
45 1325 1.27 0.77 20.98% 2.19% 
50 1323 1.45 1.23 73.33% 19.98% 
55 1325 1.90 1.68 86.35% 44.74% 
60 1325 1.33 1.52 83.52% 58.07% 
65 1321 2.20 1.90 89.66% 65.21% 
70 1323 2.07 1.87 86.88% 63.41% 
75 1316 2.57 2.30 89.93% 67.89% 
80 1323 2.62 2.08 89.90% 67.33% 
85 1321 2.63 2.98 83.11% 62.74% 
90 1313 2.78 2.48 90.96% 67.88% 
95 1319 3.03 3.07 81.74% 62.33% 

100 1323 3.12 3.13 89.19% 67.05% 

Table 1: The difficult example with 100 segments. 

dramatically when k reaches 210 and jumps once more when k = 350. Recall that 
the comparison of the z-coordinate of two intersection points amounts to comput­
ing the sign of a 5k-bit number and that the comparison of an intersection with an 
endpoint amounts to computing the sign of a 3k-bit number. The qunatitiy mes in 
the floating point filter will be essentially 25k in the first case and 23k in the second 
case. Thus the computation of mes overflows when k ~ 210 in the first case and 
when k ~ 350 in the second case and the comparison is resolved by exact arithmetic. 

We also want to comment on the column labeled error, i.e., on the percentage of 
tests where the floating point filter would have decided incorrectly. In our second 
example the error rate seems to converge to 50%, i.e., the floating point computation 
decides randomly. In the difficult example the error rate seems to converge to 2/3. 
We are not able to explain this phenomenon. 

More experiments with different floating point filters are described in [8]. 
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k V without filter with filter failures errors 
10 1298 0.57 0.35 0.00% 0.00% 
30 1373 0.87 0.53 0.00% 0.00% 
50 1526 1.78 0.78 0.00% 0.00% 
70 1298 2.17 0.70 0.00% 0.00% 
90 1417 2.05 0.83 0.00% 0.00% 

110 1144 2.08 0.77 0.00% 0.00% 
130 1222 2.82 1.25 0.00% 0.00% 
150 1434 4.72 1.37 0.00% 0.00% 
170 1189 3.65 1.25 0.00% 0.00% 
190 1463 6.20 1.63 0.00% 0.00% 
210 1401 7.63 8.12 54.66% 34.06% 
230 1270 10.58 8.48 51.53% 29.26% 
250 1608 14.05 9.72 56.75% 33.74% 
270 1226 9.03 6.68 46.28% 29.02% 
290 1576 14.55 12.27 49.03% 28.17% 
310 1260 15.12 11.10 46.25% 28.21% 
330 1280 12.93 11.35 48.15% 29.52% 
350 1250 13.25 16.80 87.45% 42.02% 
370 1343 24.97 21.37 86.42% 46.91% 
390 1420 20.55 20.50 87.96% 46.30% 
400 1391 22.38 23.30 89.26% 47.10% 

Table 2: 100 random segments, coordinates are random k-bit integers. 
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30. Conclusion. 

We have given an implementation of the Bentley-Ottmann plane sweep algorithm 
for line segment interseetion. The implement at ion is eomplete and reliable in the 
sense that it will work for all input instanees. It is asympotically more efficient than 
previous algorithms for the same task; its running time depends on the number of 
vertices in the intersection graph and not on the number of pairs of intersecting 
segments. It also achieves a low eonstant factor in its running time by means of a 
floating point filter. 

The use of LEDA makes the implementation of the eombinatorial part of the al­
gorithm quite elegant. In the geometrie part we have not achieved the same level 
of eleganee yet. We are eurrently exploring whether the floating point filter ean be 
eompletely hidden from the user as suggested in [11]. 

35 



References 

[1] J .L. Bentley and T .A. Ottmann. Algorithms for reporting and eounting geo­
metrie intersections. IEEE Trans. Comput., C-28:643-647, 1979. 

[2] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneraey in geometrie eom­
putations. In Proc. 0/ the 5th ACM-SIAM Symp. on Discrete Algorithms, pp. 
16-23, 1994. 

[3] T.H. Cormen and C.E. Leiserson and R.L. Rivest. Introduction to Algorithms. 
MIT Press/MeGraw-Hill Book Company, 1990. 

[4] S. Fortune and C. van Wyk. Efficient exact arithmetie for eomputational geom­
etry. In Proc. o/the 9th ACM Symp. on Computational Geometry, pp. 163-172, 
1993. 

[5] K. Mehlhorn. Data Struetures and Efficient Algorithms. Springer Publishing 
Company, 1984. 

[6] E. Myers. An O(ElogE + 1) expeeted time algorithmfor the planar segment 
interseetion problem. SIAM J. Comput., pp. 625 -636, 1985. 

[7] K. Mehlhorn and S. Näher. LEDA: A library of effi.cient data types and algo­
rithms. In LNCS, 379:88-106, 1989. 

