Using Algebraic Specification Languages for Model-Oriented Specifications

Hubert Baumeister

MPI-I-96-2-003 February 1996
Author's Address

Max-Planck-Institut für Informatik
Im Stadtwald
66123 Saarbrücken, Germany
hubert@mpi-sb.mpg.de

Acknowledgements

The research described in this paper was supported in part by the ESPRIT Basic Research Working Group 6112 COMPASS (A Comprehensive Algebraic Approach to System Specification and Development).
Abstract

It is common belief that there is a substantial difference between model-oriented (eg. Z and VDM) and algebraic specification languages (eg. LSL and ACT-ONE) wrt. their applicability to the specification of software systems. While model-oriented specification languages are assumed to be suited better for the description of state based systems (abstract machines), algebraic specification languages are assumed to be better for abstract datatype specifications. In this paper we shall demonstrate how an algebraic specification language (the Larch Shared Language) can be used to write specifications of abstract machines in the style of Z and how support tools for algebraic specification languages, eg. type checker and theorem provers, can be used to reason about abstract machines.

Keywords

abstract data type, algebraic specification, model-oriented specification, Z, Larch Shared Language, abstract machine, institution
1. Introduction

In the literature (eg. [16, 15]), there is a perceived difference between model-oriented and algebraic specification languages wrt. their applicability to the specification of software systems. Model-oriented specification languages are assumed to be better for the specification of state-based software systems (abstract machines) because of their implicit handling of the state, which may be called implicit state approach and is closely related to how imperative programming languages deal with state.

In contrast, algebraic specification languages are assumed to be better for the specification of (functional) abstract datatypes. When algebraic specification languages deal with abstract machines, they do so in a functional way by adding the state of the machine as an additional parameter to the operations of the machine (cf. [9]). This may be called explicit state approach.

In this paper we shall give a model for abstract machines parameterized by a model for the state. The state as algebra approach [8, 12, 7, 18, 4, 11, 1, 6] is used to model the state of an abstract machine as a $\Sigma\text{-algebra}$ or, more general, as a $\Sigma\text{-structure}$ in an arbitrary institution (cf. [10]). For the operations of the abstract machine we use the relations as abstract datatype approach [3] to model the operations as sets of $\Sigma\text{-algebras}$ (structures). This model of an abstract machine will allow us to specify abstract machines in the Z style but using the Larch Shared Language (LSL) [13] instead of Z. We shall also show how the support tools for LSL (the LSL type checker and the Larch Prover) can be used to reason about abstract machines.

Preliminaries. The Larch Shared Language is based on many sorted, first-order logic with equations. A many sorted signature Σ consists of a set of sorts S and a set O of sorted function symbols $f: w \rightarrow s$, where $w \in S^*$ and $s \in S$. A signature morphism $\sigma: \Sigma \rightarrow \Sigma'$ is a mapping from the sorts of Σ to the sorts of Σ' together with a mapping from the function symbols of Σ to the function symbols of Σ' respecting the sort mapping.

A $\Sigma\text{-algebra}$ A consists of a family of sets s_A for each sort s in S and a total, deterministic function $f_A: w_A \rightarrow s_A$ for each function symbol $f: w \rightarrow s$ in O. For each signature morphism $\sigma: \Sigma \rightarrow \Sigma'$ there exists a function \downarrow_{σ} mapping a Σ'-algebra A to a Σ-algebra $A\mid_{\sigma}$ by $s_{A\mid_{\sigma}} = \sigma(s)_A$ for each sort and function symbol s from Σ'.

$\Sigma\text{-formulas}$ in LSL are universally quantified equations built from terms over Σ. Predicates are modeled by boolean functions. The
satisfaction relation \(\models \) between \(\Sigma \)-algebras and \(\Sigma \)-formulas over the same signature is defined as usual.

An abstract datatype of signature \(\Sigma \) is a set of \(\Sigma \)-algebras \(M \). Using loose semantics, a set of \(\Sigma \)-formulas \(F \) defines an abstract datatype by

\[
M = \{ A \mid A \models F \}
\]

A Larch trait is a signature together with a set of formulas.

