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ABSTRACT 

Circuits and Multi-Party Protocols 

- technical report No. 104-

Vince Grolmusz 
Max Planck Institute for Computer Science 

and 
Eötvös University 

We present a multi-party protocol for computing certain functions of an n x k 0 -1 matrix 
A. The protocol is for k players, where player i knows every column of A, except column 
i. Babai, NiJan and Szegedy [BNS] proved that to compute GIP(A) needs !l(n/4k ) bits 
to communicate. We show that players can count those rows of matrix A which sum is 
divisible by m, with communicating only O( mk log n) bits, while counting the rows with 
sum congruent to 1 (mod m) needs !l(n/4k

) bits of communication (with an odd m and 
k = m (mod 2m)). !l(n/4k ) communication is needed also to count the rows of A with 
sum in any congruence dass modulo an even m. 

The exponential gap in communication complexities allows us to prove exponential 
lower bounds for the sizes of some bounded-depth circuits with MAJORlTY, SYMMET­
RlC and MODm gates, where m is an odd - prime or composite - number. 

keyword.8: lower ooundJ, threJhold circuitJ, A CC-circuitJ, communication protocolJ 

Address: Max Planck Institute for Computer Science, Im Stadtwald, W-6600 Saar­
bruecken, GERMANY; email: grolmusz@robin.cs.sb-uni.de 
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1. INTRODUCTION 

The connection between the circuit complexity and the communication complexity 
plays an important role in the recent literat ure of the circuit lower bound theory. 

The notion of the (2 party) communication complexity was introduced by Yao [Y1]. 
Due to the algebraic characterization of the communication complexity, several strong 
lower bounds was proved for this model (see [L] for a survey). 

Karchmer and Wigderson [KW] erlended the original communication model of Yao, to 
compute some relations instead of Boolean functions; then they proved a that the optimal 
circuit-depth of a Boolean function and the communication complexity of arelation is 
the same number. This Karchmer-Wigderson theorem was applied to prove an f2(log2 n) 
lower bound for the depth of monotone polynomial-sized circuits, computing graph s­
t connectivity. Raz and Wigderson [RW2] used the Karchmer-Wigderson theorem to get 
linear lower bound for the depth of monotone Boolean circuits, computing graph matching. 
The proof make use the linear lower bound for the probabilistic communication complexity 
of the disjointness function of Kalyanosundaram and Snitger [KS], and Razborov [R]. The 
correspondence between circuits and commlinication complexity appears also in the work 
of Yao [Y2], Raz and Wigderson [RW1], and Szegedy [S]. . 

The multi-party communication game, first examined by Chandra, Furst and Lipton 
[CFL], is a generalization of the 2-party communication game. In this game, k players: 
PI, P2 ••• , Ple intend to compute the value of g(AI , A 2 , ••• , Ale), where 9 : {o,l}len -+ N 
where N denotes the set of natural numbers, and Ai E {O,l}n, for i = 1,2, ... ,k. Player 
Pi knows every variable, ezcept Ai, for i = 1,2, ... , k. The players have l1nlimited com­
putational power, and they communicate with the help of a blackboard, viewed by all 
players. Qnly one player may write on the blackboard at a time. The goal is to compute 
g(AI, A 2 , ••• , Ale), such that at the end of the computation, all players know this value. 
The cost of the computation is the number of bits written on the blackboard for the given 
A = (AI, A 2 , ••• , Ale) E {O, l}nle. The cost of a multi-party protocol is the maximum num­
ber of bits communicated for any A from {O, 1 }nle. The k-party communication complexity, 
CCle)(g), of a function g, is the minjmum of costs of those k-party protocols which compute 
g. 

The theory of the two-party communication games are well developed [1), but much 
less is known ab out the multi-party communication complexity of functions. Communi­
cating n bits, PI can compute any function of A: P2 writes down the n bits of Al on the 
blackboard, PI reads it, and computes the value g(A) at no cost. The additional cost of 
diffusing the result g( A) to other players is the binary length of g( A). 

Babai, Nisan and Szegedy examined the Generalized Inner Product (GIP) function 
in [BNS]. 