[8] K. Mehlhorn and S. Näher. The Implementation of Geometrie Algorithms. 13th 
World Computer Congress IFIP 94, Elsevier Scienee B.V., Vol. 1, pp. 223-231, 
1994. 

[9] S. Näher. LEDA Manual. Technieal Report No. MPI-I-93-109. Max-Planck­
Institut für Informatik, 1993. 

[10] F. Preparata and M.1. Shamos. Computational Geometry: An Introduetion. 
Springer Publishing Company, 1985 

[11] Ch. Yap and Th. Dube. The exact eomputation paradigm. In Computing in 
Euclidian Geometry, World Scientifie Press, 1994. (To appear, 2nd edition). 

36 



Index 
a: 20, 24, 27. 
abs: 10. 
additional: 5. 
adds: 5. 
after: 5. 
an: 5. 
and: 5. 
any: 5. 
Any: 5. 
append: 10. 
applied: 5. 
appropriate: 5. 
are: 5. 
as: 5. 
associated: 5. 
associates: 5. 
at: 5. 
available: 5. 
b: 20, 24, 27. 
be: 5. 
be/ore: 5. 
begin: 5. 
by: 5. 
c: 20, 21. 
call: 5. 
cap: 5. 
cartesian: 5. 
change_in/: 15, 16, 17, 23. 
changes: 5. 
clear: 10. 
cmp_mySeg: 10, 18, 21. 
cmp_points: li, 20, 21. 
cmp_points_count: ~,10, 11, 20. 
cmp_points_/ailed: ~,10, 11, 20. 
cmp_seg: 10. 
cmp_segments: 18, 19, 20. 
cmp_segments_count: ~,10, 11, 20. 
comes: 5. 
compare: 5, 17, 20. 
compute_intersection: 17, 18, 23. 
constructed: 5. 
containing: 5. 
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coordinates: 5. 
count: 1, 9, 10, 16, 17, 23. 
cout: 11. 
current: 5. 
c1: 23. 
c2: 23. 
d: 27. 
deLitem: 12, 15, 16, 17. 
denote: 5. 
directed: 5. 
does: 5. 
dots: 5. 
th: 5, 1, 19., 20, 23. 
ths: 19. 
dy: 5, 1, 19, 20, 23. 
dO: 23. 
each: 5. 
eft: 5. 
empty: 5, 12, 17. 
end: 5, 1, 10, 15, 17, 20. 
end_it: 17. 
ending: 5. 
eps: 27, 28. 
epsO: 27. 
eq: 5. 
even: 5. 
event: 12, 14. 
ezacLcmp_points_count: ~,10, 11, 

20. 
ezacLcmp_segments_count: ~,10, 

11, 20. 
ezist: 5. 
f: 27. 
/alse: 5. 
Finally: 5. 
first: 5. 
firsLmyPoint: 1, 11. 
Float: .21, 27. 
For: 5. 
form: 5. 
function: 5. 
functions: 5. 



G: ,2., Q. 
graphs: 5. 
has: 5. 
head: 17. 
i: JJ!, 2,3., 24, 27. 
i_m: 5. 
i_i: 5. 
i_2: 5. 
If: 5. 
iff: 5. 
!log: 27. 
implementation: 5. 
important: 5. 
in: 5. 
In: 5. 
increasing: 5. 
ind: 27, 28. 
inf: 5, 12, 14, 16, 17. 
Infinity: B" 10. 
information: 5. 
insert: 5,10,17,23. 
insert_at: 17. 
inUype: 18, 19. 
intersecting: 5. 
is: 5. 
it: 5, 10. 
It: 5. 
item: 5. 
items: 5. 
itl: 5. 
it2: 5. 
il : 15. 
i2: 15. 
k_: 5. 
kJ: 5. 
k_m: 5. 
k_l: 5. 
k_2: 5. 
key: 5, 10, 12, 15, 16, 17, 23. 
keys: 5. 
lasLnode: I, 9, 15, 17. 
later: 5. 
latter: 5. 
Idexp: 27. 
LED!: 5. 
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LED!_MEMORY: 7. 
let: 5. 
Let: 5. 
linear: 5. 
linearly: 5. 
locate: 17, 22. 
log: 27. 
lookup: 5, 13. 
lowersentinel: 10, 11. 
m: 27. 
malloe: 7. 
may: 5. 
mbox: 5. 
mdx: 19. 
mdy: 19. 
mean: 5. 
mes: 27, 28, 29. 
min: 5, 12. 
must: 5. 
myPoint: I. 
MyPointRep: I, 10, 23. 
mySegment: I. 
MySegmentRep: I, 10, 13. 
new_edge: 5, 15. 
new_node: 5, 12. 
newline: 11. 
next: I, 11. 
nil: 3, 5, 7, 9, 10, 11, 13, 14, 15, 

16, 17. 
NO_IDE!: 18, 19, 20, 21, 24, 27, 28. 
nodes: 5. 
not: 5. 
num: 27. 
object: 5. 
observe: 5. 
of: 5. 
on: 5. 
operation: 5. 
operations: 5. 
operator: 27. 
or: 5. 
order: 5. 
ordered: 5. 
other: 5. 
otherwise: 5. 



our: 5. 
p: 1, 11, 12. 
p_sweep: ~,9, 10, 12, 16, 19, 20, 22. 
pair: 5. 
pairs: 5. 
points: 5. 
pop: 17. 