The approach presented in this paper can be generalized from many sorted first-order logic with equations to an arbitrary logic formalizable as an institution. Here we will only recall the definition of institutions, for more details see the paper by Goguen and Burstall [10]. An institution \(I = \langle SIGN, Str, Sen, \models \rangle \) consists of

- a category of signatures \(SIGN \),
- a functor \(Str: SIGN \rightarrow CAT^{op} \) assigning to each signature \(\Sigma \) the category of \(\Sigma \)-structures and to each signature morphism \(\sigma: \Sigma \rightarrow \Sigma' \) a forgetful functor \(\bot: Str(\Sigma') \rightarrow Str(\Sigma) \),
- a functor \(Sen: SIGN \rightarrow SET \), assigning to each signature \(\Sigma \) the set of \(\Sigma \)-formulas and to each signature morphism \(\sigma: \Sigma \rightarrow \Sigma' \) a translation \(\delta \) of \(\Sigma \)-formulas to \(\Sigma' \)-formulas, and
- a family of satisfaction relations \(\models_{\Sigma} \subseteq Str(\Sigma) \times Sen(\Sigma) \) \(\Sigma \in SIGN \) indicating whether a \(\Sigma \)-formula \(f \) is valid in a \(\Sigma \)-structure \(m \) (\(m \models_{\Sigma} f \) or for short \(m \models f \))

where the satisfaction condition holds: for all signature morphisms \(\sigma: \Sigma \rightarrow \Sigma' \), formulas \(f \in Sen(\Sigma) \) and structures \(m' \in Str(\Sigma') \)

\[
m' \models_{\sigma} f \quad \text{iff} \quad m \models f.
\]

Implicit State Approach. An abstract machine consists of a set of states \(St \), a set of initial states \(I \subseteq St \) and a family of operations \(Op \). Operations \(op \) from \(Op \) are relations between possible input values of the operation and the state before (pre-state) and the state after the operation (post-state) and possible output values. The view of operations as relations allows the modelling of non-deterministic state changes and partiality. Other names for abstract machines are abstract datatypes (with state) and dynamic abstract datatypes.

As an example of abstract machines and the way they are specified using a model-oriented language, we give part of the specification of an employment agency, from Middelburg [16], using Z. An employment agency keeps a list of associations of people who are looking for a job to their skills and a list of vacancies. A vacancy is modeled by a pair of the company looking for an employee and the required skills for the jobs. Only one person is allowed to apply for a job at any time whereas
a company may offer several jobs simultaneously. Here we model only
two operations, Apply and Subscribe. The Apply operation adds a
person and his/her skills and the Subscribe operation adds vacancies
to the agency database. The Subscribe operation returns a vacancy
number to identify the job offer for later retrieval. The specification is
generic with respect to the sets Person, Skill and Company.

[Person, Skill, Company]
The set Skills is the set of finite subsets of Skill, denoted by \(\mathbb{F} \text{Skill} \),
and Vacno is just another name for the set of natural numbers.

\[
\text{Skills} = \mathbb{F} \text{Skill} \\
\text{Vacno} = \mathbb{N}
\]

The state space of the agency is given by the schema Agency.

\[
\begin{array}{|c|c|}
\hline
\text{Agency} & \\
\text{cands} : \text{Person} \to \text{Skills} & \\
\text{vacs} : \text{Vacno} \to \text{Vacdata} & \\
\hline
\end{array}
\]

The components of the schema are two partial functions cands and
vacs. The function cands maps a person looking for a job to the his/her
skills and the function vacs maps a vacancy number to a job offer.

\[
\begin{array}{|c|c|}
\hline
\text{Vacdata} & \\
\text{comp} : \text{Company} & \\
\text{skills} : \text{Skills} & \\
\hline
\end{array}
\]

The initial state of the agency is described by the schema Empty, stat-
ing that cands and vacs, viewed as sets of tuples, are the empty set.

\[
\begin{array}{|c|c|}
\hline
\text{Empty} & \\
\text{Agency} & \\
\text{cands} = \emptyset & \\
\text{vacs} = \emptyset & \\
\hline
\end{array}
\]

\(\Delta \text{Agency} \) introduces two copies of the state of the agency, an unprimed
one for the pre-state and a primed one for the post-state.

