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Abstract

Entity-relationship-structured data is becoming more important on the
Web. For example, large knowledge bases have been automatically con-
structed by information extraction from Wikipedia and other Web sources.
Entities and relationships can be represented by subject-property-object
triples in the RDF model, and can then be precisely searched by structured
query languages like SPARQL. Because of their Boolean-match semantics,
such queries often return too few or even no results. To improve recall, it
is thus desirable to support users by automatically relaxing or reformulating
queries in such a way that the intention of the original user query is preserved
while returning a sufficient number of ranked results.

In this paper we describe comprehensive methods to relax SPARQL-like
triple-pattern queries, possibly augmented with keywords, in a fully auto-
mated manner. Our framework produces a set of relaxations by means of
statistical language models for structured RDF data and queries. The query
processing algorithms merge the results of different relaxations into a unified
result list, with ranking based again on language models. Our experimental
evaluation, with two different datasets about movies and books, shows the
effectiveness of the automatically generated relaxations and the improved
quality of query results based on assessments collected on the Amazon Me-
chanical Turk platform.
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1 Introduction

1.1 Motivation

There is a trend towards viewing Web or digital-library information in an
entity-centric manner: what is the relevant information about a given sports
club, a movie star, a politician, a company, a city, a poem, etc. More-
over, when querying the Web, news, or blogs, we like the search results
to be organized on a per-entity basis. Prominent examples of this kind of
search are entitycube.research.microsoft.com or google.com/squared/. Ad-
ditionally, services that contribute towards more semantic search are large
knowledge repositories, including both handcrafted ones such as freebase.com
as well as automatically constructed ones such as trueknowledge.com or dbpe-
dia.org. These have been enabled by knowledge-sharing communities such as
Wikipedia and by advances in information extraction (e.g., [9, 31, 71, 90, 77]).

One way of representing entity-centric information, along with structured
relationships between entities, is the Semantic-Web data model RDF. An
RDF collection consists of a set of subject-property-object (SPO) triples.
Each triple is a pair of entities with a named relationship. A small example
about books is shown in Table 1.1.

When triples are extracted from Web pages, they can be associated with
weights, reflecting extraction confidence, “witness” count (number of differ-
ent pages where the triple was seen), etc. Moreover, since text documents
can not be completely cast into structured data, keeping the textual context
from which the triples were extracted can be a valuable asset for search. This
way, we can combine structured querying for RDF triples with keyword or
phrase conditions about the associated context.

RDF data of this kind can be queried using a conjunction of triple pat-
terns, where a triple pattern is a triple with variables and the same variable
in different patterns denotes a join condition. For example, searching for
Pulitzer-prize winning science fiction authors from the USA could be phrased
as:



Subject (S) | Property (P) | Object (O)
Carl_Sagan wrote Contact
Carl_Sagan type American_Writer
Carl_Sagan type Astronomer
Carl_Sagan bornIn USA
Carl_Sagan wonAward Pulitzer_Prize
Contact type novel

Contact hasGenre Science_Fiction
Contact hasTag aliens

Contact hasTag philosopy
Jon_Krakauer | wrote Into_the_Wild
Into_the_ Wild | type biography
Into_the_Wild | hasTag adventure
Into_the_ Wild | hasTag wilderness

Jon _Krakauer | hasBestseller Into_Thin_Air
Jon Krakauer | citizenOf USA

Table 1.1: RDF triples

7a wrote ?b ; ?b hasGenre Science_Fiction ;
7a wonAward Pulitzer_Prize ; 7a bornln USA

This query contains a conjunction (denoted by “”) of four triple patterns
where 7a and ?b denote variables that should match authors and their books
respectively.

While the use of triple patterns enables users to formulate their queries
in a precise manner, it is possible that the queries are overly constrained and
lead to unsatisfactory recall. For example, this query would return very few
results even on large book collections, and only one - Carl Sagan - for our
example data. However, if the system were able to automatically reformulate
one or more conditions in the query, say, replacing bornln with citizenOf, the
system would potentially return a larger number of ranked results.

Additionally, each triple pattern can be associated with keywords in order
to query the associated context. For example, consider a query asking for
non-fiction best-seller books about mountaineering: ?a wrote ?b{non-fiction,
best-seller, mountaineering}

This query contains a single triple pattern augmented with 3 keywords. In
this case, the system has to return triples that match the structured part of
the query, and additionally whose context match the keywords in the query.
Again, relaxing keyword conditions (for example, by matching a subset of
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the keywords in the query), could potentially improve recall.

Note that the query expressions considered here should be seen as an
API, not as an end-user interface. As SPARQL is gaining momentum for the
Linking-Open-Data initiative and other RDF sources on the “Web of Data”,
it serves as an API for building semantically rich application on top of such
a query language.

1.2 Query Relaxation Problem

This paper introduces the query relaxation problem: automatically broaden-
ing or reformulating triple-pattern queries — which may be augmented with
keywords — to retrieve more results without unduly sacrificing precision. We
can view this problem as the entity-relationship-oriented counterpart of query
expansion in the traditional keyword-search setting. Automatically expand-
ing queries in a robust way so that they would not suffer from topic drifts
(e.g., overly broad generalizations) is a difficult problem [15].

The problem of query relaxation for triple-pattern queries has been con-
sidered in limited form in [89, 49, 32, 48] and our previous work [33]. Each of
these prior approaches focused on very specific aspects of the problem, and
only two of them [89, 33] conducted experimental studies on the effectiveness
of their proposals. These techniques are discussed in more detail in Section
2.

Our Approach. This paper develops a comprehensive set of query relax-
ation techniques, where the relaxation candidates can be derived from both
the RDF data itself as well as from external ontological and textual sources.
Our framework is based on statistical language models (LMs) and provides
a principled basis for generating relaxed query candidates. Moreover, we de-
velop a model for holistically ranking results of both the original query and
different relaxations into a unified result list.

