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Abstract

Angle Based Flattening is a robust parameterization method that finds
a quasi-conformal mapping by solving a non-linear optimization problem.
We take advantage of a characterization of convex planar drawings of tri-
connected graphs to introduce new boundary constraints. This prevents
boundary intersections and avoids post-processing of the parameterized
mesh. We present a simple transformation to effectively relax the constrained
minimization problem, which improves the convergence of the optimization
method. As a natural extension, we discuss the construction of Delaunay
flat meshes. This may further enhance the quality of the resulting parame-
terization.
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Abstract
Angle Based Flattening is a robust parameterization method that finds a quasi-conformal mapping by solving
a non-linear optimization problem. We take advantage of a characterization of convex planar drawings of tri-
connected graphs to introduce new boundary constraints. This prevents boundary intersections and avoids post-
processing of the parameterized mesh. We present a simple transformation to effectively relax the constrained
minimization problem, which improves the convergence of the optimization method. As a natural extension, we
discuss the construction of Delaunay flat meshes. This may further enhance the quality of the resulting parame-
terization.

1. Introduction

Surface parameterization is a fundamental problem in com-
puter graphics. Consider a topologically disk-like surface
patch. Then the goal is to find a bijective mapping from a
parameter domain to the surface, that fulfills certain quality
constraints. For a triangulated surface this is a piecewise lin-
ear mapping between the original and an isomorphic planar
mesh. So intuitively, we can think of the parameterization as
flattening the original surface to a valid planar configuration,
i.e. one without foldovers or self-intersections. In addition to
the validity, quality constraints that minimize the distortion
induced by flattening, should be taken into consideration as
well.

The importance of the problem makes surface parameter-
ization a very active field of research. Numerous approaches
have been proposed so far, inspired by results from dif-
ferent areas of research. Tutte21 starts from graph theory
and uses barycentric maps for embedding a planar graph.
Floater’s shape-preserving weights7 improve the conformal-
ity of the mapping, while Eck et al.6 use discrete harmonic
maps to minimize angular distortion. All the above meth-
ods require a predefined convex boundary in the parameter
domain. Hormann and Greiner construct a most-isometric
parameterization12 by minimizing a non-linear deformation
functional without need to fix the boundary.Desbrun et al 4

and Levy et al13 achieve quasi-conformal mappings with an
evolving boundary by solving linear systems. Other recent
approaches apply multi-dimensional scaling22 or an iterative

algorithm that locally flattens the triangulation until a pre-
scribed distortion bound is reached20.

Regarding quasi-conformal parameterizations4 � 6 � 11 � 13 � 16,
i.e. angular distortion is to be minimized, it seems natural
to formulate the problem in terms of interior angles of the
mesh. This leads to Angle Based Flattening18. A characteri-
zation of drawings of planar graphs in terms of angles pro-
vides conditions for the validity of the flat mesh, in spirit
similar to Tutte’s barycentric embedding21 . Minimizing a
functional that punishes angular distortion under these con-
straints will yield a valid parameterization. This algorithm is
robust and usually converges after only a few iterations as
the original angles provide a good initial guess to the final
solution. Although this method strictly falls into the class of
non-linear algorithms like e.g. 12 � 17, it seems to be a good
compromise between linear and non-linear optimization as
most conditions are in fact only linear.

2. Contribution

In this paper we focus on angle based flattening (ABF) and
propose modifications on the original ABF parameteriza-
tion method by Sheffer and de Sturler18 that eliminate the
need for post-processing, relax the optimization problem,
and construct Delaunay flat meshes.

The ABF algorithm constructs a parameterization by min-
imizing the angular distortion of a planar mesh w.r.t the an-
gles of the original mesh in 3-space. A set of linear and
non-linear equality constraints on the planar angles guaran-
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tees the validity of the parameterization. These constraints
however, do not prevent the boundary from self-intersection.
Hence a post-processing of the flat mesh is needed to han-
dle edge crossings at the boundary. Each post-processing
step first identifies the nodes causing intersections in the
flat mesh. And in order to avoid intersections, it then adds
constraints on the local configurations and recomputes the
flat mesh as a solution of the updated system. This post-
processing algorithm is iterated until no more intersections
are found.

We propose a different approach that eliminates bound-
ary intersections in the first place. This is achieved due to
the introduction of new inequality constraints that guarantee
the validity of the flattened mesh without the cost for iter-
ative post-processing while the imposed inequalities can be
handled efficiently.