\(\Delta \text{Agency} = \text{Agency} \wedge \text{Agency}' \)

By convention, variable names decorated with a question mark are
used as input parameters and variables decorated with an exclama-
tion mark as output parameters of an operation. The operation Apply is
applicable only if the person \(p? \) is not already applying for a job. The
function vacs does not change and cands is updated at \(p? \) by \(s? \).
A job offer is introduced by using the \textit{Subscr} operation. The parameters are the company who offers the job and the set of skills the job requires. It returns the vacancy number for this job offer. The vacancy number is chosen non-deterministically but is required to be unique.

The function \textit{cands} does not change and \textit{vacs} is updated at \textit{n!} by an element of schema type \textit{Vacdata} that has \textit{c?} as its \textit{comp} component and \textit{s?} as its \textit{skills} component. The \textit{\mu}expression allows to refer to the components \textit{comp} and \textit{skills} of \textit{Vacdata} within the predicate of the set comprehension.

\textit{Explicit State Approach.} The usual way of modeling abstract machines using algebraic specifications is by providing a sort \textit{St} for the state space and adding an additional argument of sort \textit{St} to the functions representing the operations of the abstract machine. This approach is called explicit state approach because of the explicit representation of the state as a formal parameter to the operations. In contrast, the model-oriented approach is called implicit state approach because the state is not given as an argument to the operation but implicitly. As an example of the explicit state approach, we give the specification of the employment agency using the Larch Shared Language.

Again \textit{Person}, \textit{Skill} and \textit{Company} are generic sorts. The trait \textit{Set} for finite sets is included from the LSL library of traits to provide the
sort Skills of finite sets over Skill. The sort Vacdata is defined as the sort of records with components comp and skills.

Agency (Person, Skill, Company) : trait
 includes Set(Skill, Skills), Natural(Vacno for N)
 Vacdata tuple of comp Company, skills: Skills

The state space is modeled by a sort Agency and the initial state empty by the constant empty of sort Agency. No explicit model for the elements of the sort Agency is given, therefore functions are needed to observe the state. These observers are isCand, skillsFor, isVacNo and vacFor. The function isCand checks whether a person has applied for a job with a given agency or not. If a person has applied for a job then skillsFor returns his/her skills. Functions isVacNo and vacFor do a similar job for vacancies.

introduces
 isCand: Agency, Person → Bool
 skillsFor: Agency, Person → Skills
 isVacNo: Agency, Vacno → Bool
 vacFor: Agency, Vacno → Vacdata

empty: Agency
 apply: Agency, Person, Skills → Agency
 subscr: Agency, Company, Skills → Agency
 newVNo: Agency, Company, Skills → Vacno

The operations Apply and Subscribe are modeled by the functions apply, subscr and newVNo. Note that apply and subscr have an additional argument of sort Agency and return a value of sort Agency. Since LSL does not allow a function to return two values, the operation Subscr is split into two functions subscr and newVNo. The first returns a new agency and the second the vacancy number.

The axioms of the Agency trait describe the values of the observer functions for a given state, which is constructed from the operations empty, apply and subscr. Here we only give the axioms for isCand and skillsFor, the others are similar.

asserts
 forall a: Agency, p, p1: Person, c: Company,
 s, s1: Skills, n, n1 : Vacno
 ~isCand(empty,p);
 isCand(apply(a,p,s),p1) ⇔ p = p1 ∨ isCand(a,p1);
 isCand(subscr(a,c,s1),p1) ⇔ isCand(a,p1);
 skillsFor(apply(a,p,s),p1) = (if p = p1 ∧ ~isCand(a,p1)
 then s
 else skillsFor(a, p1));
 skillsFor(subscr(a,c,s1), p1) = skillsFor(a, p1);
One problem with this approach is that the specifier has to make the state of the abstract machine explicit as an argument to the operations of the abstract machine. This can be cumbersome in real life examples as Dauchy and Gaudel observe in [4] and “is in conflict with the tradition of imperative programming, where the state always remains implicit” [7].

One has to be careful when adding new operations to the abstract machine because all possible interactions of the new operations with the old operations and the observers have to be specified, and therefore, the resulting specification is likely to be unclear.