Notation 1. Let {o,l}nxle denote tbe set of all ° -1 matrices ofn rows and k columns. 
Let A E {O,l}nXle, We sball refer to tbe i th column of AasAi, tbe r h row of AasAi, 
and to tbe i th entry in row jasAi. Let GIP(A) denote tbe number oftbe all-l rows of 
matrix A, modulo 2. 

In other words, if column Ai is considered to be the characteristic vector of a subset Yi of 
a fixed n-element set for i = 1,2, ... , k, then 
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GIP(A) =1 Y1 n 1'2 n Y3 n ... n Yk 1 mod2. 

Babai, NiJan and Szeged1l [BNS] gave a lower bound for even that case, when the players 
compute GIP on mOJt 0/ the inputJ: 

Definition 2. [BNS} The k-party e-distributional communicational complexity of a func­
tion g, denoted by C~k)(g), is the minimum number of bits that needed to be exchanged 
in the worst case, by any k-party protocol which computes 9 correctlyon 1/2 + e fraction 
of the inputs. 

Theorem 3. [BNS, Theorem 2} 

• 
Substituting e = 1/2 in Theorem 3, we get that the multi- party communication complexity 
of GIP is 

n (;). 

A protocol in [G] communicates 

bits to compute GIP, which shows that the lower bound in Theorem 3 cannot be improved 
significantly. 

One can find several applications of Theorem 3 in [BNS). (e.g. for Turing-machine simula­
tion trad~ffs). 
Goldmann and Hc'LJtad [GH] found a surprising application of Theorem 3 to circuit­
complexity. 

In [GH], depth-3 threshold circuits are considered, with fan- in on the lowest lewel bounded 
by k - 1, and it is shown, that the size of that circuits, computing GIP(A), should be 
exponential in n. 

For the significance of this result it is worth mentioning, that no superpolynomiallower 
bound is known for the sizes of the depth-3 threshold circuits (without fan-in constraint), 
which compute a function in NP. 

Our basic strategy for proving exponential lower bounds for circuit sizes is the same 
as the strategy of Goldmann and HaJtad [GH]: first, it is assumed that a circuit of a 
given type and size M computes GIP(A). Then we show a k-party protocol, where a1l the 
players know the circuit, and which computes the output of the crrcuit (i.e. GIP(A)), with 
communicating ab out O(log M) bits. From Theorem 3, O(1og M) ~ n/4k

, which yields an 
exponentiallower bound to M. 
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We apply this strategy first to the following families of crrcuits: Let C' denote a family of 
depth-4 circuits C~ k' where n, k are positive integers, and C~ k computes GIP(A) for any , , 
A E {o,l}nxk. On the top of C~ k an unweighted threshold gate Tq is situatedj the input , 
wires of Tq is connected to subcircuits c~':'l, for i = 1,2, ... , z, where k = mi (mod 2mi) ., , 
are satisfied, and mi is odd positive integer, for i = 1,2, ... , z. For each i, C5m

'k) is a depth-3 .. ,n, 
circuit, with an arbitrary SYMMETRIC gate at the top (level 3), and MODm , gates of 
fan-in k on level 2. Moreover, the k input wires of MODm , gate G are connected to k gates 
Gb G2 , ••• , Gk of arbitrary type on level 1, where Gj may depend only on the variables of 
column Aj of matrix A. On level 0, there are the variables A~ and their negations. 

We prove in section 3: 

Theorem 20. Suppose that members of eireuit family C' eomputes GIP(A). Then the 
size of C~ k E C' is exponential in n. , 

Remark. The eonstra.i.nt of fan-in k on level 2 is not unreasonably strong in the ease of 
function GIP, sinee a depth-2 eireuit, with a PARITY gate (a SYMMETRIe gate) at the 
top, and AND-gates (one for each row of A) offan-in k on level 1 eomputes GIP(A) with 
size n + 1. Theorem 20 shows, that if we exchange the AND-gates on level 1 to MODk 
gates, (substituting m = k in Theorem 20), for an odd k, then these gates are 1 exaetly 
when all of their input-wires are 0 or all of them is 1. This "sm all " change blows up the 
size ofthe cireuit exponentially, even when a MAJORITY gate is allowed to put above the 
symmetrie gates. 