The constrained optimization problem arising in the ABF
algorithm is solved using Lagrange multipliers in combina-
tion with the Newton method. In every Newton iteration, a
system of equations is solved by using an iterative solver,
nameley GMRES or BiCGStab. The convergence of the re-
sulting systems can be improved by the use of sophisticated
preconditioning as proposed by Liesen et al.14.

We show how similar results can be achieved by a simple
yet effective transformation of the problem that relaxes the
non-linear equality constraints. In fact, The hessian becomes
diagonal and the sparsity of the system becomes independant
of the valences of the vertices of the input mesh. Since, the
system of equations is symmetric we propose to use the more
appropriate symmetric numerical solvers instead of the non-
symmetric ones mentioned above.

The characterization of the ABF problem leads to a nat-
ural extension that guarantees the flattened meshes to be a
Delaunay triangulation. We make use of a new condition to
improve the quality of the flattened meshes by enforcing the
Delaunay property without change of connectivity.

3. Conventions

Throughout the paper, we try to restrict ourselves to the es-
sential amount of formalism only, where the following nota-
tions are used:
� N is the total number of interior mesh angles.� α

�
i (i � 1 ��������� N) denote the angles of the original mesh,� αi are the corresponding angles of the flat mesh. As these

are the variables of the optimization problem, then in this
context, the more usual notation xi is used as an alterna-
tive.� v denotes the central vertex in a centered drawing of
wheel, i.e. of its 1-neighborhood. d is the number of direct
neighbors of v or its valence. α j ( j � 1 ��������� d) refer to the
angles at v, while β j and γ j denote the opposite left and
right angles of a face with central angle a j , respectively.
All faces are oriented counter-clockwise.

� Variables and functions without subscripts may refer to
multivariate vectors as explained by the context.

4. Characterization of drawings of planar graphs

The existence of a planar straight line drawing of angular
graphs is a well-studied problem in graph theory 5 � 9. To our
knowledge, Di Battista and Vismara were the first to provide
a characterization of the convex planar straight line drawing
of a tri-connected graph for a given set of positive angles5.
Their minimal constraints for the planarity of the graph re-
quire that the following conditions hold:
� Vertex consistency

For each internal vertex v, with central angles α1 ��������� αd :

d

∑
i 	 1

αi 
 2π � 0 (1)

� Triangle consistency
For each triangular face with angles α, β, γ the face con-
sistency:

α � β � γ 
 π � 0 (2)
� Wheel consistency

For each internal vertex v with left angles β1,..,βd and
right angles γ1 ��������� γd:

d

∏
i 	 1

sin � βi 

sin � γi 
 � 1 (3)

� Convex external face condition
For each external vertex v, with internal angles α1 ��������� αd :

d

∑
i 	 1

αi � π (4)

Sheffer and de Sturler18 found similar constraints on inter-
nal vertices independently. These conditions (1),(2),(3) guar-
antee the centered embedding of internal vertices of wheels
without overlapping of interior edges.

Condition (4) guarantees the convexity of the boundary
and hence prevents boundary overlapping. Note that the in-
equality (4) prevents local and global self-intersection simul-
taneously. So it not only prevents adjacent boundary edges
from overlapping, but it also guarantees that the boundary
loop as a whole does not cross itself. For the local configu-
ration it would in fact be sufficient to require the following
weakened condition to hold

Adjacent boundary consistency
For each external vertex v, with internal angles α1 ��������� αd :

d

∑
i 	 1

αi � 2π � (5)

This prevents adjacent boundary triangles from crossing
each other. Fig. 1 illustrates the situation. However, condi-
tion (5) is not strong enough to globally enforce a valid mesh
with no boundary intersections as shown in Fig. 2 (center).
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Figure 1: Valid (left) and invalid local wheel configuration.
The adjacent boundary edges intersect as condition (5) and
hence (4) are violated (right).

Intuitively, we can think of condition (4) as applying a
force on the boundary edges to straighten them and to stretch
the parts of the boundary that cause fold overs in the flat
mesh. Fig. 2 (right) illustrates this effect.

We take advantage of this fact in order to avoid an iter-
ative post-processing and thus have better control over the
convergence of the constrained optimization problem. In the
next sections we show how this problem with the additional
inequalities included can be solved efficiently.