2. Algebraic Specifications and the Implicit State Approach

Another way to model abstract machines is by using the state as algebra approach [8, 12, 7, 18, 4, 11, 1, 6]. In this approach the state of an abstract machine is an algebra over a signature containing the components of the state. The state space \mathcal{S} is given by an abstract datatype, a set of algebras over the signature of the state. For example, the state of an employment agency is given by the following LSL trait:

```
Agency (Person, Skill, Company): trait
  includes
    Set(Skill, Skills),
    Natural(Vacno for N),
    FiniteMap(CandsMap, Person, Skills),
    FiniteMap(VacMap, Vacno, Vacdata)
  Vacdata tuple of company: Company, skills: Skills
  introduces
    cands : \rightarrow CandsMap
    vacs : \rightarrow VacMap

```

The components of the state are the constants cands of sort CandsMap and vacs of sort VacMap. CandsMap is the sort of finite maps from Person to Skills and VacMap the sort of finite maps from Vacno to Vacdata. FiniteMap is a trait from the LSL library introducing the sort of finite, partial maps from a domain sort to a range sort. The trait introduces the operations dom to test if an element is in the domain of a finite map f, update for changing f at c to d and apply to apply f to a value in its domain. The sorts Skills, Vacno and Vacdata are defined as in the explicit state approach.

The initial states of an abstract machine are given by an abstract datatype having fewer models than the abstract datatype for the state space.
Empty : trait
 includes Agency
 asserts equations
 cands = {};
 vacs = {}

Relations as Abstract Datatypes. How do we specify the operations of the abstract machine? The proposal of this paper is to use again abstract datatypes to describe the operations, according to the relation as abstract datatype approach of Baumeister [3].

We start from the observation that each pair of algebras A and B of signature Σ can be combined to one algebra $A + B$ over the disjoint union of Σ and Σ. The signature $\Sigma \uplus \Sigma$ contains each symbol from Σ twice, primed and unprimed. Each disjoint union of signatures has associated two signature morphisms $\iota_1 : \Sigma \to \Sigma \uplus \Sigma$ and $\iota_2 : \Sigma \to \Sigma \uplus \Sigma$.

The first morphism ι_1 is the identity on Σ and the second maps a symbol s from Σ to a symbol s' in $\Sigma \uplus \Sigma$. The algebra $A + B$ is constructed from A and B such that the interpretation of s in $A + B$ is the interpretation of s in A and the interpretation of s' is the interpretation of s in B.

As a consequence any relation $R \subseteq \text{Alg}(\Sigma) \times \text{Alg}(\Sigma)$ can be viewed as a set $R' \subseteq \text{Alg}(\Sigma \uplus \Sigma)$. On the other hand, any set $S \subseteq \text{Alg}(\Sigma \uplus \Sigma)$ can be viewed as a relation $R \subseteq \text{Alg}(\Sigma) \times \text{Alg}(\Sigma)$ by defining R as

$$R = \{ (C \downharpoonright_{\iota_1}, C \downharpoonright_{\iota_2}) \mid C \in S \}$$

Thus, there is a one to one correspondence between relations $\text{Alg}(\Sigma) \times \text{Alg}(\Sigma)$ and sets $S \subseteq \text{Alg}(\Sigma \uplus \Sigma)$.

In practice, an algebra representing a state has two components, an environment component and a state component. This situation can be described by an inclusion of the environment signature Σ_{Env} into the state signature Σ by $\iota : \Sigma_{\text{Env}} \to \Sigma$. If A and B are algebras representing a state and R is a relation on states, we require that the environment components of A and B remain unchanged.

$$A \ R \ B \Rightarrow A \downharpoonright_{i} = B \downharpoonright_{i}$$

For example, the environment components of Agency are the sorts Skills, CandsMap, VacMap, Vacno, Vacdata and the operations on them. Their interpretation should not change when applying the operations of the abstract machine. The constants cands and vacs are the only state components of Agency. These are the only components allowed to change their interpretation by the operations of the abstract machine.
As above, we have the following property. For each pair of Σ-algebras A and B that share the interpretation of Σ_{Env} (eg. $A|_i = B|_j$), there exists a unique algebra $A +_i B$ over the pushout signature $\Sigma \uplus_i \Sigma$. $A +_i B$ is called the amalgamated sum of A and B (cf. [5]).

