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Abstract

Bernstein polynomials are a classical tool in Computer Aided Design to create
smooth maps with a high degree of local control. They are used for the con-
struction of Bézier surfaces, free-form deformations, and many other applications.
However, classical Bernstein polynomials are only defined for simplices and par-
allelepipeds. These can in general not directly capture the shape of arbitrary ob-
jects. Instead, a tessellation of the desired domain has to be done first.

We construct smooth maps on arbitrary sets of polytopes such that the restric-
tion to each of the polytopes is a Bernstein polynomial in mean value coordinates
(or any other generalized barycentric coordinates). In particular, we show how
smooth transitions between different domain polytopes can be ensured.
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1 Introduction
Bernstein polynomials are at the core of classical Computer Aided Design. In
the 1960s, they were used for the construction of Bézier surfaces [1, 2, 6], which
remain an important tool until today. Later, Bernstein polynomials were applied
to define free-form deformations of 3D space [17]. More general, they can be
used to construct any kind of smooth map that requires local control.

In this paper, we use the notion of Bézier maps to denote polynomial functions
f : �d → �e in the form of simplicial Bézier maps

f (λ) =
∑

|α|=n

bαBn
α(λ) (1.1)

or tensor product Bézier maps

f (x) =
n

∑

i1,...id=0

bi1...id

d
∏

j=1

Bn
i j
(x j) (1.2)

where λ B λ(x) are the barycentric coordinates of x B (x1, . . . xd) with respect to
a domain simplex (or polytope) P ⊂ �d with vertices {v1, . . . vk} (k = d + 1 if P
is a simplex) while (1.2) is defined over the domain [0, 1]d. n is the polynomial
degree, bα ∈ �e and bi1...id ∈ �

e are the control points, and Bn
α and Bn

i are the
Bernstein polynomials defined by

Bn
α(λ) =

n!
α!
λα , Bn

i (x) =
(

n
i

)

(1 − x)n−ixi (1.3)

where we use the standard multi-index notation α B (α1, . . . αk) ∈ �k with |α| B
∑

i αi, α! B
∏

i αi!, and λα B
∏

i λ
αi
i .

Important special cases of Bézier maps are on the one hand Bézier curves and
(hyper-)surfaces where e > d and usually d = 1 or d = 2. On the other hand, if d =
e, we obtain space deformations. Sederberg and Parry [17] used tensor product
Bernstein polynomials defined on parallelepipeds in �3 to specify such free-form
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deformations. In this case, the control points bi jk indicate the position and shape of
the deformed parallelepiped. However, the restriction on the shape of the domain
makes it sometimes difficult to adapt the deformation to complex real objects.
This restriction can be overcome by generalizing the barycentric coordinates λi

in (1.1) from triangles to more general polygons and polyhedra. A first step in this
direction was done by Loop and DeRose [15] who introduced coordinate functions
li in order to define Bézier surfaces over regular k-gons. These coordinates are a
special case of the Wachspress coordinates [18] that are defined inside of arbitrary
convex polygons and were introduced to computer graphics by Meyer et al. [16].
A further generalization led to the definition of Wachspress coordinates for convex
polytopes of higher dimensions [19, 11].

Another generalization of barycentric coordinates, the mean value coordi-
nates, was suggested by Floater [3] and extended to higher dimensions later on [5,
10, 12]. They have the advantage of being defined for arbitrary, convex and non-
convex, polytopes. Unfortunately, mean value coordinates are only C0-continuous
at vertices [8]. Langer and Seidel addressed the latter problem and showed that the
higher order discontinuities at the vertices vanish in the context of Bézier maps if
the control points bα satisfy certain continuity constraints [14]. They pointed out
that mean value Bézier maps have a greater number of control points, and hence
greater flexibility, than traditional Bézier maps. Their solution, however, is only
valid for Bézier maps defined on a square. Thus, the mean value coordinates lost
their greatest strength: to be defined with respect to arbitrary polytopes.

When constructing a smooth map consisting of several polynomials that are
defined on adjoining polytopes, we have to ensure that the respective polynomials
connect smoothly. For connecting simplicial and tensor product polynomials, a
well developed theory is available. In [15], it is shown how regular k-gons and
triangles can be smoothly connected if Bernstein polynomials in Wachspress co-
ordinates are used. Unfortunately, their proof requires coordinates that are rational
polynomial functions, which is not the case for mean value coordinates. There-
fore, it cannot be carried over to mean value Bézier maps (Bézier maps based on
mean value coordinates).