-precedes: 5. 
pred: 5, 14, 15, 17. 
predecessor: 5. 
progresses: 5. 
property: 5. 
pt: I, 12, 13, 20, 22. 
pw: 5, ll. 
p:e: 5, 19. 
py: 5, ll. 
Q: 23. 
qw: 5. 
q:e: 5. 
qy: 5. 
relation: 5. 
requirement: 5. 
requires: 5. 
respect: 5. 
respectively: 5. 
returns: 5. 
reverse_items: 5, 16. 
reverses: 5. 
right: 5. 
rl: 5. 
rw: 19. 
r:e: 19. 
ry: ll. 
S: 2. 
s: I, 1J!, 13, 15, 18. 
s_i: 3. 
S-Sorted: 10, 17, 18, 21. 
sd:e: 19. 
sdy: 19. 
seg: I, 15, 17, 20, 21, 23. 
Seg: 17. 
Seg_old: 17. 
seglist: .2.. 
segments: 5. 
segO: 23. 
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segl: 23. 
sequence: 5. 
sequences: 5. 
Sign: 18, 19, 23, 24, 27, 28. 
sign: 19, 23. 
signl: 19. 
sign2: 19. 
sign3: 19. 
sit: 3, 12, 13, 14, 15, 17. 
siLfirst: 14, 15, 16. 
siLi: 3. 
siLlast: 14, 15, 16. 
siLpred: 13, 14, 15, 16, 17. 
siLsucc: 13, 14, 15, 16, 17. 
siLl: 3. 
sit..2: 3. 
siL3: 3. 
siL4: 3. 
siL9: 3. 
sitO: 23. 
sitl: 23. 
size: 25, 29. 
sort: 10. 
sorted: 5. 
spw: 19. 
sp:e: ll. 
spy: 19. 
sqw: ll. 
sq:e: 19. 
sqy: 19. 
start: 5, 1, 10, 17, 20, 21. 
starting: 5. 
STATISTICS: 8, 10, 11, 20. 
structure: 5. 
subsequence: 5. 
succ: 5, 14, 15, 17, 23. 
successor: 5. 
such: 5. 
sweep: 5, 2, 7, 9, 28. 
sweep-segments: 2. 
sO: 23. 
sl: 3, 5, 10, 19, 20, 21, 22, 23. 
s2: 3, 5, 19, 20, 21, 22. 
s3: 3. 
s4: 3. 



s9: 3. 
that: 5. 
the: 5. 
The: 5. 
then: 5. 
there: 5. 
these: 5. 
times: 5. 
to: 5. 
todouble: 27. 
true: 2, 5, 6. 
type: 5. 
types: 5. 
Tl: 19. 
T2: 19. 
T3: 19. 
uppersentinel: 10, 11. 
use: 5. 
use_filter: ~,2,~, 10, 11, 20, 21, 23. 
v: 12. 
w: 1, 23. 
We: 5. 
What: 5. 
whenever: 5. 
where: 5. 
will: 5. 
with: 5. 
wl: 18. 
W.l: 20, 21. 
w2: 18. 
W2: 20, 23. 
z: 1, 23, 24, 27. 
X_structure: ~,10, 12, 16, 17, 23. 
xit: 3, 16, TI, 23. 
ziLa: 3. 
ziLj: 3. 
zl: 18. 
Xl: 10, 20, 21, 23. 
z2: 18. 
12: 10, 20, 23. 
y: 1, 23. 
Y_structure: ~,10, 13, 14, 15, 16, 

17, 22, 23. 
yl: 18. 
Yl: 10, 20, 21, 23. 

y2: 18: 
Y2: 10, 20, 23. 
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List of Refinements 

(Float.h 27) 

(clean-up 11) Cited in section 7. Used in section 6. 

(construct edges and delete ending segments 15) Used in section 13. 

(find subsequence of ending or passing segments 14) Used in section 13. 

( geometrie primitives 18, 19, 20, 21, 23) Used in section 6. 

(global types and declarations 7, 8) Used in section 6. 

(handle passing and ending segments 13) Used in section 12. 

(include statements 4 ) Used in section 6. 

(initialization 10) Used in section 6. 

(insert starting segments and compute new intersections 17) Used in section 12. 

(local declarations 9) Used in section 6. 

(reverse subsequence of segments passing through p 16) Used in section 13. 

(sweep 12) Used in section 6. 
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