Figure 3: Angle based flattening (t � 2) of a technical data
set consisting of a regular triangulation of 4100 vertices. The
model (top) is shown with the parameterization (bottom) ap-
plied as texture map. The runtime of the algorithm was 25
minutes (1.8 GHz Xeon).

5. Constrained optimization problem

The flattening procedure that is applied for parameterization
minimizes the objective function

f � x 
 �
N

∑
i 	 1

wi � xi 
 ai 
 2

with the weights wi � 1
a2

i
. The variables ai represent the op-

timal angle of the flat mesh, which is according to18

ai �
�

α
�
i

2π
∑d

i � 1 α �i around an interior vertex

α
�
i around a boundary vertex

This function measures the distortion of the flat mesh w.r.t
the initial mesh. Our goal is to minimize this function in or-
der to produce a quasi-conformal parameterization. The va-
lidity of the flat mesh is guaranteed by respecting the con-
straints from the previous section.

At this point we apply a simple transformation on part of
the problem. Since the angles are strictly positive we can
safely rewrite condition (3) as

d

∑
i 	 1

log � sinβi 
 
 log � sinγi 
 � 0 � (6)

The virtue of this modification will be made clear in the
following section. We can now formulate the optimization
problem as

minimize f � x 

subject to h � x 
 � 0

g � x 
 � 0,
(7)

where g and h are multivariate functions of the equality
(1),(2),(6) and the inequality constraints (4) or (5), respec-
tively.

6. Solving the optimization problem

Large constrained optimization systems of the form (7) are
still open problems in the field of non-linear optimization3.
The adequacy of a method for their solution depends very
much on the properties of the objective function as well as
on the constraints.

We apply the so called active set approach, a variant of
Newton-like methods, that proceeds by replacing inequali-
ties by equalities which are easier to handle.

The active set is defined as the set of indices for which the
inequality constraint (4) is active. Formally

A � x � µ 
 ��� i � gi � 
 µi

c
� i � 1 ��� � � � r �

where µi is the Lagrange multiplier associated with gi, and c
a fixed positive scalar.

The active set approach converts inequality constraints to
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(a) (b) (c)

Figure 2: Flattening an α-shaped mode: (a) Original mesh. (b) The ABF flattened mesh self-intersects without post-
processing (t � 2). (c) Result from convex boundary ABF (t � 1). (The views are scaled differently.)

equality constraints by altering the Lagrange multipliers as-
sociated with them. If a constraint does not figure in the ac-
tive set, its associated multipliers are set to zero. Otherwise it
is treated as an equality constraint. The numerical advantage
of this method is that as the iterates get closer to the solution,
the active set becomes more and more stable. A detailed de-
scription of the active set method can be found in 1.

In every Newton iteration the following system is solved����
2
xxL JT

h JT
g

Jh 0 0
Jg 0 0

�����
∆x
∆µh
∆µg

��
� 


�� �
xL
h
g

��
(8)

where the Lagrangian L is given by

L � f � x 
 � µT
h h � x 
 � µT

g g � x 
 �

Now we can point out the advantage of using the modi-
fied wheel condition (6) instead of the original term (3). In
the classic ABF algorithm, the computation of the Hessian
matrix

�
2
xxL involves finding the second derivatives of the

products involved in condition (3). In fact, the resulting ma-
trix is sparse, but it still contains a considerable number of
non-zero elements (cf. 14). In contrast, the modified wheel
condition results in the diagonal Hessian matrix.� 2

xxL � diag � 2w2
i
�

mi

 1

sin2 � xi 
 

where mi is the linear combination of the Lagrange multipli-
ers involved with xi in condition (6).

The system matrix is symmetric although not necessarily
definite, with the addiational advantage of having a diago-
nal Hessian. Fig. 4 illustrates the structure of a typical sys-
tem matrix. We can exploit this structure by using adequate
solvers like the iterative solvers MINRES or SYMMLQ

Figure 4: System matrix (cf. equation (8)) generated from
the body model with our modified wheel condition (6). No-
tice the diagonal Hessian and the overall symmetry. The con-
tribution of the active set can be seen at the bottom line of the
zoomed region and symmetrically at the middle-right bounds
of the matrix. The number of non-zero elements of the sparse
matrix depends largely on the average valence or the regu-
larity of the mesh.

both developed by Paige and Saunders15 instead of the non-
symmetric GMRES and BiCGStab that are applied in14

with sophisticated preconditioning. We chose MINRES in
our experiments because of its efficient error minimization
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Figure 5: Flattening of the clumpy model. Top: original mesh.
Bottom: flattened mesh. Notice the convexity of the
boundary of the flattened mesh.

properties10. Since the MINRES algorithm does not suffer
from break downs, our method cannot stagnate, and it con-
verges to the solution of the parameterization problem if it
exists.