In this paper, we derive constraints on the control points of Bézier maps in
arbitrary generalized barycentric coordinates to obtain smooth transitions between
arbitrary domain polytopes. One essential requirement, as noted in [7], is to adopt
an indexing scheme that is adapted to the given polytopes. We chose to use multi-
indices (as has been done before in [15]). They correspond to the Minkowski sum
approach in [7].
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2 Theoretical foundation
Classical barycentric coordinates specify local coordinates λi(x) for a point x with
respect to a simplex. When generalizing this concept from simplices to arbitrary
polytopes P with vertices {v1 . . . vk}, we require that the λi satisfy

∑

i

λi(x) = 1 partition of unity, (2.1)

∑

i

λi(x)vi = x linear precision. (2.2)

We call a set of continuous functions λi(x) that satisfies (2.1) and (2.2) barycentric
coordinates. They are positive if additionally

∀i λi(x) > 0 positivity (2.3)

holds for all points x within convex polytopes.
Barycentric coordinates for polytopes can be inserted in (1.1) to obtain (gen-

eralized) Bézier maps. Wachspress coordinates and mean value coordinates are
the most prominent positive barycentric coordinates. An overview of other co-
ordinates can be found in [4, 9, 12]. It has been observed [15] that Bézier maps
based on Wachspress coordinates defined on a square lead to the well-known ten-
sor product Bézier maps. Mean value Bézier maps have the advantage that their
domain is not restricted to convex polygons. For all kinds of Bézier maps the
following properties are satisfied.

2.1 Proposition. Let λi be barycentric coordinates with respect to a polytope P,
and let the Bernstein polynomials Bn

α and a Bézier map f be defined as in (1.3)
and (1.1). Then the following properties hold:

1. Bn
α(λ) =

∑k
i=1 λiBn−1

α−ei
(λ) (we set Bm

β
(λ) B 0 if one of the βi < 0),

2. let (vi0 , vi1) be an edge of P, then the boundary curve f (λ((1 − t)vi0 + tvi1))
is a Bézier curve with control points (b(n− j)ei0+ jei1

)n
j=0,
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3. {Bn
α} forms a partition of unity; it is a positive partition of unity within P if

P is convex and the λi are positive coordinates,

4. the image of P under f (λ(x)) is contained in the convex hull of the bα if P is
convex and the λi are positive coordinates,

5. the de Casteljau algorithm works: let f (λ) =
∑

|α|=n bαBn
α(λ) be a Bézier

map with coefficients bα. For m ∈ � and a given β with |β| = n − m, let
bm
β

(λ) B
∑

|α|=m bβ+αBm
α (λ). Then P(λ) = bn

0(λ) can be computed from the
b0
β
(λ) = bβ via the recursive relation bm

β
(λ) =

∑k
i=1 λibm−1

β+ei
(λ).

(ei denotes the multi-index with components (ei) j = δi j, and 0 denotes the multi-
index with components 0 j = 0.)

To join several Bézier maps smoothly, it is important to know their deriva-
tives. In the remainder of the paper, we will assume that the λi are differentiable
everywhere apart from the vertices vi. This is in particular true for Wachspress
and mean value coordinates. Using the chain rule, it is straightforward to obtain

2.2 Lemma. Let
f (λ) =

∑

|α|=n

bαBn
α(λ) . (2.4)

Then the first derivatives of f are given by

∂

∂xi
f (λ(x)) = n

∑

|α|=n−1

k
∑

j=1

∂

∂xi
λ j(x)bα+e j B

n−1
α (λ(x)) . (2.5)

However, the derivatives ∂
∂xi
λ j are in general not easy to compute. Never-

theless, in [14], constraints on the control points bα to achieve smooth deriva-
tives across common (hyper-)faces of polytopes have been derived without exact
knowledge of the derivatives of λ j. However, the proof is based on properties of
barycentric coordinates that are specific to coordinates defined in a square. Since
we want to have smooth transitions of Bézier maps defined on arbitrary polytopes,
we need a more general approach. In the following, we give sufficient conditions
for the control points bα to join arbitrary polytopes smoothly.

Basically, the control points at the common (hyper-)faces and adjacent to it
must be determined by affine functions Aβ and these functions must coincide
across these faces. This is visualized in Figure 3.1. The figure shows a Bézier
surface and its control net from several viewpoints. The domain consists of a pen-
tagon and an L-shaped hexagon that share two common edges (shown in black
below the surface). On the right, the control net is colored to indicate the smooth-
ness conditions. The parts of the control net that correspond to the three common
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vertices of the two polygons are affine images of the domain polygons. They are
colored in blue, red, and green, respectively.