Our query relaxation framework consists of the following four types of
relaxations:

e Entities (subject, object) and relations (property) specified in a triple
pattern are relaxed by substituting with related entities and relations.
For example, bornln could be substituted with citizenOf or livesln and
Pulitzer_Prize could be replaced by Hugo_Award or Booker_Prize.

e Entities and relations specified in a triple pattern could be substituted
with variables. For example, Pulitzer_Prize could be replaced by ?p to



cover arbitrary awards or wonAward could be replaced by ?r, allowing
for matches such as nominatedFor and shortlistedFor.

e Triple patterns from the entire query could be either removed or made
optional. For example, the triple pattern ?b hasGenre Science_Fiction
could be removed entirely, thus increasing the number of authors re-
turned.

e Keywords associated with triple patterns may be dropped entirely, or
only a subset of them considered. Additionally, expansion terms could
be also considered for each keyword.

1.3 Contributions

The technical contributions of this paper are the following:

e We develop a novel, comprehensive framework for different kinds of
query relaxation, in an RDF setting, based on language modeling tech-
niques.

e Our framework can incorporate external sources such as ontologies and
text documents to generate candidate relaxations.

e We harness the statistical LMs and relaxation weights for computing,
in a principled manner, query-result rankings.

e We evaluate our model and techniques with two datasets — movie data
from imdb.com and book information from the online community li-

brarything.com, and show that our methods provide very good results
in terms of NDCG.

The rest of the paper is organized as follows. We start by giving some
technical background in Section 3. Our relaxation framework is described in
Section 4. In Section 5 we describe our result-ranking model. We report on
our evaluation in Section 6 and discuss related work in Section 2.



2 Related Work

One of the problems addressed in this paper is that of relaxing entities and
relations with similar ones. This is somewhat related to both record linkage
[63], and ontology matching [75]. However, the latter problems deal with
finding identical concepts (whether column names, ontological concepts, en-
tities, etc.), while we are concerned with finding a match which is close in
spirit to a given entity or relation. When a given entity or relation does
not have a candidate which is “close enough”, we identify this and offer a
substitution with a variable as the best relaxation candidate. Other kinds of
query reformulations, such as spelling corrections, or using alternative words
to express the same concept (e.g., ‘Big Apple” for “New York”), etc. di-
rectly benefit from the research on record linkage, entity disambiguation and
ontology matching, but are not the focus of this work.

Query reformulation in general has been studied in other contexts such as
keyword queries [24] (more generally called query expansion), XML [5, 58],
SQL [20, 89] as well as RDF [49, 32, 48]. While we can make use of query
expansion strategies for keyword conditions, we deal primarily with triple-
pattern queries over RDF data. The problem of query relaxation for triple-
pattern queries is quite different from an XML or SQL setting, given that
RDF provides graph-structured, non-schematic data. XML is limited to tree-
structured data and relaxations on the navigational predicates (which are not
found in triple pattern queries). And relational approaches expect a database
schema and would not support variable substitutions.

For RDF triple-pattern queries, relaxation has been addressed to some
extent in [89, 49, 32, 48, 33]. This prior work can be classified based on several
criteria as described below. Note that except for [89] and our previous work
in [33], none of the other papers report on experimental studies.

Scope of relaxations. With the exception of [32, 49], the types of relax-
ations considered in previous papers are limited. For example, [89] considers
relaxations of relations only, while [48, 33| consider both entity and relation
relaxations. The work in [33], in particular, considers a very limited form
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of relaxation — replacing entities or relations specified in the triple patterns
with variables. Our approach, on the other hand, considers a comprehensive
set of relaxations and in contrast to most other previous approaches, weights
the relaxed query in terms of the quality of the relaxation, rather than the
number of relaxations that the query contains.

Relaxation framework. While each of the proposals mentioned gener-
ates multiple relaxed query candidates, the method in which they do so
differ. While [32, 49, 48] make use of rule-based rewriting, the work in [89]
and our own work make use of the data itself to determine appropriate relax-
ation candidates. Even though rule-based rewriting of queries provides the
system developer with more control over the quality of rewriting, it poten-
tially implies a lot of human input before-hand in order to formulate these
rules. The human input could be in the form of designing the RDFS [49] for
the data, or in an analysis of user and domain preferences [32]. In contrast,
our approach is entirely automatic and does not require human-input, while
still allowing for the incorporation of other sources, such as RDFS, in the
relaxation process.

Result ranking. Our approach towards result ranking is the only one
that takes a holistic view of both the original and relaxed query results. This
allows us to rank results based on both the relevance of the result itself, as
well as the closeness of the relaxed query to the original query. The “block-
wise” ranking adopted by previous work — that is, results for the original
query are listed first, followed by results of the first relaxation and so on — is
only one strategy for ranking, among others, that can be supported by our
ranking model.



3 Background

In this section, we describe the basic setting and some of the terminology
used in the rest of this paper.

3.1 Knowledge Base

A knowledge base KB of entities and relations is a set of triples, where a
triple is of the form (el,r, e2) with entities el, e2 and relation r (or (s, p, o)
with subject s, object o, and property p in RDF terminology). An example
of such a triple is:

Carl_Sagan wrote Contact

Each triple ¢ is associated with a set of keywords which captures the con-
text from which the triple was extracted. Furthermore, each triple-keyword
pair, denoted (t,w;) is associated with a witness count ¢(¢;w;), which indi-
cates the number of times the triple ¢ was extracted from the corpus (e.g.,
the Web) with the corresponding keyword w; as part of its context. In addi-
tion, the witness count for just the triple ¢, denoted ¢(t) is also stored. The
witness count gives a measure of “importance” of the triple in the corpus.

3.2 Query

A query consists of triple patterns where a triple pattern is a triple with at
least 1 variable. For example, the query ”science-fiction books written by
Carl Sagan” can be expressed as:

Carl_Sagan wrote 7b; 7b hasGenre Science_Fiction

consisting of 2 triple patterns. In addition, each triple pattern may be
augmented with one or more keywords, which we refer to as a keyword-
augmented triple pattern. For example, the query ”"Books by Carl Sagan



about the nuclear war” can be formulated using the single keyword-augmented
triple pattern:
Carl_Sagan wrote ?b{nuclear war}

Given a query with £ triple patterns, the result of the query is the set of all
k-tuples that are isomorphic to the query when binding the query variables
with matching entities and relations in K B. For example, the result for the
first query includes the 2-tuple

Carl_Sagan wrote Contact; Contact hasGenre Science_Fiction

and a result for the second query includes the tuple

Carl_Sagan wrote A_Path_Where_No_Man_Thought
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4 Relaxing Entities and
Relations

As mentioned in the introduction, we are interested in 4 types of relaxations:
i) replacing a constant (corresponding to an entity or a relation) in one or
more triple patterns of the query with another constant which still reflects
the user’s intention, ii) replacing a constant in one or more triple patterns
with a variable, iii) removing a triple pattern altogether, and, iv) relaxing
keywords by considering only subsets of them. In this section, we introduce
a framework which seamlessly integrates all four types of relaxations. Note
that, even though we refer only to entities in the following, the same applies
to relations as well.