By our knowledge, this is the first non-trivial lower bound result for erreuits eontaining 
MODm gates for eomposite m. Results of Razborov [Rl] and Smolen6ky [Sm] gives expo­
nentiallower bounds when m is prime. 

When the modulus is 2, we ean get a result without unnatural restrictions: 

Theorem 21. Suppose that family C" of depth-3 eireuits C~ k computes GIP(A) for any 
A E {O, l}nXk, where ' 

-C~,k has an unweighted threshold gate at the top, 

-MOD2k-l gates on the seeond, and MOD2 gates on the nrst level, 

-variables Ai with their negations on level o. 

Then the size of C~,k is exponential in n. I 

The key step in the proofs of Theorems 20 and 21 are the eonstruetions of some pro­
toeols, which eomputes the output of a cireuit with few eommunieated bits. Considering 
these protoeols, one ean find several very interesting exponential gaps between the eom­
munieation eomplexities of eztremely closely related funetions. To deseribe our results, we 
define two eomplexity classes: 
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Definition 4. Let G = {gn,k In, k E N, gn,k : {O, I}nxk ~ N}, where N denotes the set 
ofnatural numbers. We say that aG is multi-party ea8Y if3c > 0 such that for all gn,k E G 
C(k)(gn,k) ~ 2ck log n. Let ME denote the family of all multi-party easy sets. We say 
that G is multi-party hard, if 3c' > 0 such that for all gn,k E G C(k)(gn,k) ~ n2-c' k. Let 
MH denote the family of all multi-party hard sets. 

Theorem 3 shows that GIP is in MB. 

In Section 2 we show several surprising theorems about the membership in the classes MH 
and ME, and these theorems will be the basis of proving the circuit results: 

Theorem 11. Let m be an odd, positive integer, let 0 ::; l ::; m - I, and k = m + 2l 
(mod 2m). Let A E {O, I}nxk. Then the number of those rows of A which are congruent 
to l (mod m), is in ME. 

With l = 0 we get that the number of rows divisible by m is in ME. However, not every 
congruence-class can be counted easily, even with the assumptions of Theorem 11: 

Corollary 13. Let m be odd, and k = m (mod 2m). Then the number of rows congruent 
to 1 (mod m) is in MH. 

For even m, congruence-class counting is hard: 

Theorem 12. Let A E {O, I}nxk, and let m be an even positive integer. Then to compute 
the number of that rows of A, which are congruent to l (mod m) is in MH, for any integer 
l. 

H m = 2, at least a modular result is easy: 

Theorem 14. The function, which is defined to be the number of even rows of A, mod 
2k - 1, is in ME. 

From Theorem 3, the number of the all-I rows is in MH. 

Corollary 15. Let k be an oddpositive integer. The function which gives the number of 
the all-O rows plus the number of the all-l rows of Ais in ME. 
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2. The protocol 

Definition 5. Let A E {O, l}nxk, and let m, zEN. Suppose that 1 ~ j ~ n. We say 
that row Ai is congruent to z (mod m), iff 

k 

LA{ z (mod m). 
i=1 

We say that row Ai is divisible by m if it is congruent to 0 (mod m). 

The goal of the players in protocol MOD m is to compute the number of the rows of A 
in every congruency-elass, mod m. 

Notation 6. We denote the elements of vector space Nm by small-case greek letters, and 
we index their coordinates !rom ° through m - 1. 

Definition 7. Let A E {o,l}nxk and mE N. Let 

denote a vector whereöi is thenumberofthat rows of A, which are congruent toi (mod m). 
Let v E {O,I}k, then CT(v,A) denotes the number ofthat rows of A, which are equal to 
v. Let 0 = (0,0, ... ,0) E {O, l}k, and 1 = (1,1, ... ,1) E {O, l}k. 

The fundamental strategy of the players in protocol MOD m is the following: Player Pi 
(1 ~ i ~ k) assumes that column i of A, Ai is the all-I vector. PI communicates the 
number of rows in separate congruency- elasses, and then P2 corrects him in case of that 
rows, which begin with 0, instead of the assumed 1. Then P3 corrects P2 , in case of that 
rows, which begins with two zeros, and so on, until Pk comes. Then Pk corrects Pk- I in 
case of that rows which begins with k - 1 zeros. The protocol makes errors only in the 
case of that rows, for which neither of the assumptions were satisfied: the rows with k 
O's. Every other row will be counted correctIy: since at least one player's assumption was 
right, he saw the rowentirely, and counted it to the proper congruency-class, corrected 
the errors of the others. 

