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Abstract 

The research described in this paper involved developing transformation techniques 
wh ich increase the efficiency of the original program, the source, by transforming its 
synthesis proof into one, the target, which yields a computationally more efficient al­
gorithm. We describe a working proof transformation system which, by exploiting the 
duality between mathematical induction and recursion, employs the novel strategy of 
optimizing recursive programs by transforming inductive proofs. We compare and con­
trast this approach with the more traditional approaches to program transformation, 
and highlight the benefits of proof transformation with regards to search, correctness, 
automat ability and generality. 



1 Introduction 

For several years the Mathematical Reasoning Group, MRG, at the Edinburgh De­
partment of AI, has undertaken research into the field of automatie programming 
[5, 9, 7, 6]. The research has mainly concentrated on the (automatie) generation 
of programs from specifications (input-output relations), and the (automatie) ver­
ification that a program meets its specification. These issues have been tackled 
within the OYSTER proof refinement environment: 1 by using logic programming and 
constructive logic, the task of generating programs is treated as the task of proving 
a theorem. Hence knowledge of theorem proving, and in particular automatie proof 
guidance techniques, are used. 

A furt her goal within the proofs as programs paradigm concerns the automatie 
transformation of programs by transforming their synthesis proofs [21, 22, 23, 24]. 
This more recent goal forms the central topie of this paper. As weH as having 
certain advantages over the more traditional approaches to program optimization 
(where pro grams are transformed directly), proof transformation also complements 
program synthesis through theorem proving: it enables the synthesizer (human or 
mechanical) to construct short, elegant proofs, without clou ding the design process 
with efficiency issues, and then to transform them into an opaque proof that yields 
an efficient program. 

In [22], we described in outline the rudiments of a specialization system for 
adapting programs to special situations by performing prooftree pruning transforms 
on synthesis proofs. We compared this with the original implementation [17]. In 
addition to the specialization system, we have now implemented a more general 
purpose optimization system which also functions by transforming synthesis proofs. 
Although the proof transformation system (henceforth PTS) should be regarded as in 
its embryo nie form it offers one of the first system designs for program optimization 
through proof transformation, and is the first such design to be implemented (to the 
author's knowledge). The system satisfies the desirable criteria for a transformation 
system of correctness, generality, and automatability. 

The key feature of the proof transformations is that recursive programs are op­
timized by transforming the induction schema employed within the corresponding 
synthesis proofs. Thus we exploit the weH known duality between mathematieal 
induction and recursion in order to optimize recursive programs. This is a novel 
approach to program optimization. We argue that this approach has several advan­
tages over the more traditional approach to program transformation where trans­
formation rules are applied directly to the source (input) code in order to construct 
the target (output) program. The strategy of transforming induction schemas so 
as to optimize recursion is supplemented with the tupling transformation technique 
adapted from the existing literature [30, 11]. The adaptation of tupling to the 
proofs as pro gram paradigm is also a novel aspect of this research and enables the 
automatie identification of efficient recursive data-types which usuaHy correspond 
to eureka steps in "pure" transformational techniques such as unfold/fold rewriting 
[10]. 

1.1 Motivation 
As computer programs play an increasingly important role in aH our lives so we 
must depend more and more on techniques, preferably automatie, for ensuring the 
high quality (efficiency and reliability) of computer programs. By efficient we mean 
that a program is designed to compute a task with minimum overhead and with 

I OYSTER is the Edinburgh Prolog implementation of NuPRL; version "nu" of the Proof Refine. 
ment Logic system originally developed at Cornell (Horn 88, Constable et a/86]. 
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maximum space and time efficiency. By reliable we mean that a program is ensured, 
or guaranteed in some sense, to compute the desired, or specified, task. 

The most promising technique being developed for the automatie development 
of high quality software are formal methods, wh ich are used to provide programs 
with, or prove that programs have, certain properties: a program may be proved 
to terminate; two prograrns may be proved equivalent; an inefficient program may 
be transformed into an equivalent efficient program; a program may be verified to 
satisfy some specification (i.e. a program is proved to compute the specified func­
tion/relation); and a program may be synthesized that satisfies some specification. 