The morphism t_2 is again the identity on Σ and t_2 leaves all symbols in Σ from Σ_{Env} unchanged and maps s to s' if s is in Σ but not in Σ_{Env}. $A +_i B$ uses the same construction as $A + B$; however, this time $A +_i B$ is well defined for symbols s from Σ_{Env} if and only if the interpretation of s in A and in B are the same, but this follows from the requirement that $A|_i = B|_j$.

Again, there is a one to one correspondence between relations $R \subseteq \text{Alg}(\Sigma) \times \text{Alg}(\Sigma)$ such that $A \ R \ B \Rightarrow A|_i = B|_j$, and sets $S \subseteq \text{Alg}(\Sigma \uplus_i \Sigma)$. Because sets $S \subseteq \text{Alg}(\Sigma \uplus_i \Sigma)$ are just abstract datatypes of signature $\Sigma \uplus_i \Sigma$, operations on abstract machines can be built using techniques for building abstract datatypes. For example, we can give a set of formulas F over $\Sigma \uplus_i \Sigma$ and define a relation R by:

$$A \ R \ B \quad \text{iff} \quad A + B \models F$$

Note that sharing is essential in this approach because formulas over the disjoint union $\Sigma \uplus \Sigma$ can contain either primed or unprimed symbols but not both kinds together. Consider a constant c of sort s in Σ. Then $\Sigma \uplus \Sigma$ contains also a constant c' of sort s'. Now it is not possible to write a formula $c = c'$ to relate the interpretation of c in a Σ algebra A to the interpretation of c in the Σ algebra B because c and c' are of different sorts. However, if s is defined in the environment and c is a state component then $\Sigma \uplus_i \Sigma$ contains the constants c and c' of the same sort s. This allows us to write the formula $c = c'$.

In the employment example the trait DeltaAgency represents the pushout $\text{Agency} \uplus_i \text{Agency}$

$\text{DeltaAgency} : \text{trait}$

includes $\text{Agency}(\text{cands’ for cands, vacs’ for vacs}), \text{Agency}$

To specify the Apply operation of the employment agency, we have to give a specification of a set of $\text{Agency} \uplus_i \text{Agency}$ algebras. For this we include the trait DeltaAgency into a trait Apply.

$\text{Apply} : \text{trait}$
Apply introduces two new constants, \(p_in \) and \(s_in \), to represent the input values of the operation. Given an interpretation of \(p_in \) and \(s_in \) as \(p^n \) and \(s^n \), \texttt{Apply} denotes a relation between \texttt{Agency} algebras \(A \) and \(B \) such that

\[
\begin{align*}
cands_B &= \text{update}_B(\text{cands}_A, p^n, s^n) \\
vacs_B &= \text{vacs}_A
\end{align*}
\]

provided that \(\text{defined}_A(\text{cands}_A, p^n) \) does not hold. Note that the interpretation of \texttt{update} and \texttt{defined} in \(A \) is the same as in \(B \).

The specification of the \texttt{Subscribe} operation is given as follows, where \(n_out \) represents the output value of the \texttt{Subscribe} operation.

\texttt{Subscr : trait}

\[
\begin{align*}
\text{includes DeltaAgency} \\
\text{introduces} \\
p_in : \rightarrow \text{Person} \\
s_in : \rightarrow \text{Skills} \\
\text{asserts equations} \\
\quad \neg \text{defined}(\text{cands}, p_in); \\
\quad \text{vacs}' = \text{vacs}; \\
\quad \text{cands}' = \text{update}(\text{cands}, p_in, s_in)
\end{align*}
\]

Note the similarity of this specification of an employment agency with the Z specification of the employment agency from section 1 although we have used a model-oriented specification language, based on set theory, for one specification and an algebraic language, based on many sorted equational logic for the other.