Finding similar entities. For each entity E; in the knowledge base KB, we
construct a document D(E;) (the exact method of doing so will be described
in Section 4.1). For each document D(E;), let LM (E;) be its language model.
The similarity between two entities E; and E; is now computed as the dis-
tance between the LMs of the corresponding documents. Specifically, we use
the square-root of the Jensen-Shannon divergence between two probability
distributions (that is, LM (E;) and LM (E;), in this case), which is a metric.
And so, for an entity of interest E, we can compute a ranked list of similar
entities.

Replacing entities with variables. We interpret replacing an entity in
a triple pattern with a variable as being equivalent to replacing that entity
with any entity in the knowledge base.

We first construct a special document for the entire knowledge base,
D(KB). Let E be the entity of interest (i.e., the entity in the triple pattern
to be replaced with a variable). Let D(E) be its document. Now, we con-
struct a document corresponding to “any” entity other than E as: D(ANY)
= D(KB) — D(E) (i.e., remove the contents of D(E) from D(KB)). The simi-
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larity between the entity E and “any” entity ANY is computed as the distance
between the LMs of their corresponding documents.

In the ranked list of potential replacements for entity E, a variable re-
placement is now simply another candidate. In other words, the candidates
beyond a certain rank are so dissimilar from the given entity, that they may
as well be ignored and represented by a single variable.

Removing triple patterns. So far, we gave a high-level description of our
relaxation technique for individual entities (or relations) in a triple pattern,
without treating the triple pattern holistically. In a given query containing
multiple triple patterns, a large number of relaxed queries can be generated
by systematically substituting each constant with other constants or vari-
ables. We now consider the case when a triple pattern in the query contains
only variables. In a post-processing step, we can now choose one of the fol-
lowing options. First, the triple pattern can be made optional. Second, the
triple pattern can be removed from the query. To illustrate the two cases,
consider the following examples.

Example 1: Consider the query asking for married couples who have acted
in the same movie:

7al actedln ?m; 7a2 actedIn ?m; 7al marriedTo 7a2
and a relaxation:
?al actedIn ?m;?a2 ?r ?7m;7al marriedTo 7a2

Even though the second triple pattern contains only variables, retaining this
pattern in the query still gives the user potentially valuable information —
that ?a2 was related some how to the movie ?m. Hence, instead of removing
this triple pattern from the query, it is only made optional — that is, a result
may or may not have a triple which matches this triple pattern.

Example 2: Consider the query asking for movies which James Cameron
produced, directed as well as acted in:

Cameron produced ?m; Cameron directed ?m; Cameron actedln ?m
and a relaxation:
Cameron produced ?m; Cameron directed ?m; ?x 7r 7m

In this case, the last triple pattern matches any random fact about the movie
?m. This does not give any valuable information to the user as in the previous
case and can be removed.
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Relaxing keywords. FEach keyword in the query can be associated with
expansion terms [24] such as {biography} for {non-fiction} and {mountain climb-
ing} for {mountaineering}, etc. Given a set of keywords, in principle, we would
like to construct all possible subsets of the keywords and generate a relaxed
query containing each of these subsets. For example, consider the query:

7a wrote 7b{non-fiction, best-seller, mountaineering}

We can now generate a set of 8 queries (including the original) each of
which associates the triple ?a wrote ?b with a subset of terms {non-fiction,
best-seller, mountaineering}.

However, this kind of relaxation is equivalent to interpreting the keyword
matching as AND-ish (match as many keywords as possible). And so, in-
stead of explicitly generating relaxed queries, we incorporate the AND-ish
interpretation in our ranking model.

4.1 Constructing Documents and LMs

LibraryThing IMDB

Egypt Non-fiction Academy_Award_for_Best_Actor | Thriller

Ancient_Egypt | Politics BAFTA _Award_ Crime
for_Best_Actor

Mummies American_History | Golden_Globe_Award_ Horror
for_Best_Actor_Drama

Egyptian Sociology var Action

Cairo Essays Golden_Globe_Award_ Mystery

for_Best_Actor_Musical_or_Comedy

Egyptology History New_York_Film_Critics_ var
Circle_Award _for_Best_Actor

Table 4.1: Example entities and their top-5 relaxations

We now describe how to construct documents for entities and relations
and how to estimate their corresponding LMs.

Sources of information. The document for an entity should “describe”
the entity. There are at least three different sources of information which
we can leverage in order to construct such a document. First, we have the
knowledge base itself — this is also the primary source of information in our
case since we are processing our queries on the knowledge base. Second, we
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could make use of external textual sources — for example, we could extract
contextual snippets or keywords from text/web documents from which the
triples were extracted. Third, we could also utilize external ontologies such
as Wordnet, in order to find terms which are semantically close to the entity.

In this paper, our main focus is on utilizing the knowledge base as the
information source and hence, we describe our techniques in this context
and perform experiments using these techniques. But, our framework can
be easily extended to incorporate other information sources and we briefly
describe how this can be done at the end of this section.

4.1.1 Documents and LMs for entities

Let E be the entity of interest and D(E) be its document, which is constructed
as the set of all triples in which E occurs either as a subject or an object.
That is,

D(E)={(Ero): (Ero) e KBYU{(srE): (srE) e KB}

We now need to define the set of terms over which the LM is estimated.
We define two kinds of terms: i) “unigrams” U, corresponding to all entities
in KB, and, ii) “bigrams” B, corresponding to all entity-relation pairs. That
is,

U={e:(ero) € KB||(sre) € KB}
B ={(er): (ero) e KB} U{(re) : (sre) € KB}

Example: The entity Woody_Allen would have a document consisting of
triples Woody_Allen directed Manhattan, Woody_Allen directed Match_Point, Woody_Allen
actedIn Scoop, Woody_Allen type Director, Federico_Fellini influences Woody_Allen,
etc. The terms in the document would include Scoop, Match_Point, (type,Director),
(Federico_Fellini,influences), etc.