Now we present a more detailed description of the protocol, together with its analysis. 
(The protocol itself is typesetted in typevriter font, while the analytical remarks are 
in roman) 

Protocol MOD m 

PI begins the communication. 

Since PI assumes that the first column of A is the all-I vector, PI is assumed to know the 
entire input, so he can communicate any function of it. 
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PI first communicates ao, the number of those rows, which are congruent to 
o (mod m), second al, the number of rows, congruent to 1 (mod m), ... , 
and last am-I, the number of rows, congruent to m -1 (mod m). 

So PI communicates vector 
a = (aO,al, ... ,am-l) 

oflength O(mlogn). Let us note that 

m-I 

Lat =n. 
t=o 

PI correctly counts that rows, which begins with a 1, but if a row begins with a 0, and 
PI counted it to at then correct1y it would have been counted to a(t-I)modm' 

P2 communicates next. 

Since PI already advertised vector a, the task of P2 is only to correct the errors made by 
PI. P2 knows where PI made an error: those rows begin with O. 

Suppose that row Ai begins with a 0, and P2 

--- using his assumption that A2 is the all-I vector 

sees that Ai is congruent to l (mod m). 

P2 knows, that PI assumed that the first entry of Ai is 1, and assumes that the second 
entry in Ai is also 1, so P2 assumes that PI counted erroneously Ai to that rows, which 
are congruent to l + 1 (mod m). 

P2 subtracts 1 from the number at+1 (mod m) and adds 1 to at. P2 repeats 
this for all rows, beginning with 0, but communicates only the vector--sum 
of the corrections: 

ß(2) = (ß~2), ß~2), ... , ß~~I)' 

where ß~2) the number of those rows which begin with 0 and P2 sees them to 
be congruent to i, minus the number of those rows, which begin with 0 and 
P2 sees them to be congruent to i-I (mod m). 

Note that 
m-I 

L ß~2) = 0, 
t=o 

and ß(2) can be communicated with O( m log n) bits. 

P3 , after that P4 , ... , Pi - I communicates (i ~ k), and 

Pi communicates next . . 

The task of Pi is to correct errors, committed by Pi-I' Until now, all of the rows were 
counted correctly, w hich contain at least one bit 1 in the first i-I positions. 
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Pi deals only with rovs which begin with i - 1 zeros. Suppose that a row, 
Ai, begins vith i -1 zeros, and Pi sees it to be congruent to l (mod m). 

Then Pi assumes that P i - I has seen Ai to be congruent with l + 1, so he corrects Pi-I. 

However, so far P i - I have corrected Pi-2, P i - 3 , ••• , PI with an assumption that AL I = 1, 

but Pi knows that ALl = 0, so Pi should also correct the correction8 of Pi-I. 

Let Pi communicate 
ß Ci) - (ßCi) ßCi) ßCi)) 

- 0' I , ••• , rn-I , 

the vector--sum of the correction vectors. 

Since Pi knows the strategy of the other players, and assumes to know the whole input, 
he can simulate their computation, and can correct their errors. So Pi computes ßCi), and 
can communicate it with O( m log n) bits. Let us note again, that 

rn-I 

L ß~i) = o. 
l=O 

When Pk has communicated ßCk), all players compute -- privately -- the 
vector--sum 

k 

l' = a + L ßC i) • 

i=2 

End of protocol MOn m 

The players of this protocol uses O( mk log n) bits of communication. 

Let us observe that if no row of Ais equal to 0, then 

since every row is correctly counted by one player, and that player corrected all the previous 
errors, for that row. 



the m X m cyclic-right-shift permutation-matrix. 

Lemma 9. 

(1) 'Y = 6(m)(A) + CT(O, A)(JL - v) 

where v = (1,0,0, ... , 0), and JL = v - v(I - II)k. 