We have chosen to model \texttt{cands} and \texttt{vacs} as constants of sorts \texttt{CandsMap} and \texttt{VacMap} because we wanted to stress the similarity of the LSL specification with the Z specification. However, since the logics used by Z and LSL are different, we might prefer to model the state of an employment agency by two total functions \texttt{cands}, from \texttt{Person} to \texttt{Skills}, and \texttt{vacs}, from \texttt{Vacno} to \texttt{Vacdata}, together with two predicates \texttt{knownCands} \(\subseteq \text{Person} \) and \texttt{knownVacs} \(\subseteq \text{Vacno} \). This gives the following traits for the state space and the \texttt{Apply} operation.
Agency (Person, Skill, Company): trait
 includes
 Set(Skill, Skills),
 Natural(Vacno for N)
Vacdata tuple of company: Company, skills: Skills
 introduces
 cands: Person → Skills
 vacs: Vacno → Vacdata
 knownCands: Person → Bool
 knownVacs: Vacno → Bool
Apply: trait
 includes DeltaAgency
 introduces
 p_in : → Person
 s_in : → Skills
 asserts
 forall p : Person, n : Vacno
 ¬knownCands(p);
 knownCands?(p) ⇔ p = p_in ∨ knownCands(p);
 cands?(p) = (if p = p_in then s_in else cands(p));
 knownVacs?(n) ⇔ knownVacs(n);
 vacs?(n) = vacs(n)

Institution Independence. The argumentation just presented holds for any institution where the category of signatures $SIGN$ has all pushouts and the model functor Str maps pushouts in $SIGN$ to pullbacks in CAT (eg. the institution has unique amalgamated sums [5, 2]). This allows the use of a model-oriented style for specifying abstract machines independent from the concrete logic used to specify the state space and the operations. We could take any of the variety of logics used for algebraic specifications, for example, total functions, partial functions, non-deterministic functions (multi-algebras), (conditional) equational logic, first-order (w/o constraints), higher-order logic or any other logic that can be given the form of an institution and has the above mentioned properties.

3. Using Operations on ADTs to define Abstract Machines

In the previous section we have seen that an abstract machine can be specified using abstract datatypes for describing the state space, the initial states and the operations of an abstract machine. We have defined these abstract datatypes by providing a signature and a set of formulas over this signature. Each algebra satisfying this set of formulas denotes
either a possible state or a pair of states in an relation. However, this is not the only way to define an abstract datatype. Another way is with the help of operations on abstract datatypes as defined, for example, by Sannella and Tarlecki in [17]. As abstract datatypes correspond to schemata in Z, the use of operations on abstract datatypes corresponds to the schema calculus of Z. In the following we give an example on how to use these operators to define an abstract machine of a stack from an abstract machine of a counter and an array.

Counter. The state of the counter has one component \(c \), which is set in the initial states to zero.

```plaintext
Counter : trait  Zero : trait
  includes Natural  includes Counter
  introduces \( c : \rightarrow N \)  asserts equations \( c = \text{zero} \)
```

The trait `DeltaCounter` defines the pushout of `Counter \(\uplus \) Counter`, where the definition of natural numbers is in the environment and \(c \) is the only state component.

```plaintext
DeltaCounter : trait  includes Counter, Counter (\( c' \) for \( c \))
```

The increment operation on the counter increments the state component \(c \) by one. The decrement operation decrements \(c \) only if \(c \) is not zero. Note that \(c' \) is not given explicitly in terms of \(c \) but only implicit by the solution of the equation \(\text{succ}(c') = c \).

```plaintext
Inc : trait  Dec : trait
  includes DeltaCounter  includes DeltaCounter
  asserts equations  asserts equations
  \( c' = \text{succ}(c) \)  \( c \neq \text{zero}; \text{succ}(c') = c \)
```

Array. The abstract machine specification of an array shows that not only constants can be state components but also functions. The state of an array has two functions `map` and `dom` as components. If `\(\text{dom}(n) \)` is true, `map(n)` yields the value of the array at index \(n \). In the empty array the domain function `\(\text{dom} \)` always yields false.

```plaintext
Array : trait  EmptyArray : trait
  includes  includes Array
  Natural  asserts
  introduces  forall \( n : N \)
  \( \text{map} : N \rightarrow E \)  \( \neg \text{dom}(n) \)
  \( \text{dom} : N \rightarrow \text{Bool} \)
```

The update operations assigns the value `v_in` to the map at `i_in`.
Update : trait
 includes DeltaArray
 introduces
 i_in : \rightarrow N
 v_in : \rightarrow E
 asserts forall n : N
 map'(n) = (if n = i_in then v_in else map(n));
 dom'(n) ⇔ n = i_in ∨ dom(n)

The get operation returns the value v_out for an index value i_in.