Note that the bi-grams usually occur exactly once per entity, but it is still
important to capture this information. When we compare the LMs of two
entities, we would like identical relationships to be recognized. For example,
if for a given entity, we have the bigram (hasWonAward, Academy Award), we
can then distinguish the case where a candidate entity has the term (hasWon-
Award, Academy Award) and the term (nominatedFor, Academy_Award). This
distinction cannot be made if only unigrams are considered.

Estimating the LM. The LM corresponding to document D(E) is now a
mixture model of two LMs: Py, corresponding to the unigram LM and Pg,
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the bigram LM. That is,
Pe(w) = pPy(w) + (1 — p) Pp(w)

where p controls the influence of each component. The unigram and bigram
LMs are estimated in the standard way with linear interpolation smoothing
from the corpus. That is,

c(w; D(E))
Yuweve(w'; D(E))

c(w; D(KB))
Ywevc(w'; D(KB))

Py(w) =« +(1—-a)

where w € U, ¢(w; D(E)) and c¢(w; D(KB)) are the frequencies of occurrences
of win D(E) and D(KB) respectively and « is the smoothing parameter. The
bigram LM is estimated in an analogous manner.

4.1.2 Documents and LMs for relations

Let R be the relation of interest and let D(R) be its document, which is
constructed as the set of all triples in which R occurs. That is,

D(R) ={{(s Rd'): (s Ro') € KB}

As with the case of entities, we again define two kinds of terms — “uni-
grams” and “bigrams”. Unigrams correspond to the set of all entities in KB.
But, we make a distinction here between entities that occur as subjects and
those that occur as objects, since the relation is directional (note that there
could be entities that occur as both). That is,

S ={s:(sro) e KB}

O ={o:(sro) € KB}
B ={(so) : (sro) € KB}

Ezample: Given the relation directed, D(directed) would consist of all

triples containing that relation, including, James_Cameron directed Aliens, Woody_Allen

directed Manhattan, Woody_Allen directed Match_Point, Sam_Mendes directed Amer-
ican_Beauty, etc. The terms in the document would include James_Cameron,
Manhattan, Woody_Allen, (James_Cameron, Aliens), (Sam_Mendes, American_Beauty),
etc.
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Estimating the LM. The LM of D(R) is a mixture model of three LMs:
Pg, corresponding to the unigram LM of terms in S, Py, corresponding to

the unigram LM of terms in O and Pg, corresponding to the bigram LM.
That is,

Pr(w) = psPs(w) + poPo(w) + (1 — ps — o) Pe(w)

where ps, p, control the influence of each component. The unigram and
bigram LMs are estimated in the standard way with linear interpolation
smoothing from the corpus. That is,

c(w; D(R))
waesc(w’; D(R))

c(w; D(KB))
Ewresc(w'; D(KB))

Ps(w) = « +(1—a
where w € S, c(w; D(R)) and c¢(w; D(KB)) are the frequencies of occurrences
of win D(R) and D(KB) respectively, and « is a smoothing parameter. The
other unigram LM and the bigram LM are estimated in an analogous manner.

4.1.3 Generating the candidate list of relaxations

As previously mentioned, we make use of the square root of the JS-divergence
as the similarity score between two entities (or relations). Given probability
distributions P and @, the JS-divergence between them is defined as follows,

JS(P||Q) = KL(P|[M) + KL(Q|[M)

where, given two probability distributions R and S, the KL-divergence is
defined as,
R(j)

KL(R||S) = X, R(j)log S50

and .
M= (P +Q)

4.2 Examples

Tables 4.1 and 4.2 show example entities and relations from the IMDB and Li-
braryThing datasets and their top-5 relaxations derived from these datasets,
using the techniques described above. The entry var represents the variable
candidate. As previously explained, a variable substitution indicates that
there were no other specific candidates which had a high similarity to the
given entity or relation. For example, in Table 4.2, the commentedOn relation

16



has only one specific candidate relaxation above the variable relaxation —
hasFriend. Note that the two relations are relations between people - a person
X could comment on something a person Y wrote, or a person X could have a
friend Y - whereas the remaining relations are not relations between people.
When generating relaxed queries using these individual relaxations, we ig-
nore all candidates which occur after the variable. The process of generating
relaxed queries will be explained in Section 5.

LibraryThing IMDB
wrote commentedOn | directed | bornln
hasBook hasFriend actedIn livesIn
hasTagged var created originatesFrom
var hasBook produced | var
hasTag hasTag var diedIn
hasLibraryThingPage | hasTagged type isCitizenOf

Table 4.2: Example relations and their top-5 relaxations

4.3 Using other information sources

The core of our technique lies in constructing the document for an entity E or
relation R and estimating its LM. And so, given an information source, it is
sufficient to describe: i) how the document is constructed, ii) what the terms
are, and, iii) how the LM is estimated. In this paper, we have described
these three steps when the information source is the knowledge base of RDF
triples. It is easy to extend the same method for other sources. For example,
for the case of entities, we could make use of a keyword context or the text
documents from which an entity or a triple was extracted. Then a document
for an entity will be the set of all keywords or a union of all text snippets
associated with it. The terms can be any combination of n-grams and the
LM is computed using well-known techniques from the IR literature (see for
example, entity LM estimation in [68, 72, 65, 37, 83], in the context of entity
ranking).

Once individual LMs have been estimated for an entity from each infor-
mation source, a straight-forward method to combine them into a single LM
is to use a mixture model of all LMs. The parameters of the mixture model
can be set based on the importance of each source. Note that this method
does not preclude having different subsets of sources for different entities.
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5 Relaxing Queries and
Ranking Results

Q: 7x directed ?m; ?m hasWonPrize Academy_Award; ?m hasGenre Action

Ly

Lo

L3

?x directed ?m : 0.0

?m hasWonPrize Academy_Award : 0.0

?m hasGenre Action : 0.0

?x actedIn ?m : 0.643
?x created 7m : 0.647
7x produced 7m : 0.662

?m hasWonPrize Golden_Globe : 0.624
?m hasWonPrize BAFTA_Award : 0.659
?m 7r Academy_Award : 0.778

?m hasGenre Adventure : 0.602
?m hasGenre Thriller : 0.612
?m hasGenre Crime : 0.653

Table 5.1: Top-3 relaxation lists for the triple patterns for an example query

Q: ?x directed ?m; ?m hasWonPrize Academy_Award; ?m hasGenre Action

Relaxed Queries score
7x directed ?m;?m hasWonPrize Academy_Award;?m hasGenre Adventure | 0.602
?x directed ?m;?m hasWonPrize Academy_Award;?m hasGenre Thriller 0.612
7x directed ?m;?m hasWonPrize Golden_Globe;?m hasGenre Action 0.624
?x actedIn ?m;?m hasWonPrize Academy_Award;?m hasGenre Action 0.643
7x created ?m;?m hasWonPrize Academy_Award;?m hasGenre Action 0.647

Table 5.2: Top-5 relaxed queries for an example query. The relaxed enti-

ties/relations are underlined.