We make this idea more precise in the following theorems. We begin by ex-
pressing the derivatives of a Bézier map with respect to the control points.

2.3 Theorem. Let f (λ) =
∑

|α|=n bαBn
α(λ) be a Bézier map defined with respect to

a polytope P with vertices vi. Assume that for every multi-index β with |β| = n − 1
an affine function Aβ exists such that bα = Aβ(

∑

i
αi
n vi) for all pairs α and β such

that α = β + e j.
Then, the derivative of f with respect to a differential operator ∂ ∈

{

∂
∂xi

}

is

∂ f (λ(x)) =
∑

|β|=n−1

∂Aβ · Bn−1
β (λ(x)).

Proof. In the following calculation, we use the derivative of f (Lemma 2.2), the
definition of Aβ, the affine linearity of Aβ, the linearity of ∂, again the affine lin-
earity of Aβ, partition of unity (2.1) and linear precision (2.2) for λ(x) (but note
that we suppress x in the notation otherwise), and that the derivative of a constant
is zero.

∂ f (λ) = n
∑

|β|=n−1

k
∑

i=1

∂λibβ+ei B
n−1
β (λ)

= n
∑

|β|=n−1

k
∑

i=1

∂λiAβ
(
∑

j

β j

n
v j +

1
n

vi

)

Bn−1
β (λ)

= n
∑

|β|=n−1

k
∑

i=1

∂λi

















∑

j

β j

n
Aβ(v j) +

1
n

Aβ(vi)

















Bn−1
β (λ)

=

∑

|β|=n−1

Bn−1
β (λ)∂

















∑

j

β j

k
∑

i=1

λiAβ(v j) +
k

∑

i=1

λiAβ(vi)

















=

∑

|β|=n−1

Bn−1
β (λ)∂

















∑

j

β jAβ
(

k
∑

i=1

λiv j

)

+ Aβ
(

k
∑

i=1

λivi

)

















=

∑

|β|=n−1

Bn−1
β (λ)∂

















∑

j

β jAβ(v j) + Aβ(x)

















=

∑

|β|=n−1

Bn−1
β (λ)∂Aβ. (2.6)

�

In the same way, we can compute higher derivatives:
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2.4 Corollary. In the situation of Theorem 2.3 assume that for every multi-index
γ with |γ| = n − 2 an affine function A′γ exists such that ∂Aβ = A′γ(

∑

i
βi

n−1vi) for all
pairs β and γ such that β = γ + e j.

Then, the derivative ∂′∂ f of f with respect to a differential operator ∂′ ∈
{

∂
∂xi

}

is
∂′∂ f (λ(x)) =

∑

|γ|=n−2

∂′A′γ · B
n−2
γ (λ(x)).

Respective statements hold for the higher derivatives of f .

Proof. The claim follows immediately from Theorem 2.3 since ∂ f (λ(x)) =
∑

|β|=n−1 ∂AβBn−1
β

(λ(x)) is a Bézier map with coefficients ∂Aβ. �

2.5 Corollary (Smooth mean value Bézier maps). Let f (λ) =
∑

|α|=n bαBn
α(λ)

be a Bézier map where the λi are the mean value coordinates with respect to a
polytope P with vertices vi. Assume that an affine function Ai exists such that
b(n−1)ei+e j = Ai( n−1

n vi +
1
nv j) for all j.

Then, the derivative of f with respect to any differential operator ∂ ∈
{

∂
∂xi

}

has
a continuous extension to vi and

lim
x→vi
∂ f (x) = ∂Ai.

Respective statements hold for the higher derivatives of f .

Proof. We observe that the outer sum in (2.6) collapses to a single summand if
the limit x→ vi is considered. We obtain the claim from the remaining term. �

Finally, we obtain constraints on the bα to achieve smooth Bézier maps across
common (hyper-)faces of polytopes.

2.6 Corollary (Continuity across polytope boundaries). Let f (λ) =
∑

|α|=n bαBn
α(λ) and f ′(λ′) =

∑

|α|=n b′αB
n
α(λ
′) be Bézier maps defined with respect

to polytopes P and P′ that share a common vertex, edge, or (hyper-)face f (im-
plying that λi(x) = λ′i(x) for all i and x ∈ f). Let f be determined by its vertices
V B {vi j}

l
j=1 = {v

′
i j
}lj=1. (Without loss of generality, let corresponding vertices

have the same indices.) Assume that, for every multi-index β with |β| = n − 1
and βi = 0 if i < V, an affine function Aβ exists such that bα = Aβ(

∑

i
αi
n vi) and

b′α = Aβ(
∑

i
αi
n v′i) for all pairs α and β such that α = β + e j.