Get : trait
 includes DeltaArray
 introduces
 i_in : \rightarrow N
 v_out : \rightarrow E
 asserts forall n : N
 dom(i_in);
 map'(n) = map(n);
 v_out = map(i_in)

Stack Implementation. The state space of an abstract machine stack is
the union of the state spaces for the counter and the array.

StackState = Counter \uplus Array

StackState is the pushout of Counter and Array wrt. a common
environment containing the union of the environment components of
Counter and Array. Since the only operations available on traits in
LSL are the inclusion of traits and the renaming of symbols, StackState
is written as the following trait.

StackState : trait
 includes Array, Counter

The initial states of the stack are given by the union of the initial states
of the counter and the array.

Empty = Zero \uplus EmptyArray

Empty : trait
 includes Zero, EmptyArray

The push operation is

\text{Push} = \text{impose}\{i\textunderscore in = c\}\text{on}(\text{Update} \uplus \text{Inc})

The input parameter v_in of the update operation of the array is also
the input parameter of the push operation.
Push : trait
 includes Update, Inc
 asserts equations i_in = c

The pop operation pops the stack and returns the top of the stack in v_out.

\[\text{Pop} = \text{impose} \{ c' = i_{\text{in}} \} \text{on (Get __ Dec)} \]

Pop : trait
 includes Dec, Get
 asserts equations i_in = c'

4. Example of Proofs

One advantage of representing the state space and the operations of an abstract machine as abstract datatypes is the possibility of using tools for the specification language to apply to the specification of abstract machines. For example, we have used the LSL checker to type check all the LSL traits defining abstract machines.

In this section we will use the Larch Prover to prove the correctness of the abstract machine for a stack defined in the previous section. First, we have to give a more abstract specification of an abstract machine for a stack. To do this, we first specify a conventional (functional) abstract datatype of a stack. The trait Stack defines the sort S of stacks over elements of sort E.

Stack : trait
 introduces
 empty : \rightarrow S
 isEmpty : S \rightarrow \text{Bool}
 pop : S \rightarrow S
 top : S \rightarrow E
 push : E, S \rightarrow S
 asserts S generated by empty, push
 forall e : E, s, s1 : S
 push(e,s) = push(e,s1) \Rightarrow s = s1;
 top(push(e,s)) = e;
 pop(push(e,s)) = s;
 isEmpty(empty);
 \neg isEmpty(push(e,s));

The state space and the operations of the abstract machine of the abstract version of a stack are now defined with the help of Stack. The only state component of AStackState is the constant stack of sort S. AStackState and the initial state is given by
AStackState : trait
 includes Stack
 introduces stack : → S

and the operations push and pop by

APush : trait
 includes DeltaStack
 introduces e_in : → E
 asserts equations
 stack' = push(e_in,stack)

APop : trait
 includes DeltaStack
 introduces e_out : → E
 asserts equations
 stack' = pop(stack);
 e_out = top(stack)

To show that this abstract machine is implemented by the abstract machine of the previous section we use an abstraction relation between the state space of the implementation StackState and AStackState. Similar to the operations of an abstract machine we can define the abstraction relation Alpha by providing an abstract datatype over the pushout signature StackState ⊔ AStackState.

Alpha : trait
 includes StackState, AStackState
 introduces alpha: N → S
 asserts forall n:N
 alpha(0) = empty;
 succ(n) ≤ c ⇒ alpha(succ(n)) = push(map(n),alpha(n));
 stack = alpha(c)

Alpha is defined with the help of a function alpha from natural numbers to S, which depends implicit on the value of map in StackState. alpha creates a stack from a number and map. The relation between StackState and AStackState is established by the equation stack = alpha(c).

We then have to show that AEmpty equals Empty ⊔ Alpha and that Alpha ⊔ AOp is the same as Op ⊔ Alpha for all operations Op of the abstract machine stack where ⊔ denotes the composition of relations. Here we can only give the proof for the push operation, the proofs of the others are similar. We show that Alpha ⊔ APush equals Push ⊔ Alpha. First, the composition of relations is represented as an algebraic specification. For this we introduce new symbols for the intermediate states, stack'' in the first and map'', dom'' and c'' in the second case.