We have so far described techniques to construct candidate lists of relax-
ations for entities and relations. In this section we describe how we gener-
ate relaxed queries and how results for the original and relaxed queries are

ranked.
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5.1 Generating Relaxed Queries

Let Qo = q1g2...q, be the query, where ¢; is a triple pattern. Let the set
of relaxed queries be R = {Q1,Qs,...,Q,}, where ); is a query with one
or more of its triple patterns relaxed. A triple pattern ¢; is relaxed by re-
laxing at least one of its constants. Let s; be the relaxation score of @,
computed by adding up the scores of all entity and relation relaxations in
Q); (recall that an individual entity or relation score is the square root of
the JS-divergence between the LMs of the relaxed entity/relation and the
original entity/relation). Clearly, the score sy for the original query Qg is 0
and the queries can be ordered in ascending order of s;s.

Example: Consider the query asking for Academy award winning action
movies and their directors. Table 5.1 shows the lists L1, Ly and L3 containing
the top-3 closest relaxations for each triple pattern along with their scores.
Table 5.2 shows the top-5 relaxed queries along with their scores.

5.2 Ranking Model

Our ranking model is based on our previous work in [33] and is summarized
in this subsection. Our technique follows the language modeling approach in
the context of keyword queries on a document corpus of [88]. In a nutshell,
a query LM Py for the generation of query ) and a result LM Pg for the
generation of result G (consisting of a tuple of triples) are estimated. The
results are then ranked in increasing order of the KL-divergence between the
query LM and the result LM.

5.2.1 Query LM

Let Qo = {¢},...,¢°} be a query with n triple patterns where ¢? is a triple
pattern. Let (Q4, ..., @, be the set of relaxed queries and let qZ denote the
triple pattern of query @Q;.

In order for the query and result LMs to be comparable, they both have
to be probability distributions over triples. To this end, the query LM is
estimated as follows. Let ¢/ be the set of triples which match the triple
pattern ¢/. Let T = {t,,...,t,} be an n-tuple where t; is a triple and ¢(t;) is
the witness count of triple ¢;. The query LM is a probability distribution P
over all possible n-tuples of triples. Assuming independence between triples,
the probability of T is:

Po(1) = [ Polts) (1)
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where Py(t;) is estimated as:
Py(ti) = MPy(t:) + M P () + ... + M Ph(t:) (5.2)

where Pé(ti) is the probability of triple ¢; in the query LM of the (relaxed)
query ();, A; controls the impact of each relaxed query and ) A; = 1. If Ay
is set to 1 and the remaining \;’s are set to 0, we get the exact match case
where no relaxed query is taken into account. Pgé(ti) is computed as follows:

cftq) : A
Pi(t;) = { T @ 14 E ; (5.3)
0 otherwise

One of the contributions of this paper is on strategies for setting the
values of the A;’s. This is discussed in Subsection 5.3.

As an example, consider the small knowledge base shown in Table 5.3. It
shows the triples as well as their witness counts. Now consider a query with
two patterns:

Carl_Sagan wrote 7b; ?b hasGenre 7g

asking for Carl Sagan’s books and their genres. The query is factorized
into two patterns, as shown in Table 5.4, and the matches of each pattern
are retrieved. The probabilities of the matching triples are then calculated
based on their witness counts and the sum of witness counts of all matching
triples. The probabilities computed in this way are then used in Equation
5.1 to calculate 2-tuple probabilities in the query model!.

5.2.2 Query LMs for keyword-augmented queries

We mentioned earlier that relaxing keyword conditions was equivalent in
our case to treating the keyword condition as AND-ish. Our ranking model
explicitly takes this into account. And so, we do not do any relaxed-query
generation.

Let Q; = {q{, ...,@} denote a query with n triple patterns. Furthermore,
let qf be a keyword-augmented pattern. That is, qf = qlwy, ..., w,,] where ¢ is
a purely-structured triple pattern and wy, is an associated keyword. Analo-
gous to the previous case, we need to compute the probability Pg(7") which is
computed according to equations 5.1 and 5.2. However, in order to estimate
Pgé(ti), we need to take into account the keywords associated with triple pat-

tern qg . That is, the probability of the triple ¢, given the context wy, ..., w,,

'Note that the set of all 2-tuples is derived from the cross-product of the sets {t1,t,t3}
and {t6,t7,ts,t9,t10}
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# Trlple (tl) C(ti)

t1. | Carl_Sagan wrote Contact 200
ta. | Carl_Sagan wrote Other_Worlds 50
t3. | Carl_Sagan wrote Cosmos 250

ty. | John_Krakauer wrote Into_the_Wild | 300
ts. | John_Krakauer wrote Into_Thin_Air | 200
ts. | Contact hasGenre Science_Fiction 100
t7. | Other_Worlds hasGenre Nonfiction | 50

tgs. | Cosmos hasGenre Science 200
tg. | Into_the_Wild hasGenre Biography | 150
t10. | Into_Thin_Air hasGenre Nonfiction | 100

Table 5.3: Small knowledge base with triples and witness counts

qQ | Po(t) g2 | Po(t)

t1 | 200/500 | te | 100/600
ty | 50/500 | t; | 50/600
ts | 250/500 | ts | 200/600
to | 150/600
t10 | 100/600

Table 5.4: Query LM estimation for a query with two patterns: ¢ =
Carl_Sagan wrote ?b and ¢y = ?b hasGenre ?g

where ¢ € qu . Note that (}f matches only the structured part of the triple pat-
tern ¢/. Assuming independence between keywords, we estimate the triple
probability as:

Py (tilwy, ... wn) = [ [laPd(tilwe) + (1 — a)P(t;)] (5.4)

k=1
where Pg(t;|wy) is the probability of ¢; given the single-term wy, P(t;) is a
smoothing component, and the parameter o controls the influence of smooth-
ing. Now, in order to estimate the first component of Equation 5.4, we have:

c(ti;wk) . A
P (tifwy) = { *ead ) (5.5)
0 otherwise
With the use of Equation 5.4 to compute the triple probabilities, we no
longer need to explicitly relax keywords in the query. For example, for the
triple pattern: ?a wrote ?b{non-fiction, best-seller, mountaineering} , we do not
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need to generate the following relaxations: ?a wrote ?b{non-fiction, best-seller}
or ?7a wrote ?b{best-seller, mountaineering}, etc. This is because the smoothing
component automatically takes care of the case when one or more keywords
are not present with the triple

5.2.3 Result LM

For query @) with n triple patterns, let G be a result. Now, the LM of G,
denoted FPg, is estimated over all n-tuples as:

Fo(T) = BP(T|G) + (1 - B)P(T|KB)

where (3 is the smoothing parameter. If G is the tuple 7" (note that G has to
be an n-tuple), then P(T|G) = 1, otherwise, P(T|G) = 0.
For smoothing, independence between triples is assumed:

P(T|KB) = ﬁ P(t;|KB)

i=1

where P(t;|K B) is estimated given the entire knowledge base:

MMﬁiﬁgw

5.2.4 Ranking

Given the query and results LMs, the KL-divergence between the query LM
Py of query () and a result LM Py of result G is computed as follows:
Po(T3)

Pe(Tr)

M@@zZ%@@

The results are then returned to the user in ascending order of KL-
divergence.

5.3 Setting Weights for Relaxations

An important and non-trivial aspect in the result ranking is the setting of
weights of each relaxed query. Ideally these weights would be learned by tak-
ing into account relevance judgments of users for original or relaxed queries,
user preferences, etc. Moreover, these weights should be learned on a query-
to-query basis, which means that large query logs with a variety of queries
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are required. Since we do not have access to such query logs, we instead
make the following simplifying assumption regarding user preferences and
experiment with two specific weighting schemes.

Recall from Equation 5.2, that the ranking model requires the following
computation:

Py(ti) = MPg(t:) + M P (t:) + ... + M Ph(t:)

where @), corresponds to the j relaxed query, and Pé(ti) is the probability
of triple ¢; in the query LM of @);. Let g; be the triple pattern in ¢); for which
t; is a match.

We now have the following two weighting schemes depending on how the
results should be displayed to the user.

Incremental weighting. In this weighting scheme, we assume that the
user is interested in seeing results in order. That is, all ranked matches of
the original query first, followed by all ranked matches of the first relaxed
query, then those of the second relaxed query, etc. That is, the results are
presented “block-wise”.

In order to ensure this, we need to set the \;’s by examining the scores
of the highest scoring and lowest scoring triple matches to a given triple
pattern. For example, consider a query with a single triple pattern: ?x
hasGenre Science_Fiction. Suppose a relaxation to this query is ?x hasGenre
Fantasy. If we want to ensure that all matches of the original query are
displayed before the first match of the relaxed query, we first examine the
triple with the lowest score for the original query and the highest score for
the relaxed query®. Let these scores be s7,, and sy, ,, respectively. We now
need to ensure that Ao * 57, > Ay * 54,

Adaptive weighting. In this weighting scheme, we assume that the user
is interested in seeing the results in a holistic manner. That is, a match to a
lower ranked (relaxed) query can appear before a match to a higher ranked
query. For example, as before, let the query ask for books of genre science
fiction and a relaxation asks for books of genre fantasy. The assumption now
is that the user would rather see a “famous” book of genre fantasy, rather
than an obscure book of genre science fiction. And so, a “mixing” of results
is allowed.

2Note that although not explained in this paper, the score has a direct correlation with
the probability of the triple in the query model.
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Let «; be the score of the relaxed triple pattern ¢;. That is, «; is the sum
of scores of each individual entity/relation relaxations in ¢;. Now the weight
Ai for Pj(t;) is set as follows:

1—@1'

A= —
E§=0(1 —aj)

This weighting scheme basically gives higher weights to the matches of
relaxed triple patterns which are closer to their corresponding original triple
patterns. However, matches for a lower ranked query with sufficiently high
scores can be ranked above matches for a higher ranked query.

Note that both incremental as well as adaptive weighting are only two
ways in which we can present results to the user. Additional schemes can
include a mixture of both schemes for instance, or any other variations. Our
ranking model is general enough and can support any number of such fine-
grained result presentation schemes.
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6 Experimental Evaluation

We evaluated the effectiveness of our relaxation techniques in 2 experiments.
The first one evaluated the quality of individual entity and relation relax-
ations. It also evaluated the quality of the relaxed queries overall. The second
experiment evaluated the quality of the final query results obtained from both
original and relaxed queries. The complete set of evaluation queries used, rel-
evance assessments collected as well as an online demonstration of our system
can be found at http://www.mpii.de/~elbass/demo/demo.html.

6.1 Setup

All experiments were conducted over two datasets using the Amazon Me-
chanical Turk service!. The first dataset was derived from the LibaryThing
community, which is an online catalog and forum about books. The second
dataset was derived from a subset of the Internet Movie Database (IMDB).
The data from both sources was automatically parsed and converted into
RDF triples. In addition, each triple was also augmented with keywords de-
rived from the data source it was extracted from. In particular, for the IMDB
dataset, all the terms in the plots, tag-lines and keywords fields were ex-
tracted, stemmed and stored with each triple. For the LibraryThing dataset,
since we did not have enough textual information about the entities present,
we retrieved the books’ Amazon descriptions and the authors’ Wikipedia
pages and used them as textual context for the triples. Finally, to estimate
witness counts for the triples, we relied on the Web corpus. We issued queries
to a major search engine, with the subject and object of the triple as key-
words, and set the witness count to the number of hits returned. The witness
counts for the triple-keyword pairs were estimated in a similar fashion. Table
6.1 gives an overview of the datasets.