The research described herein addresses both the reliability and efficiency, as 
weIl as the automatability, aspects of developing high quality software using formal 
methods. We describe novel theorem proving techniques for automatie program 
optimization. The target program is a significant improvement on the source (the 
efficiency criteria), and is guaranteed to satisfy the desired program specification 
(the reliability criteria). 

A further motivation behind exploiting proofs for the purposes of program trans­
formation is that proofs will contain more information than the programs which 
they specify. Programs need contain no more information than that required for 
simple execution. Proofs, on the other hand, represent a program design record 
because they encapsulate the reasoning behind the program construction by mak­
ing explicit the procedural commitments and decisions made by the synthesizer. 
This non-algorithmic information, which includes the relations between facts in­
volved in the computation of the synthesized program, is ideal for controlling the 
transformations. 

Further motivations include the advantages of proof transformation, concerning 
search, control and correctness criteria, over the more traditional styles of program 
development. We address these in detail in §6. Further applications (potential and 
real) of this research are discussed in §6.4. 

1.2 Contents 

In §2 we provide a background to proof transformation by discussing the duality 
between proofs and programs. In §2.1 we describe properties ofthe OYSTER system, 
and of (synthesis) proof refinement in general. The duality between mathematical 
induction and recursion, in a constructive setting, is discussed in §2.2. 

In §3 we provide an overview of the central concepts pertaining to, and the prop­
erties of, the PTS: §3.1 provides a high-level view of the PTS design; §3.2 introduces 
one of our running examples, and illustrates how specific recursion schemas corre­
late with the induction schemas used for synthesis; in §3.3 we introduce the tupling 
technique for removing redundant computation from recursive procedures. §3 serves 
as a gentle introduction to program through proof transformation, and enables the 
reader to maintain a high-level picture when we come to the more detailed low-Ievel 
expositions. 

In §4 we provide details concerning: the motivations for proof transformation; 
the abstraction of information from proofs for the purpose of optimization; how 
the PTS constructs the synthesis and verification components of an optimized proof; 
and the adaptation of the tupling technique to the proofs as programs paradigm. 

In §5 we explain, through detailed examples, the methodology of the PTS: §5.1 
illustrates linearizing exponential procedures through proof transformation; §5.2 
illustrates the removal of nested recursion schemas (Le. loop removal); and §5.3 
brieHy describes a more complex example. We also discuss the overall performance 
of the PTS, §5.1.6 and §5.2.3. 

In §6 we compare the properties of the PTS with existing program transformation 
techniques and systems. We highlight the advantages of the former. In particular 
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we compare our approach to the unfold/fold technique and the use of dependency 
graph analysis for tupling program transformations. We also discuss applications of 
the research, and some anticipated future directions for extending the PTS system. 

Finally, in §7, we provide a concluding summary. 

2 Background: The Duality Between Programs 
and Proofs 

Constructive logic allows us to correlate computation with logical inference. This is 
because proofs of propositions in such a logic require us to construct objects, such 
as functions and sets, in a similar way that programs require that actual objects 
are constructed in the course of computing a procedure.2 This duality is accounted 
for by the Curry-Howard isomorphism which draws a duality between the inference 
rules and the functional terms of the >.-calculus [13, 18]. 

Such considerations allow us to correlate each proof of a proposition with a 
specific >.-term, >'-terms with programs, and the proposition with a specification of 
the program. Hence different constructive proofs ofthe same proposition correspond 
to different ways of computing a specific program specification. The reasoning for 
this can be set out as folIows: 

1. proofs of propositions correspond to terms of the appropriate type, such that, 

2. the propositions are identified with the type of their proofsj 

3. proofs are closely correlated with the terms of the A-calculusj 

4. so by 2 and 3: propositions are identified with the type of the A-terms, andj 

5. A-terms can be equated with functional programsj 

6. therefore, by 4 and 5, the propositions can be viewed as types of programsj 

7. in other words, the propositions of the A-calculus can be correlated with descriptions (speci­
fications) of programs which specify what task is computed by the program, andj 

8. the proofs of the propositions can be correlated with programs which determine how the task 
is computedj 

9. hence, different proofs of the same proposition can be correlated with different programs for 
computing the task specified by that proposition. 

Thus by controlling the form of the proof we can control the efficiency with which the 
constructed program computes the specified goal. Here in lies the key to transform­
ing proofs that yield inefficient programs into proofs that yield efficient programs. 