Note that the initial guess for the x is the vector of the
optimal angles a. In consequence, at every Newton iteration
the solution stays within the positive domain. However, in
order to guarantee that our algorithm does not step into neg-
ative domain, we have to apply a similar technique as in 18

that rejects too small iterates and appends increased weights
to the corresponding angles. However, our experiments with
different meshes show that we hardly ever run into this situ-
ation and have to update degeneracies.

7. Generating a Delaunay flat mesh

Many applications benefit from nicely shaped or "round" tri-
angles in contrast to long, thin or almost degenerated trian-
gles. For this reason, a Delaunay triangulation may be pre-
ferred as the result of flattening. This means that no vertex
falls within the circumcircle of any triangle of the triangula-
tion (cf. Fig. 6). It turns out that the construction of a Delau-
nay flat mesh can easily be incorporated into our algorithm
merely by adding another condition.

This is due to the fact, that for a flat mesh the Delaunay
property can be expressed as a condition on angles: Given
two triangles sharing a common edge with opposite angles

Figure 7: Flattening of the cat model. Top: Original mesh, the
cat’s bottom is open. Bottom: Flattened mesh.

α1 and α2, the Delaunay criterion can be expressed as

α1
� α2 � π � (9)

This is a result from computational geometry2 � 8. Di Bat-
tista et al.5 propose to use this criterion in addition to (1)-
(4) in order to generate a Delaunay triangulation. Clearly,
the Delaunay property does not come for free. The angular
distortion will suffer, and the new set of additional inequal-
ity constraints increases the number of variables in the opti-
mization problem by the number of internal edges.

The existence of a unique Delaunay triangulation for a
given set of of points is a classic result from algorithmic
geometry2. In such case, the Delaunay triangulation is con-
structed by applying edge-flips or constructing the appropri-
ate connectivity. However, in our case we are constrained
by the given connectivity and by the geometry of the input
mesh. Hence the existence of a Delaunay flat triangulation is
not guaranteed. Still, it may be worthwhile to add the con-
straints (9) after an initial solution has been computed. In
general, we observed better results in terms of convergence
with this sort of Delaunay post-processing compared to in-
cluding the Delaunay conditions from the beginning. Fig. 6
shows an example of a Delaunay flat mesh.

8. Results and Discussion

We applied our convex boundary ABF algorithm to a set of
different triangle meshes. Table 1 summarizes the numeri-
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(a) (b) (c)

Figure 6: Delaunay parameterized mesh. (a) Max-Planck model. (b) Parameterization with convex boundary, the highlighted
configuration is one example for disregarding the local Delaunay property. (c) Delaunay parameterization.

(a) (b) (c)

(d) (e) (f)

Figure 8: Effect of the boundary control coefficient t on the 3-balls model. (a) Original mesh. (b) Flat mesh for t � 2 *ABF).
(c) t � 1 � 05. (d) t � 1 (convex boundary ABF). (e) t � � 98. (f) t � 0 � 968
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cal results of our method, all timings were measured on a
1.8 GHz Intel Xeon CPU. The parameterization time de-
pends on the number of triangles and on the geometry as
well as on the connectivity of the input mesh. For consis-
tency with the original ABF we use the same metrics as in 19

to measure angular and length distortion.