Due to the lack of an RDF query benchmark, we constructed 40 eval-
uation queries for each dataset and converted them into structured triple-

http://aws.amazon.com/mturk/
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#entities ‘ Example entity types ‘ F#triples ‘ Example relations

LibraryThing Dataset

director, producer,
country , language

48,000 book, author 700,000 wrote, hasFriend
user, tag hasTag, type
IMDB Dataset
59,000 movie, actor 600,000 actedlIn, directed

won, marriedTo,
produced, hasGenre

Table 6.1: Overview of the datasets

LibraryThing

Information need

Query Q

A Science-Fiction book made into a Film

?b type Science_Fiction; ?b hasTag Film

A children’s writer who wrote a book that won
the Booker Prize

?w type Children_Writer; 7w wrote 7b;

?b hasTag Booker

A book with tag British Literature and whose
author won a Nobel prize

?w wrote ?b{nobel prize};

?b hasTag British_Literature

A book with tag Film and has something to do
with a civil war

?w wrote ?b{ civil war}; ?b hasTag Film

IMDB

Information need

Query Q

A movie with genre Comedy that won the
Academy Award

?m hasGenre Comedy; ?m won Academy_Award

An actor from New York that won the Academy
Award for Best Actor

7a won Academy_Award _for_Best_Actor;

7a originatesFrom New_York

A director that won the Academy Award for
Best Director and directed a movie based on a
true story

?7d directed ?m{true story};

?7d won Academy_Award_for_Best_Director

A singer that acted in a movie about school
friends

?7a actedIn ?m{school friends}; ?7a type singer

Table 6.2: Subset of the evaluation queries and the triple-pattern queries

corresponding to the information need

pattern queries. In addition, we constructed 15 keyword-augmented queries
for each dataset, where one or more triple-pattern was augmented with one
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or more keyword. The number of triple patterns in the constructed queries
ranged from 1 to 4. Some example queries are shown in Table 6.2.

6.2 Quality of Relaxations

To evaluate the quality of individual entity and relation relaxations, we ex-
tracted all unique entities and relations occurring in all evaluation queries.
The total numbers of entities and relations are given in Table 6.3. For each
entity, the top-5 relaxations were retrieved, excluding the variable relaxation.
We presented the entity and each relaxation to 6 evaluators and asked them
to assess how closely related the two are on a 3-point scale: 2 corresponding
to "closely related”, 1 corresponding to "related” and 0 corresponding to
"unrelated”. The same was done for each relation.

To evaluate the quality of relaxed queries overall, we generated the top-5
relaxed queries for each evaluation query. The relaxed queries were ranked in
ascending order of their scores, which were computed as described in Section
5.1. We asked 6 evaluators to assess how close a relaxed query is to the
original one on a 4-point scale: 3 corresponding to ”very-close”, 2 to ”close”,
1 to "not so close” and 0 corresponding to "unrelated”.

Table 6.3 shows the results obtained for entity, relation and query relax-
ations. For a given entity, the average rating for each relaxation was first
computed and then this rating was averaged over the top-5 relaxations for
that entity. A similar computation was performed for relations and query re-
laxations. The second row shows the average rating over all relaxed entities,
relations and queries. The third row shows the Pearson correlation between
the average rating and the JS-divergence. We achieved a strong negative
correlation for all relaxations which shows that the smaller the score of the
relaxation (closer the relaxation is to the original), the higher the rating as-
signed by the evaluators. The fourth row shows the average rating for the
top relaxation.

The fifth and sixth rows in Table 6.3 show the average rating for re-
laxations that ranked above and below the variable relaxation respectively.
Recall that, for each entity or relation, a possible entry in the relaxation
candidate-list is a variable as described in Section 4. For those relaxations
that ranked above a variable (i.e., whose JS-divergence is less than that of
a variable), the average rating was more than 1.29 for both entities and re-
lations, indicating how close these relaxations are to the original entity or
relation. For those relaxations that ranked below a variable, the average rat-
ing was less than 1.1 for entities and 0.8 for relations. This shows that the
evaluators, in effect, agreed with the ranking of the variable relaxation.
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Row | Metric Entities Relations | Queries
(3-pt scale) | (3-pt scale) | (4-pt scale)
1 No. of | 87 15 80
items
2 Avg. rat- | 1.228 0.863 1.89
ing
3 Correlation| -0.251 -0.431 -0.119
4 Avg. rat- | 1.323 1.058 1.94
ing for top
relaxation
5 Avg. rat- | 1.295 1.292 -
ing above
variable
6 Avg. rat- | 1.007 0.781 -
ing below
variable

Table 6.3: Results for entity, relation and query relaxations

6.3 Quality of Query Results

We compared our relaxation framework, with its two weighting scheme vari-
ants, Adaptive and Incremental (see Section 5.3), against a baseline approach
outlined in [33]. The latter simply replaces a constant in the original query
with a variable to generate a relaxed query. The weight of the relaxed triple
pattern is determined based on the number of constants replaced. For all 3
methods, we set the weight of an original triple pattern to the same value, to
ensure that exact matches would rank on top, and thus make the differences
rely solely on the quality and weights of the relaxations.

We pooled the top-10 results from all 3 approaches and presented them
to 6 evaluators in no particular order. The evaluators were required to as-
sess the results on a 4 point scale: 3 corresponding to ”highly relevant”, 2
corresponding to "relevant”, 1 corresponding to "somewhat relevant”, and
0 corresponding to ”irrelevant”. To measure the ranking quality of each
technique, we used the Discounted Cumulative Gain (DCG) [51], which is a
measure that takes into consideration the rank of relevant results and allows
the incorporation of different relevance levels. DCG is defined as follows

G(1) ifi=1

DCG(i) = { DOG(i — 1) + G(i)/log(i) otherwise

where 7 is the rank of the result within the result set, and G(i) is the relevance
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level of the result. We set G(i) to a value between 0 and 3 depending on the
evaluator’s assessment.

For each result, we averaged the ratings given by all evaluators and used
this as the relevance level for the result. Dividing the obtained DCG by the
DCG of the ideal ranking we obtained a Normalized DCG (NDCG) which
accounts for the variance in performance among the weighting schemes.