Proof. In protocol MOn m players count correctly all the rows, except those, which are 
equal to o. In fact, they never count the O-rows, since no player's assumption is compatible 
with O.Player Pi for each row 0 compute some vector JL(i), which they add up to JL at the 
end: 

k 

JL = LJL(i), 

i=I 

instead of the correct v = (1,0,0, ... ,0), this shows the correctness of equation (1). 

Our remaining task is to compute JL. 

PI counts 0 to rows, congruent to 1 (mod m), so he adds the following JL(I) to its com­
municated vector a, for each row 0: 

JL(I) = (0,1,0, ... ,0). 

P2 also counts 0 to rows, congruent to 1 (mod m), and he assumes, that PI counted the 
row to the rows, congruent to 2 (mod m). So P2 adds 

JL(2) = (0,1,0, ... ,0) - (0,0,1,0, ... , 0) = JL(I) - JL(I)II = JL(I)(I - II) 

to its ß(2), where I denotes the m x m unit-matrix. 

Now let 2 :::; i :::; k - 1, and suppose that 

(2). 

We state that PHI communicates JL(i), the same corrections to PI, P2, ... , Pi - I as Pi has 
communicated, since Pi assumes that bit i is the only I-bit in the row, while PHI assumes 
that bit i + 1 is the only 1-bit in the row, and these assumptions are eqUivalent, from the 
viewpoints of Pb P2, ... , Pi-I, so when Pi and PHI correct them, they must communicate 
the same number. 
However, PHI corrects Pi, too. PHI assumes that Pi sees one more bit than himself, so 
PHI assumes that Pi has computed the correction-vectors for PI, P2, ... , Pi - I as himself, 
but with a circular right-shift. So to correct Pi, PHI should subtract JL(i)II from JL(i): 
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We have got that 

k 

P. = 2: p.(i) = p.(1)((1 - TI)O + (I - TI)l + ... + (I _ TI)k-l). 
i=l 

Using that p.{l) = vTI, 

(3) p. = vTI((1 - TI)O + (I - TI)l + ... + (I _ TI)k-l) 

Multiplying both sides of (3) from right by (I - TI) - I = -TI: 

-p.TI = vTI((1 - TI)k - I), 

since TI COInmutes with its powers, 

(4) -p.TI = v((1 - TI)k - I)TI. 

Multiplying both sides of (4) with _TI-I, from right: 

p. = v - v(1 - TI)k , 

and this equation proves the theorem. • 

Lemma 10. 
s(m)(A) = 'Y - CT(O, A)6, 

Proof. From the binomial theorem, 

Since TIm = I, we can write 

(5) 
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It is easy to see, if a matrix is multiplied by v from the left, the result is the first row of 
the matrix. When a row-vector is multiplied by TIthe effect is the circular right-shift of 
the coordinates; this also holds for the first rows of the powers of n: the first row of I is 
1,0, ... ,0, the first row of TI is 0,1,0, ... , 0, the first row of n2 is 0,0,1,0, ... ,0, ... , the first 
row of nm - 1 is 0, ... ,0,1. 
From (5) we got: 

(6) 

where 

Bj = 
O<i<k 

i=j (m-;;d m) 

Lemma 9 together with (6) implies Lemma 10. • 

Theorem 11. Let m be an odd, positive integer, let ° ::; I. ::; m - 1, and k = m + U 
(mod 2m). Let A E {O, l}nxk. Then the number of those rows of A which are congruent 
to I. (mod m), is in ME. 

Proof. By Lemma 10, 

Bl = ~ (_l)i(~) = ~ (~) - ~ (~) -
O<i<k O<i<k O<i<k 

i=l fm-;;d m) i=l (m-;;d m) i=l (m~d m) 
i even i odd 

- ~ (~) - ~ (k~J = ~ (~) - ~ (;) = 0, 
O<i<k O<i<k O<i<k O~j~k 

i=l (m~d m) i=l (m~d m) i=l (m~d m) j=l (mod m) 
i even i odd i even j even 

since k is odd, and k - i == I. (mod m). 

So, '"(l = 6~m)(A), and since protocol MOn m computes '"( in ME, we are done. I 

Theorem 12. Let A E {O, l}nxk, and let m be an even positive integer. Then to compute 
the number of that rows of A, which are congruent to I. (mod m) is in MH, for any integer 
1.. 