A program specification is represented, schematically, as 

r Vinputs, 30utput. spec(input, output) (1) 

Existential proofs of such specifications must establish (constructively) how, for any 
input vector, an output can be constructed that satisfies the specification.3 Thus 
any synthesized program is guaranteed correct with respect to the specification. 
Furthermore, by finding a constructive proof of (1) we can extract an algorithm, alg 
such that, 

2Thus we cannot, Cor example, compute (or constructively prove) that there are an infinity of 
prime numbers by assuming the converse and deriving a contradiction, rather we must produce 
a program that computes them (or a proof that we can a1ways construct another prime number 
greater than the ones known so Car). 

3Thus constructive logic ezclude6 pure existence prooCs where the existence of output is proved 
but not identified. 
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f- "Iinput. spec( inputs, aig( input)) 

aig is known as the extract term (or extract program) of the constructive proof. 
So, for example, suppose we wish to compute a value for the integer log to the 

base 2 of our input, then from a proof of the following specification:4 

f- "I input: integer, 3 output: integer. ( 20utput $ input 1\ input< 2output+l ) 

we extract an algorithm aig which satisfies the following: 

f- "I input: integer. ( 2 olg(input) $ input 1\ input< 2 olg(input)+1 ) 

and which does the required job. Proving that a given extract algorithm does satisfy 
the above is known as verijication. 

2.1 The OYSTER System 

The OYSTER system is an implementation of a constructive type theory which is 
based on Martin-Löf type theory, [28]. OYSTER is written in Quintus Prolog, and 
run at the Prolog prompt level, so it is controlled by using Prolog predicates as 
commands. Proof tactics can be built as Prolog programs, incorporating OYSTER 

commands (which are simply Prolog predicates). An advantage of using Prolog as 
the meta-Ianguage for defining tactics is that the proof mechanisms can exploit the 
unification and back-tracking properties of Prolog. 

The main benefit of using type theory is that, recalling the previous section, 
it nicely combines typing properties with the properties of constructivism, such 
that we can both correlate the propositions of the A-calculus with specifications of 
programs and correlate the proofs of the propositions with how the specification is 
computed. 

The main benefit of using asequent calculus notation, as opposed to that of 
any of the numerous natural deduction systems, is that at any stage (node) during 
a proof development, all the dependencies (assumptions and hypotheses) required 
to complete that proof stage are explicitly presented within a hypothesis list. A 
sequent is of the form [HYPOTHESES] f- [CONCLUSION], where, in the course of 
proving the conclusion, refinements may either act upon the hypotheses (so called 
elirn refinements) or act upon the conclusion (so called intro refinements). 

A major motivation behind the development of the OYSTER system is that the 
language uniformity of the logic programming environment allows for the construc­
tion of meta-theorems which express more general principles, concerning the object 
level theorem proving. This allows for the construction of programs, in Prolog, that 
manipulate proofs inside the system itself. One such function is the construction 
of tactics which combine the object-Ievel rules of the system in various ways and 
apply them to proof (sub)goals. Within the context of the PTS, this allows for the 
construction of (meta-level) transformation tactics that operate upon the (object 
level) source proofs to produce target proofs from which optimized programs can 
be extracted. 5 

2.1.1 The Nature of OYSTER Synthesis through Proof Refinement 

OYSTER proofs are rejinement proofs, and are edited using a rejinement editor. The 
OYSTER proof starts with the expression to be proved at the root of its proof tree, 

4 Typing is not, of course, restricted to integers. Types can be natural numbers, lists of natural 
numbers (or integers), sets, strings, trees and so forth. Throughout the course of this paper we 
shall often omit typing information so as to make formulae more readable . In general, only when 
it is not obvious, or when it is pertinent to the text, shall we explicitly label the types of objects. 

sThe language uniformity property has also led to the development of an automatie proof 
planning system CLAM [9] (cf. §6.4.4). 
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and constructs the tree back towards the leaves: the inference rules of the logic -
refinement rules - are applied in reverse to a goal, to reduce, or refine, it to a set 
of sub-goals which, in turn, require proving in order to complete the overall proof. 
Thus, for example, if the user teIls OYSTER to apply 'v'-introduction to a top-Ievel 
goal statement, the system applies the rule in reverse - the effect of this is not 
to introduce, but to remove the topmost connective (since the proof tree is being 
developed backwards ). 