As condition (4) imposes a strong constraint on the
boundary, we propose to relax it by multiplying the left hand
side by a positive scalar t, formally

d

∑
i 	 1

αi � tπ

The scalar t can be interpreted as boundary control coef-
ficient that steers the convexity of the boundary. It is clear
that for t � 1 we cannot rule out global boundary intersec-
tions and hence require ABF-like post-processing. Still, this
is a way to control the probability of self-crossings and to re-
duce the amount of post-processing. We experimented with
different values for t, and summarize the following interpre-
tations:

� t � 2 results in the classic ABF method. No adjacent edge
overlapping or boundary self crossing is taken into con-
sideration.� t � 2 prevents adjacent edges overlapping, but does not
necessarily prevent global self-intersections of the bound-
ary loop. We experienced such cases only for "boundary-
heavy" (w.r.t. ratio boundary to inner vertices, e.g. Fig. 2)
surfaces with non-trivial geometry (e.g. twists).� t � 1 globally prevents the boundary loop from self-
intersection for any valid input mesh, note that this suf-
fices to induce a convex boundary .� t � 1 forces the boundary to become even “more convex”.

Fig. 8 and 2 illustrate the behavior of the boundary for differ-
ent values of t. Table 2 shows numerical results for varying
t and typical meshes.

Note that depending on the input mesh, convergence and
validity of the flat mesh cannot be achieved for all values
of t. Our results suggest, that for each mesh there might be
an optimal value for t that produces best results in terms of
angular and length distortion. This could be an interesting
subject of further investigation.

9. Conclusions and future work

We presented and discussed several extensions to an-
gle based flattening. With additional inequality constraints
we can eliminate global and/or local boundary self-
intersections. This leads to a nice interpretation of bound-
ary behaviour through the introduction of the new bound-
ary control coefficient. While its use initially targets on the
avoidance of an iterative post-processing.We see potential
use for optimizing the parameterization with this coefficient
variable.

The arising non-linear constrained optimization problem
can be solved efficiently. With a simple and intuitive trans-
formation we can take advantage of a symmetric system ma-
trix, enabling the application of robust iterative solvers. We
will experiment with more numerical algorithms, e.g. the
sequential quadratic method as a variant of the active set
method, to further improve the numerical results.

Our algorithm can be easily adapted to generate Delaunay
flat meshes. While such a solution does not necessarily exist,
we propose to apply this criterion as a single post-processing
step as the Delaunay property may improve the quality of the
flat mesh for special applications.

We tested our algorithm on a variety of triangle meshes.
The examples show that our implementation can handle
moderately sized meshes in reasonable time. In direct anal-
ogy to angle based flattening, similar constraints on edge
lengths would lead to a formulation of a quasi-isometric pa-
rameterization method (such as 12), which we plan to inves-
tigate in the future.
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tour-merging for the traveling salesman problem

MPI-I-2003-1-006 H. Tamaki, M. Dietzfelbinger On the probability of Rendezvous in Graph

MPI-I-2003-1-005 M. Dietzfelbinger, P. Woelfel Almost Random Graphs with Simple Hash Functions

MPI-I-2003-1-004 E. Althaus, T. Polzin,
S.V. Daneshmand

Improving Linear Programming Approaches for the
Steiner Tree Problem

MPI-I-2003-1-003 R. Beier, B. Vcking Random Knapsack in Expected Polynomial Time

MPI-I-2003-1-002 P. Krysta, P. Sanders, B. Vcking Scheduling and Traffic Allocation for Tasks with
Bounded Splittability

MPI-I-2003-1-001 P. Sanders, R. Dementiev Asynchronous Parallel Disk Sorting

MPI-I-2002-4-002 F. Drago, W. Martens,
K. Myszkowski, H. Seidel

Perceptual Evaluation of Tone Mapping Operators with
Regard to Similarity and Preference

MPI-I-2002-4-001 M. Goesele, J. Kautz, J. Lang,
H.P.A. Lensch, H. Seidel

Tutorial Notes ACM SM 02 A Framework for the
Acquisition, Processing and Interactive Display of High
Quality 3D Models

MPI-I-2002-2-008 W. Charatonik, J. Talbot Atomic Set Constraints with Projection

MPI-I-2002-2-007 W. Charatonik, H. Ganzinger Symposium on the Effectiveness of Logic in Computer
Science in Honour of Moshe Vardi



MPI-I-2002-1-008 P. Sanders, J.L. Trff The Factor Algorithm for All-to-all Communication on
Clusters of SMP Nodes

MPI-I-2002-1-005 M. Hoefer Performance of heuristic and approximation algorithms
for the uncapacitated facility location problem

MPI-I-2002-1-004 S. Hert, T. Polzin, L. Kettner,
G. Schfer

Exp Lab A Tool Set for Computational Experiments

MPI-I-2002-1-003 I. Katriel, P. Sanders, J.L. Trff A Practical Minimum Scanning Tree Algorithm Using
the Cycle Property