The results of our user evaluation are shown in Tables 6.4 and 6.5. The
reported NDCG values were averaged over all evaluation queries. Both vari-
ations of our framework (the first two columns) significantly outperformed
the baseline approach, with a one-tailed paired t-test (p-value < 0.01). Fur-
thermore, we computed the average rating over all results for each technique
as shown in the second and fourth rows (Avg. Rating).

For purely-structured queries (Table 6.4), the Adaptive approach had over
8% improvement in NDCG over the baseline for Librarything and over 5% for
IMDB. The Incremental approach had improvements over 15% for Library-
thing and 7% for IMDB. For keyword-augmented queries (Table 6.5), the
improvement is much more evident. The Adaptive approach outperformed
the baseline one with over 33% gain in NDCG for Librarything and 21% for
IMDB. The Incremental approach had improvements in NDCG of over 13%
for Librarything and over 8% for IMDB.

Librarything

Adaptive | Incremental | Baseline
NDCG 0.868 0.920 0.799
Avg. Rating | 2.062 2.192 1.827

IMDB

Adaptive | Incremental | Baseline
NDCG 0.880 0.900 0.838
Avg. Rating | 1.874 1.928 1.792

Table 6.4: Results for purely-structured queries

Note that in the case of keyword-augmented queries, the Adaptive ap-
proach was preferred by evaluators to the Incremental one because the key-
words play a key role in determining the relevance of a result. Since the
Adaptive scheme does not enforce a strict ordering of structure relaxations,
it allows results which better match the keyword context (while matching a
lower-ranked structure relaxation) to be ranked higher.

Finally, in Tables 6.6 and 6.7 we show two example evaluation queries and
the top-3 results returned by each relaxation approach. Next to each result,
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Librarything

Adaptive | Incremental | Baseline
NDCG 0.757 0.640 0.566
Avg. Rating | 1.985 1.349 0.969

IMDB

Adaptive | Incremental | Baseline
NDCG 0.841 0.755 0.623
Avg. Rating | 1.602 1.464 0.922

Table 6.5: Results for keyword-augmented queries

we show the average rating given by the evaluators. The relaxed constants
are underlined.

The query in Table 6.6 asks for science fiction books that have tag Film.
There is only one one such result which is ranked as the top result by all 3
approaches. Since the Adaptive approach ranks the whole set of approximate
results, it allows for more diversity in terms of relaxations. And so, the Adap-
tive approach returns the more famous and iconic movies, Blade and Star_Wars
as the top results compared to The_Last_Unicorn and The_Mists_Of_Avalon re-
turned by the Incremental scheme.

The query in Table 6.7 shows an example of a keyword-augmented query
which asks for books with the tag Film about a civil war. The top-3 re-
sults returned by the Adaptive approach are all books that were turned into
movies. In addition, all of them are about civil wars. The results returned
by the Incremental weighting were also books that were turned into movies,
however only one of them is about a civil war (the first). For the baseline
approach, where the tag Film in the second triple pattern was relaxed into
a variable, the results returned are all books about civil wars, or wars in
general, however none of them had a tag related to films.
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Rank | Result Rating
Q: 7b type Science_Fiction; 7b hasTag Film
’ Adaptive
1 Star_Trek_Insurrection type Science_Fiction; Star_Trek_Insurrection hasTag Film 2.50
2 Blade type Science_Fiction; Blade hasTag Movies 2.83
3 Star_Wars type Science_Fiction; Star_Wars hasTag Made_Into_Movie 2.00
Incremental
1 Star_Trek_Insurrection type Science_Fiction; Star_Trek_Insurrection hasTag Film 2.50
2 The_Last_Unicorn type Science_Fiction; 2.50
The_Last_Unicorn hasTag Made_Into_Movie/tv
3 The_Mists_of_Avalon type Science_Fiction; 2.17
The_Mists_of_Avalon hasTag Made_Into_Movie/tv
Baseline
1 Star_Trek_Insurrection type Science_Fiction; Star_Trek_Insurrection hasTag Film 2.50
2 Helter_Skelter type History; Helter_Skelter hasTag Film 0.83
3 Fear_and_Loathing_in_Las_Vegas type History; 1.83
Fear_and_Loathing_in_Las_Vegas hasTag Film

Table 6.6: Top-ranked results for the example query ” A science-fiction book
that has tag Film”
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Rank | Result Rating

Q: ?w wrote ?b{civil war}; ?b hasTag Film

’ Adaptive
1 Margaret_Mitchell wrote Gone_with_the_Wind ; 2.57
Gone_with_the_Wind hasTag Made_into_a_Movie
2 Ernest_Hemingway wrote For_-Whom_the_Bell_Tolls ; 2.64

For_.Whom _the_Bell_Tolls hasTag Made_into_Movie/tv

3 Charles_Frazier wrote Cold_Mountain ; Cold_Mountain hasTag Made_into_Movie 2.83

Incremental

1 Ernest_Hemingway wrote For_-Whom_the_Bell_Tolls ; 2.64
For_.Whom_the_Bell_Tolls hasTag Made_into_Movie/tv

2 Aldous_Huxley wrote Brave_New_World ; 2.12
Brave_ New_World hasTag Made_Into_Movie/tv

3 George_Orwell wrote Nineteen_Eighty-four ; 1.78
Nineteen_Eighty-four hasTag Made_Into_Movie/tv

Baseline

1 J_Michael_Straczynski wrote Civil_ War ; Civil_ War hasTag American 1.78
Ernest_Hemingway wrote For_-Whom_the_Bell_Tolls ; 2.36
For_Whom_the_Bell_Tolls hasTag Europe

3 Ernest_Hemingway wrote A_Farewell_to_Arms ; 2.00

A_Farewell_to_Arms hasTag World_War_One

Table 6.7: Top-ranked results for the example query ”A book that has tag
Film and has something to do with a civil war”
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7 Conclusion

We proposed a comprehensive and extensible framework for query relaxation
for entity-relationship search. Our framework makes use of language mod-
els as its foundation and can incorporate a variety of information sources
on entities and relations. We showed how to use an RDF knowledge base
to generate high quality relaxations. Furthermore, we showed how different
weighting schemes can be used to rank results. Finally, we showed the effec-
tiveness of our techniques through a comprehensive user evaluation. We be-
lieve that our contributions are of great importance for an extended-SPARQL
API that could underlie the emerging “Web-of-Data” applications such as
Linking-Open-Data across heterogeneous RDF sources.
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