Then, the derivative of f and f ′ at points x ∈ f with respect to a differential
operator ∂ ∈

{

∂
∂xi

}

is

∂ f (λ(x)) = ∂ f ′(λ′(x)) =
∑

|β|=n−1
i<V⇒βi=0

∂Aβ · Bn−1
β (λ(x)).

Respective statements hold for the higher derivatives of f and f ′.
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Proof. Observe that (2.6) is still valid if not the sum over all β with |β| = n − 1
is considered but only those β with βi = 0 if i < V (for x ∈ f). This implies the
claim. �

For Bézier surfaces, it is often sufficient if the tangent plane varies smoothly
without requiring smoothness of the parameterization. In this case, slightly weaker
constraints on the control points are sufficient.

2.7 Corollary (Geometric continuity across polytope boundaries). In the sit-
uation of Corollary 2.6 let Q be any affine transformation of the domain �d that
keeps f fixed such that bα = Aβ(

∑

i
αi
n vi) and b′α = AβQ(

∑

i
αi
n v′i) for all pairs α and

β such that α = β + e j and βi = 0 if i < V.
Then ∂ f (λ) = ∂ f ′(λ′) · ∂Q.

Proof. Factoring out Q in (2.6) yields the claim. �
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3 Applications
In this section, we present several applications of mean value Bézier maps. Al-
though the results obtained in the previous chapter are general and hold for any
barycentric coordinates, Wachspress and mean value coordinates are the only
known positive three-point coordinates [4]. Wachspress coordinates, however,
have already been used to some extent in the past in the form of tensor product
Bézier maps (with parallelepipeds as domain) and S-patches [15] (with regular
k-gons as domain). Therefore, it seemed more appropriate to us to use mean value
Bézier maps to demonstrate our results.

In all our applications, we begin by specifying several domain polytopes and
their respective control points to achieve a smooth Bézier map f : �d → �e. To
determine the polytope in which a point x ∈ �d lies, we can use another property
of mean value coordinates: the mean value coordinates with respect to a polytope
P are defined in the whole space �d and the denominator (for normalization) in
the construction is positive if and only if x lies within P [8, 13]. Thus, we can
automatically determine the polytope P containing x when computing the mean
value coordinates of x with respect to P.

3.1 Bézier curves and surfaces
If we choose d = 1 or d = 2 and e > d, Bézier maps specialize to Bézier curves
and surfaces. In the case d = 1, however, barycentric coordinates on the unique
1-dimensional polytope, which is the 1-simplex or line segment, are uniquely de-
termined (t and 1 − t on [0, 1]). Our results coincide with the well-known theory
for Bézier curves.

Therefore, we present an example of a mean value Bézier surface, that is a
mean value Bézier map f : �2 → �3. Figure 3.1 shows a C1-continuous Bézier
surface from several viewpoints. It consists of two patches of degree 2. The
domain is the union of a pentagon and an L-shaped hexagon, which share two
common edges. Note that the highlights vary smoothly across these edges. The
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Figure 3.1: Our method makes it possible to use non-convex polygons in the con-
struction of Bézier surfaces. We present three views of a Bézier surface consisting
of a pentagonal and an L-shaped hexagonal patch. Note that the highlights vary
smoothly across the common edges.

two domain polygons are shown in black below the surface. The control nets,
which determine the shape of the surface, are also depicted. We followed the
suggestion in [15] and drew all polygons (bβ+ei)

k
i=1 with |β| = n − 1 = 1. (For

drawing purposes, we shifted the control net belonging to the pentagon slightly
to make sure that it does not overlap with the other one.) On the left and in the
middle, we colored the control net for the pentagon red and the control net for the
hexagon green. On the right, we chose common colors for the parts of the control
net that belong to a common vertex of both polygons. They can be discerned as
affine images of the domain.

3.2 Space deformations
A Bézier map with d = e is a space deformation of �d. While geometric con-
tinuity is often sufficient for Bézier curves and surfaces, we need “real” analytic
continuity to obtain a smooth space deformation. Even a discontinuity of the abso-
lute value of the derivative in a single direction may be clearly visible if a textured
object is deformed.