Proof. We may assume that 0::; I. ::; m -1. From Lemma 10, 

(7) 

and 

O<i<k 
i=l (m~d m) 

11 



since every summandis ofthe same sign. k players, who compute c5~m) with communicating 
c bits can compute CT(O,A) with communicating c + O(kmlogn) bits, using protocol 
MOn m, and equation (7). However, Theorem 3 shows (interchanging the roles of bits 
1 and 0 in its proof), that computing CT(O, A} needs O(n/4k ) bits to communicate, and 
since any player can compute 6 without any communication, we are done. • 

Corollary 13. Let m be odd, and k = m (mod 2m). Tben tbe number ofrows congruent 
to 1 (mod m) is in MB. 

Proof. As in the proof of Theorem 12, we need to prove that 61 =I O. Let us suppose that 
60 = 61 = O. Using Lemma 10, and the Pascal-triangle equalityfor binomial coeflicients, 
we get: 

(k ~ 1) + (2~++\) + (4~++\) + ... + (2::: 1) = 

= (~: ~) + (3~ ++\) + ... + ((28 : ~~ + 1) , 

where k = (2s + 1)m, and we assume that 8 is even. From here: 

(k + 1) _ (k + 1) + ( k + 1 ) _ (k + 1) + ... + ( k + 1 ) _ (k + 1) = 
102m + 1 2m sm + 1 8m 

( k + 1) (k + 1) (k + 1) (k + 1) (k + 1 ) (k + 1 ) 
m + 1 - m + 3m + 1 - 3m + ... + (s - 1)m + 1 - (s - 1)m . 

Every difference, counting from right to left, at the left side of the previous equation is 
strictly greater than the appropriate difference at the same position at the right side, so 
the equation cannot be true, which proves our statement. The proof is similar for odd 8 . 

• 
Let A E {O, 1}nxk. A row of A is called even, if it is divisible by 2. Theorem 12 shows, 
that the number of even rows of A is in MB. However: 

Theorem 14. Tbe function, wmcb is defined to be tbe number of even rows of A, mod 
2k - 1 •• ME ,1S m . 

Proof. Protocol MOn m, with m = 2, computes vector 

,= c5(2)(A) + CT(O, A) (L (~),- L (~)) = c5(2)(A)+CT(O,A)(2k
-

1 ,-2k
-

1
). 

O<i<k O<i<k 
i even i odd 

The first coordinate of I is congruent to c5~2) (mod 2k - 1 ), and this proves the statement . 

• 
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From Theorem 3, the number of the all-I rows is in MB. 

Corollary 15. Let m be an odd positive integer. The function which gives the number 
of the all-O rows plus the number of the all-l rows of A is in ME. 

Proof. Let m = k and l = ° in Theorem 11. • 

3. Circuits with mod m gates 

Definition 16. Let C* be a family of depth-3 circuits C(m1c), where n and k are positive n, 
integers, m is odd and positive, and k = m (mod 2m) is also satisned. Moreover 

- the input of C~":c) is A for A E {O, 1 }nX1c, , 
- on the bottom level (level 0) situated the variables A~, with their negations; 

- on the top (level 3), there is a symmetric gate, 

- there are MODm gates of fan-in k on the second level; 

- the k input wires of MODm gate G are connected to k gates of arbitrary type 
GI, G2 , ••• , G1c, situated on the first level, where Gi may depend only on the variables of 
column Ai of matrix A. 

Theorem 17. Suppose that members of the circuit family C* computes GIP(A). Then 

the size of C~~) is exponential in n. , 

Proof. Let us eonsider cireuit C~j/, computing GIP(A), A E {O, l}nx1c. Let us consider 
k players, such that player i knows every column of A, except column i, for i = 1,2, ... , k, 

and suppose that all the players know eircuit C~j/. On the top of the circuit there is a 
symmetrie gate, and the output of that gate depends only on the number of MODm gates, 
evaluated to 1, on level 2. 

Players will collectively compute the number of MODm gates, evaluated to 1. To do 
this, first they - individually, without any eommunication - build a matrix B. B has k 
columns, and each row of it corresponds to one of the MODm gates of the cireuitj suppose 
that row Bi corresponds to a MODm gate G, and G has input-gates G l , G2 , ••• , G 1c on the 
first level. Then let B; be equal to the output of Gj. 