Any proof is complete when the proof tree has been sufficiently developed back­
wards such that all leaves are accounted for - Le., when every leaf node can be 
proved without producing any furt her sub-goals. We refer to such proofs as being 
goal-directed. The refinement editor allows proof trees to be traversed, and refine­
ment rules (or combinations thereof called proof tactics) to be applied to chosen 
nodes. 

The end-nodes, or leaves, of a proof will always correspond either to axiomatic 
equalities, well-formedness goals or the discharge of assumptions (Le. where each 
component of the goal conclusion matches with one of the proof hypotheses). 

2.1.2 Program Extraction 

The OYSTER extract programs consist of >.-calculus function terms, >.(x, Ir) where 
I is some computed function and Ix the output when I is applied to input x. Since 
all type checking (well-foundedness checking) is done during the proof development 
then the extract terms need not, and do not, contain any typing information. At 
any stage during the development of a proof it is possible to automatically access 
the extract term of the proof constructed so far. Each construct in the extract term 
corresponds to a proof construct. As such, the extract term refiects the algorithmic 
ideas behind the proof of the theorem. 

There is a built-in evaluator for type theoretic terms, which allows for the direct 
execution of OYSTER programs. Within type theory, each mathematical sentence, 
or proposition, is considered as a type, the elements of wh ich are proofs of that 
sentence. A type, by definition, is a term which can be inhabited by other terms, 
or, equivalently, all types can have members. The existence of an extract term, 
corresponding to a particular proposition, is evidence that the proposition's type 
is inhabited, and this is equivalent to the proposition being constructively proved. 
All constructs of a completed proof that have an associated extract term of com­
putational significance are collectively referred to as the synthesis component of the 
proof. 

However, establishing that all the extract terms assembled from the synthesis 
component of a proof will indeed constitute a program that computes the specifi­
cation embodied in the root node of a proof requires verification: the verification 
component of a proof is not used in executing the extract term, but ensures that 
the extract term satisfies the specification. 

Ideally, as with conventional computational description, the >.-calculus extract 
terms should only contain information about the function to be computed (whereas 
the proofs will contain additional information, such as verification steps, which is 
not concerned with simple execution). In practice, however, it is not so easy to 
(automatically) abstract away all the verification information from the extract. 

2.2 The Induction-Recursion Duality 

OYSTER provides primitive recursion schemas for the basic types: integers, natural 
numbers and lists. The recursion schemas enable one to define recursive functions 
through case analyses, where the cases are determined by the structure of the type; 
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and apply induction as an inference (refinement) rule, thus enabling one to synthe­
size the dual recursion in the extract program. 

2.2.1 Recursive Definitions 

An important dass of recursive definition is that which allows one to refer to (stan­
dard stepwise) recursion over the natural numbers. The term p.ind allows one to 
construct such definitions. For example, addition, +, over the natural numbers is 
defined as 

x + Y d;! p_ind(x, y, [-, ree, s(ree)]) , 

which states that if x is 0 then x + y = y, otherwise if (x - 1) + y = ree then 
x + y = s(ree), where s is the successor function. 

• The first argument, x, is the recursion argument. 

• The second argument, y, is the (truth) value if the recursion argument is O. 

• The third argument, [-, ree, s(ree)) is a tripIe and describes how to compute 
its value if it is of the form s(x). The expression, ree, denotes the value of 
the function being defined when applied to (x - 1). The expression s(ree) 
denotes the value of the function being defined when applied to x. Thus ree 
and s(ree) correspond, respectively, to the induction hypothesis and induction 
eonclusion.6 

Similarly, ev.ind, specified thus: 

ev_ind(x, [y, h, P(x)]) 

allows one to refer to course 01 va lues recursion over the natural numbers. x names 
the induction candidate (the argument over which the recursion is defined). The 
second argument, [y, h, P(x)), is a tripIe which defines the reeursive ease for the 
function being defined. The first two elements are y and h where: y is any natural 
number less than the recursive argument (i.e. y < x). Hence, during the course 
of a proof, y can be instantiated to any desired value less than x. Furthermore, 
we can, depending on the function being defined, have multiple values for y (as 
long as each is less than x). This is, in effect, how cases can be introduced into a 
proof employing course of values induction (cf. §2.2.3 below). h is the value of the 
function being defined when applied to y. The third element of the tripIe, P(x), 
provides the step ease value for the function in terms of the first two elements, y 
and h, of the tripIe. Hence the third element, P(x), computes the output value for 
the function/program being defined/synthesized. So P(x) is a conditional function 
which branches according to the value of y (where the restrietion y< x holds). 