APush_o_Alpha : trait
 includes
Alpha (stack'' for stack),
APush (stack'' for stack, stack for stack')

Alpha_o_Push : trait
 includes Push (dom'' for dom', map'' for map', c'' for c'),
 Alpha (dom'' for dom, map'' for map, c'' for c)

In the next step Alpha \sqsupset APush and Push \sqsupset Alpha are included into one trait. We have to be careful to avoid name clashes; therefore, we decorate the input states, output states and the functions alpha with 1 and 2.
All : trait
 includes APush_o_Alpha (dom1 for dom, map1 for map,
 c1 for c, stack1 for stack, alpha1 for alpha)
 Alpha_o_Push (dom2 for dom, map2 for map,
 c2 for c, stack2 for stack, alpha2 for alpha)

Now we have to prove that if $e_{in} = v_{in}$, dom1 \equiv dom2, map1 \equiv map2 and $c1 = c2$ then stack1 = stack2.
 prove $e_{in} = v_{in}$ \land $c1 = c2$ \land \forall n (dom1(n) = dom2(n))
 \land \forall n (map1(n) = map2(n)) \Rightarrow stack1 = stack2

This can be proved using the Larch Prover without much difficulty given the lemma \forall n (n \leq c \Rightarrow alpha1(n) = alpha2(n)), which itself is proved by induction over n by the Larch Prover.

5. Conclusion

The novelty of the approach presented in this paper is to separate the model-oriented style for the specification of abstract machines from the logic used to talk about the state components and the relation between the state components of the pre- and post-state.

State space and operations of abstract machines are modeled by abstract datatypes, which can be defined as sets of Σ-structures in any suitable logic (institution) (cf. section 1 and [17]). Thus our method is parameterized by the notion of state, which is a Σ-structure in an institution. If we provide a model for the state of our abstract machines we get a method for specifying the operations of the abstract machines over this state. Therefore, a state can be an association of names to values and sets, as for example in \mathbb{Z} or an association of names to values (no sets) and (partial/total) functions on sets, as with algebraic specifications or more concrete state structures involving structured names, pointers, arrays etc. For example, if we model the notion of state of a programming language we get a specification language for abstract machines over this kind of state in the spirit of the family of Larch Interface Languages [13].
In Z the state space and the operations of an abstract machine are represented as schemata, which are sets definable and manipulatable within Z. Thus in Z the state space and the operations are modeled by sets, but also the values of state components are sets and elements of sets. The advantage of this approach is that we can reason within the logic of Z about abstract machines, the disadvantage is that this also fixes the logic for describing the state components and the relation between state components of the pre- and the post-state to set theory.

As in Z we are able to reason about the state space and the operations of abstract machines using the logic used for modeling the state (cf. the example in section 4). No additional logic is needed to reason about the operations of abstract machines. This is unlike, for example, COLD-K, where dynamic logic is used to specify the operations (see below).

All other implicit state as algebra approaches [8, 12, 7, 18, 4, 11, 1, 6] have in common that they use an algebraic logic to define the state space of an abstract machine and another logic, for example, local function updates, elementary modifiers, dynamic logic etc. to define the operations. Another difference is that most of these approaches fix the logics for defining the state space and the operations and are not formulated in a logic independent way.

For example, the evolving algebra approach by Gurevich [12] uses unsorted algebra for the state space and defines a transformation of an algebra A to an algebra B by a set of guarded local function updates of the form \(\text{if } b \text{ then } f(i) := t_o \). The semantics is that if \(b \) evaluates to true in \(A \) then the interpretation of \(f \) in \(B \) is \(f_B(x) = (t_o)_A \), if \(x = t_B \) and \(f_B(x) = f_A(x) \) otherwise. The interpretation of all other functions remains unchanged.

In the implicit state approach by Dauchy and Gaudel [4] the state space consists of many sorted algebras. The operations are functors on algebras built from elementary modifiers \(\mu\alpha c(p) = t \) by sequential and indifferent composition and using conditionals.

COLD-K [7] uses many sorted partial algebras for specifying the state space and Harel’s dynamic logic [14] to specify the operations, while Wieringa [18] uses order sorted algebra defined by equations and equational dynamic logic for the operations.

REFERENCES