Since G j depends only on the variables of column j of A, Player j knows all the 
columns of B, except column j, B j. 

Let us observe that Bi is divisible by m exactly when G is evaluated to 1. 

Let the size of C~~) be N. B has at most N rows. From Theorem 11, protocol MOn 
m eomputes the number of rows B, divisible by m, with communicating 

O(mklogN) 
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bits, and Theorem 3 shows that to compute GIP(A) the players should communicate 

n(;) 
bits, so 

O(mklogN) = n (;) 
or 

• 
The next theorem does not have unnatural restrictions, but we can prove it only with 
modulus 2: 

Theorem 18. Suppose that family C** of depth-2 circuits Cn,1c computes GIP(A) for 
A E {O, l}nXIc, where 

- Cn,1c has a MOD2k-l gate at the top, and MOD2 gates at the nrst level. 

Then the size of Cn,1c is exponential in n. 

Proof. Suppose that there are N MOD2 gates in Cn,lc. As in the proof of Theorem 
17, players build a matrix B E {O,l}nXIc in the following way: each MOD2 gate G is 
corresponded to a row of B, Bi, such that entry B; is the mod 2 sum of that input­
variables of G, which are also in column j of A. Let us observe that Gis evaluated to 1 üf 
the sum of Bi is even. Using Theorem 14, the result follows. • 

With standard techniques of [HMPST] and [GH], we can generalize Theorems 17 and 18: 

Definition 19. Let C' denote a family of depth-4 circuits C~,Ic' where n, k are positive 
integers, and C~,1c computes GIP(A) for any A E {O, i}nxlc. On the top of C~,1c an 
unweighted threshold gate Tq is situated; the input wes of Tq is connected to subcircuits 

C(m.).r . 1 2 .L. C(m.) h th .r C(m) 'th . D.J! 't' in Ic' lor 1, = , , ... , Z, W.llere in Ic as e same lorm as n Ic Wl m = mi m eunJ lon , , , , , 
16. 

Theorem 20. Suppose that members of circuit family C' computes GIP( A). Then the 
size of C~ Ic E C' is exponential in n. , 

Proof. If C~,1c of size N computes GIP(A) then - by Lemma 2 of [GH] or Lemma 3.3. of 
[HMPST] - at least one ofthe depth-3 subcircuits computes GIP(A) or 1-GIP(A) correctly 
on at least 
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fraetion of the inputs. Theorem 17 shows that the output of that depth-3 subcireuit ean 
be eomputed with O(miklogN) eommunieation. From Theorem 3, with e = 1/2N: 

O(miklog N ) = n C; -logN) , 

and this eompletes the proof. • 

Theorem 21. Suppose that familye" of depth-3 circuits c~ k computes GIP(A) for any , 
A E {0,1}nxk, where 

-C~ k has an unweighted threshold gate at the top, , 
-MOD21o-1 gates on the second, and MOD2 gates on the nrst level, 

-variables A{ with their negations on level o. 
Then the size of C~ k is exponential in n. , 

Proof. The proof follows from Theorems 18 and 3, exactly like Theorem 20 from Theorems 
17 and 3. • 

4. Open Problems 

- Only 0-1 matriees ean be handled by our protoeol MOn m. We would get more 
attraetive cireuit applieations if, for example, the number of rows, divisible by 3, had been 
eomputed in ME, for a matrix with entries 0, 1 and 2. This would show that anyeireuit 
of depth 3, with a threshold gate at the top, arbitrary symmetrie gates (e.g. MOD2 ) gates 
at level 2 and MODg gates at level 1 need exponential size to eompute GIP. 

- All of our protoeols are oblivious in the sense that the eommunieation and the numbers 
eommunieated by the players do not depend on the messages, eommunieated earlier. It 
is not dear, if the non-oblivious eommunieation is stronger or not than the oblivious 
eommunieation in this model. 

- In our protoeol the players play only one round - everybody speaks at most onee. Are 
the two- or more-round protoeols stronger than the one-round ones? 

15 
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