2.2.2 Primitive Schemas 

Employing any of the induction schemas in a (synthesis) proof will induce the 
corresponding, or dual, recursion schema in the extract algorithm. So, for example, 
stepwise recursion over the natural numbers is synthesized by applying stepwise 
induction, conventionally represented thus (where s is the successor (constructor) 
function): 

f- P(O) Vy: nato P(y) I- P(s(y)) 
I- "Ix: nato P(x) 

6In general the value of the p_ind function at s(i) can be any function of i and of the value of 
the function at i. In our example the value depends only on the recursive value and hence the first 
argument of the tripIe is the anonymous variable "'. 
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This states that P holds of any natural number, x, iff one can establish that A 
holds of 0 (the base case), and that, assuming P holds of some natural number y, 
that P holds of s(y) (the step case). 

Terms of the form a: A should be seen, in constructive terms, as denoting the 
existence of a proof of P along with a corresponding extraction term P. Depending 
on context, P may be a hypothesis or (part of) a goal conclusion. We refer to 
terms such as s(y) as induction .terms (Le. those terms consisting of the induction 
constructor (or destructor) function applied to the ind uction variable). The proof 
extract construction resulting from an application of stepwise induction is the p_ind 
construct shown in previously in §2.2.1. 

Stepwise induction on the naturals, along with stepwise induction on the inte­
gers and on lists, constitute the primitive induction schemas, and are built into the 
OYSTER system. Employing such induction as an inference rule will split the proof 
into the corresponding cases. Each case will have a corresponding proof and extract 
component. The structure of the program extracted from the complete proof will 
mirror that of the (instantiated) dual induction schema. This is a general observa­
tion: to each induction schema there corresponds a dual recursion schema. Hence 
a reliable heuristic that applies to synthesis through inductive theorem proving is 
that the behaviour of the induction variable should mirror that of the recursive 
terms in the function's definition. 

Standard stepwise induction is sometimes referred to as +1 succesor induction, 
or (+1)8 induction for short. This is to distinguish it from any number of (+n)s 
inductions where n applications ofthe induction constructor function are applied, in 
the conclusion, to the induction variable. §5.3 illustrates a (+2)s stepwise schema. 

2.2.3 Non-Primitive Schemas 

More sophisticated induction schemas can be established by performing higher order 
proofs that appeal to the primitive schemas in order to justify the sophisticated 
scheme . . An example of a non-primitive scheme is course of values induction.7 As 
with the primitive schemas, course of values recursion over the natural numbers is 
synthesized by applying course of values induction. This is done by employing the 
following general induction: 

"Iz: nat, "Iy : nato ((y < z) -+ P(y)) I- P(z) 
I- "Ix: nato P(x) 

This states that P holds of any natural number, x, iff one can establish that A 
holds of any natural number, z, assuming that P holds of any natural number, y, 
less than Z. If two, or more, different values of y are appealed to then the induction 
becomes course of values. 

Employing course of values induction as an inference rule does not automatically 
split the proof into a separate base and step case. Rather, the resulting subgoal 
represents the original proof tree with the induction hypothesis, (y < z) -+ P(y), 
entered into the proof as a new assumption (which tacitly includes the assumption 
that the hypothesis itself has a proof). The onus for splitting the proof into various 
cases, as defined by the function being synthesized, then lies with the user. 

The proof extract construction resulting from an application of course of values 
induction is the cv.ind construct shown in §2.2.1. 