MPI-I-2002-1-002 F. Grandoni Incrementally maintaining the number of l-cliques

MPI-I-2002-1-001 T. Polzin, S. Vahdati Using (sub)graphs of small width for solving the Steiner
problem

MPI-I-2001-4-005 H.P.A. Lensch, M. Goesele, H. Seidel A Framework for the Acquisition, Processing and
Interactive Display of High Quality 3D Models

MPI-I-2001-4-004 S.W. Choi, H. Seidel Linear One-sided Stability of MAT for Weakly Injective
Domain

MPI-I-2001-4-003 K. Daubert, W. Heidrich, J. Kautz,
J. Dischler, H. Seidel

Efficient Light Transport Using Precomputed Visibility

MPI-I-2001-4-002 H.P.A. Lensch, J. Kautz, M. Goesele,
H. Seidel

A Framework for the Acquisition, Processing,
Transmission, and Interactive Display of High Quality
3D Models on the Web

MPI-I-2001-4-001 H.P.A. Lensch, J. Kautz, M. Goesele,
W. Heidrich, H. Seidel

Image-Based Reconstruction of Spatially Varying
Materials

MPI-I-2001-2-006 H. Nivelle, S. Schulz Proceeding of the Second International Workshop of the
Implementation of Logics

MPI-I-2001-2-005 V. Sofronie-Stokkermans Resolution-based decision procedures for the universal
theory of some classes of distributive lattices with
operators

MPI-I-2001-2-004 H. de Nivelle Translation of Resolution Proofs into Higher Order
Natural Deduction using Type Theory

MPI-I-2001-2-003 S. Vorobyov Experiments with Iterative Improvement Algorithms on
Completely Unimodel Hypercubes

MPI-I-2001-2-002 P. Maier A Set-Theoretic Framework for Assume-Guarantee
Reasoning

MPI-I-2001-2-001 U. Waldmann Superposition and Chaining for Totally Ordered
Divisible Abelian Groups

MPI-I-2001-1-007 T. Polzin, S. Vahdati Extending Reduction Techniques for the Steiner Tree
Problem: A Combination of Alternative-and
Bound-Based Approaches

MPI-I-2001-1-006 T. Polzin, S. Vahdati Partitioning Techniques for the Steiner Problem

MPI-I-2001-1-005 T. Polzin, S. Vahdati On Steiner Trees and Minimum Spanning Trees in
Hypergraphs

MPI-I-2001-1-004 S. Hert, M. Hoffmann, L. Kettner,
S. Pion, M. Seel

An Adaptable and Extensible Geometry Kernel

MPI-I-2001-1-003 M. Seel Implementation of Planar Nef Polyhedra

MPI-I-2001-1-002 U. Meyer Directed Single-Source Shortest-Paths in Linear
Average-Case Time

MPI-I-2001-1-001 P. Krysta Approximating Minimum Size 1,2-Connected Networks

MPI-I-2000-4-003 S.W. Choi, H. Seidel Hyperbolic Hausdorff Distance for Medial Axis
Transform

MPI-I-2000-4-002 L.P. Kobbelt, S. Bischoff, K. Khler,
R. Schneider, M. Botsch, C. Rssl,
J. Vorsatz

Geometric Modeling Based on Polygonal Meshes

MPI-I-2000-4-001 J. Kautz, W. Heidrich, K. Daubert Bump Map Shadows for OpenGL Rendering

MPI-I-2000-2-001 F. Eisenbrand Short Vectors of Planar Lattices Via Continued
Fractions

MPI-I-2000-1-005 M. Seel, K. Mehlhorn Infimaximal Frames: A Technique for Making Lines
Look Like Segments

MPI-I-2000-1-004 K. Mehlhorn, S. Schirra Generalized and improved constructive separation
bound for real algebraic expressions



MPI-I-2000-1-003 P. Fatourou Low-Contention Depth-First Scheduling of Parallel
Computations with Synchronization Variables

MPI-I-2000-1-002 R. Beier, J. Sibeyn A Powerful Heuristic for Telephone Gossiping

MPI-I-2000-1-001 E. Althaus, O. Kohlbacher, H. Lenhof,
P. Mller

A branch and cut algorithm for the optimal solution of
the side-chain placement problem