Figure 3.2 demonstrates a space deformation of�3. In (a), We show the cuboid
that we want to twist by 180◦. We align the control polyhedron with the edges of
the cuboid. (b) depicts the result if the twist is done directly with mean value co-
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ordinates (that is Bernstein polynomials of degree one). The lack of local control
leads to a singularity. In (c), we include four additional vertices in the middle of
the long edges without changing the total shape of the control polyhedron. This
allows us better local control, but C1-discontinuities are introduced in the middle
and at the vertices. (The bead shaped reflection at the top left corner of the cuboid
indicates the C1-discontinuity of mean value coordinates at the vertices.) In (d),
we split the control net into two identical, adjoining control polyhedra and deform
them independently of each other. This gives us the desired local control but we
still have the C1-discontinuities. In (e), we use a Bézier map of degree 3 to join
the two control polyhedra smoothly. It allows us to enforce C1-continuity while
maintaining local control. Observe that also the C1-discontinuities at the vertices
have vanished. The control net shows how the continuity conditions are satisfied
here. The left-most and right-most part is an affine image of the domain cuboids
to make the deformation smooth at the respective vertices. (The left part is iden-
tically mapped, and the right part is rotated by 180◦ degree.) The two middle
“columns” are mapped by a common affine map (both are rotated by 90◦ degree)
to ensure a smooth transition between the adjoining control polyhedra.

Figure 3.3 shows how a complex model can be handled by specifying a control
net that is adapted to the shape of the model. It also shows that Bézier maps of
different degrees can be mixed under certain circumstances. (Here, the body is
mapped identically.) While the body and left front leg is mapped by a degree one
map, the Bézier maps for the head and the right leg have degree three.

To display a control polyhedron P, we note that each set (bβ+ei)
k
i=1 with |β| =

n − 1 corresponds naturally to the polyhedron with vertices (vi)k
i=1. Therefore, we

connect control points bβ+ei and bβ+e j if and only if (vi, v j) is an edge in P.

11



(a)

(b)

(c)

(d)

(e)

Figure 3.2: A cuboid shall be twisted by 180◦. We present results of several meth-
ods. The small picture on the left shows the corresponding control net. (a) The
undeformed cuboid. (b) Interpolation of the twist with mean value coordinates.
(c) Interpolation of the twist with mean value coordinates using additional control
points. (d) We split the cuboid into two halves and interpolate both halves with
mean value coordinates. (e) Our method. Although we use the same two halves
as interpolation domains as in (d), the use of third order polynomials allows us to
control the smoothness. If we had increased the number of control points without
using higher order polynomials, we would have introduced new discontinuities as
in (c) and (d).
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Figure 3.3: The control net containing the cow consists of 6 polyhedra. One for
the body, one for the head, two for the front knees, and two for the front legs.
It demonstrates the ability of our method to handle complex control nets that are
adapted to the shape of the object. We specified the deformation, which is C1-
continuous, by moving the vertices of the control polyhedra shown in the upper
row. The intermediate control points, which are depicted in the control net below,
were computed automatically.
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4 Conclusions and future work
We developed criteria for the construction of smooth Bézier maps. A Bézier map
is a map that is piecewise (on a given polytope) a homogeneous polynomial in
generalized barycentric coordinates. We showed how the coefficients of the Bern-
stein polynomials can be chosen to enforce smoothness of any desired order across
common (hyper-)faces of the polytopes. We chose to develop the theory in full
generality although we mainly aim at Bézier maps in mean value coordinates.
This allows the use of our results for any other barycentric coordinates that might
come to the focus of attention in the future. Moreover, it shows that many re-
sults from the well developed field of simplicial and tensor product Bézier theory
can be considered as a special case of our findings if Wachspress coordinates are
used. Our indexing scheme, however, does not coincide with the traditional index-
ing scheme for tensor product Bézier maps. This sheds new light on the classical
theory, which will hopefully lead to an better understanding of the tensor product
Bézier maps as well.

Probably the most important examples of Bézier maps are Bézier curves and
surfaces and space deformations. We presented examples of mean value Bézier
surfaces and free-form deformations based on Bernstein polynomials in mean
value coordinates as possible applications. Nearly without additional effort, we
can ensure that our Bézier maps exhibit the desired smoothness even at the poly-
tope vertices, although the mean value coordinates themselves are only C0-con-
tinuous at these points. Thus, it is now possible to construct smooth mean value
Bézier maps with arbitrary polytopes as domains.

Nevertheless, a number of open questions remain, which we intend to address
in future work. Foremost, some kind of spline representation of Bézier maps has
to be found that takes care of any continuity issues automatically. These splines
should allow to place meaningful control points directly during the design of sur-
faces and deformations without the necessity to spend much time on the cumber-
some process of satisfying the continuity constraints manually. Another issue that
we did not discuss in the current paper are rational Bézier maps. The use of ratio-
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nal Bézier maps greatly expanded the capabilities of classical Bézier theory. The
same should be done for generalized Bézier maps.
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