70ther non-primitive examples include divide_antLconquer induction and induction based on 
the construction of numbers as products of primes. 
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3 Optimization of Recursive Algorithms By 
.Transforming Inductive Proofs: an Overview 

Rather than enter directly into the techniealities of program through proof transfor­
mation, we shall first provide an overview of the main concepts involved. In §3.1 we 
provide a high-level description of the proof transformation system. In §3.2 we give 
abrief introduction to program synthesis by theorem proving. We illustrate how 
the efficiency of (recursive) program is dependent on the nature of the induction 
scheme employed and on the subsequent proof commitments. Finally, in §3.3, we 
introduce the reader to tupling. 

3.1 The PTS: Inductive Proof Transformation 

Boyer and Moore have done extensive work on heuristics for inductive proofs [3,4]. 
Relationships between induction and recursion have been generalized such that most 
recursive structures have a corresponding induction schema whieh can be employed 
to synthesize programs exhibiting the desired recursive behaviour [31]. 

The computational efficiency of a recursive algorithm is directly related to the 
form of the recursion. The way in which an algorithm recurses on its input can 
be controlled by the way in whieh mathematical induction is employed in the algo­
rithm's synthesis. This provides the theoretieal under-pinning ofthe transformation 
system: recursive programs are optimized by transforming the induction schema 
employed within the corresponding synthesis proofs. 

Fig. 1 schematically depiets the source to target meta-level transformation. Pro­
gram optimization through proof transformation consists in the automatie trans­
formation of a source induction proof to a target proof whose induction schema has 
a more efficient associated complexity. The pre- and post-conditions of the trans­
formation correspond to the induction schema, and the recursive data-type, of the 
source and target proofs. The input consists of a complete source inductive synthe­
sis proof. This is depicted on the left hand side of the diagram. The triangle labeled 
proof tree depiets the tree shape of the refinement proof (recall that the proof, or 
refinement, tree is constructed backwards from the specification toward the leaves). 
The source proof yields a complex source algorithm, exp, whieh recurses with expo­
nential behaviour due to the fact that a particular induction - course of values - is 
employed during the synthesis. The term ertract represents the automatic program 
extraction process. 

The target proof is represented on the right hand side and is constructed com­
pletely automatically, by the PTS, from the source through the application of op­
erators which map and then transform portions of the source proof. In particular, 
the source course of values induction is transformed into the more efficient step­
wise target induction, thus yielding a target extract algorithm that recurses on its 
data-structure in more efficient linear fashion. 

The PTS controls the transformations by exploiting extra information contained 
in proofs which is extraneous to that required for the simple execution of straight­
forward programs: a description of the task being performedj a verification of the 
method, andj an account of the dependencies between facts involved in the compu­
tation. 

With reference to fig.1, and recalling §l.l, the demands for efficiency ofprograms 
are succinctly expressed by quoting from [2] (italics added by the author): 

The first criterion on whieh a program is judged is the correctness with 
respect to its specification. The second criterion is the efficiency of the 
program with respect to other programs satisfying the same specifica­
tion, which is reßected by time and space complexity of the program. 
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INPUT: SOURCE 
obtained manually, or via 

previou_ tran_formation 

OUTPUT: TARGET 
obtained automatically via 

.ource proof tran_formation 

Figure 1: Recursive program optimization through induction schema transforma­
tion. 

Efficient programs obtained through proof transformation satisfy both these cri­
teria: the target program necessarily satisfies the specification from which it was 
constructedj both source and target programs are derived from the same specifi­
cation, andj the recursive procedure traced by the target program will be more 
efficient than that of the source. 

3.2 Proof Construction and the Induction-Recursion Duality 

We can construct at least two proofs, within OYSTER, from which two alternative 
recursive algorithms can be extracted, each of which computes the Fibonacci func­
tion. The difference between the two syntheses is that each employs a different 
induction schemata: course of values induction will induce course of values recur­
sion in the Fibonacci extract algorithm and stepwise induction will induce stepwise 
recursion. 

3.2.1 Course of Values Induction 

To employ course of values induction in the synthesis of an algorithm which takes 
as input n requires appealing to all , or a subset of, the output values obtained 
when the input is any value less than n.s Using a standard functional notation, the 
Fibonacci function is usually defined by the following course of values definition: 

• source definition: 
fib(O) 

fib(l) 

fib(n + 2) 
= 
= 

1j 

1· , 
fib(n + 1) + fib(n). 

(2) 

(3) 
(4) 

We can give a formal specification for a program that computes the above definition 
as follows: 

'Vinput, 3output. fib(input) = output (5) 

8 Representations of the completed proofs are displayed, and examined, in §5.1. 
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where fib is defined through three lemmata corresponding to the three branches, 
(2), (3) and (4), of the above course of values definition. Note that (5) is an instance 
of the specification schema, (1), given in §2. 

The most natural way to synthesize a procedure for computing the Fibonacci 
numbers is to employ the course of values induction to (5). This is because it 
directly mirrors the course of values recursion exhibited by the standard Fibonacci 
definition. The induction schema of §2.2.2 becomes instantiated as folIows: 

H: (Vz, Vy.((y < z) -+ 3n'.fib(y) == n') f- 3n".fib(z) = n" 
C: f- "Ix, 3n.fib(x) = n 

The proof of the induction conclusion, C, requires identifying an existential witness 
for n. That is, an instantiation for n must be provided that makes C true. Since 
this is a course of values proof, fib(x) is constructed as a conditional, branching 
according to the value of y: first with a value for y of x-I, and subsequently 
with a value of x - 2. The resulting constructs for fib(x - 1) and fib(x - 2) 
appear as two new hypotheses. These are then added to obtain a witness for n, Le. 
f- Vx,fib(x) == fib(x -1) + fib(x - 2). 

Fig. 2(a) depicts the computational trees for fib(5) using course of values induc­
tion. Note especially the redundant (repeated) nodes in the tree for course of values 
induction. In order to calculate fib( n) one must first calculate fib( n - 1) and 
fib(n - 2). Each of these sub-goals leads to another two recursive calls on fib and 
so on. In short the computational tree is exponential where the number of recur­
sive calls on fib approaches 2n • Such a procedure is termed tree recursive since it 
resembles a tree where the branches split into two at each level. 

Fig. 2(a) can also be regarded as a dependency graph, DG, for the course of values 
recursive procedure since it is a representation of a particular function call's evalua­
tion tree which shows the calling structure of the subsidiary recursive calls. Strictly 
speaking, fig. 2(a) is a grounded DG, since it is constructed using grounded function 
calls. A symbolic DG, on the other hand, is based on symbolic function calls and is 
potentially infinite in size. The reader may wish to look ahead to fig.13, §6.1, which 
shows a portion of the symbolic DG for fibn. 

(a) course. oe values tree: 

fib(3) fib(2) 

~ ~ 
fib(2) fib(1) fib(1) fib(O) 

~ 
flb(1) fib(O) 

fib(5) 

fib(3) 

~ 
fib(2) fib(1) 

~ 
fib( 1) fib(O) 

(b) stepwise tree: 

fibr 

(fib( 4!'fib(3)) 

(fib(3 ,fib(2)) 

(fib(2rb(1) ) 

(fib(1),fib(O) ) 

Figure 2: Computational tree for fib(5) induced by (a) course of values induction, 
and, (b), stepwise induction 

3.2.2 Stepwise Induction and Tupling 

Alternatively, we can also employ stepwise induction over the naturals to syn­
thesize a program that computes the same specification, (5), as the previous 
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course of values extract. This is achieved by employing tuple constructs, at the 
stepwise induction cases, in order to evaluate the Fibonacci numbers. Tupling re­
moves redundancy by grouping together, or merging, potentially re-usable function 
calls - repeated computation - that appear in the tree recursive process generated 
by the course of values definition (cf fig.2). The result of tupling in this case is 
linearization: the production of a stepwise recursive algorithm which computes the 
Fibonacci function, fib, through an auxiliary linear process g . 

• target definition: 
fib(n) 

g(O) 

g(n + 1) 

m where (.., m) = g(n); 

(1,1); 
(u1 + u2, u1) where (u1, u2) = g(n). 

The auxiliary function g(n) is constructed in terms of g(n - 1), where the first 
argument in both cases takes the "combined values" form (in effect, the tupling 
combines the values of the two step cases of the less efficient course of values defini­
tion). The linear trace for computing fib(5) through the auxiliary procedural call 
g(5), is depicted in fig. 2(b): the angled brackets in the stepwise sequence symbolize 
tuple formation in that the output of each recursive pass is some function of the 
arguments within the brackets. The function g is defined in terms of a tuple that 
consists of two components, each of which are made up from subsidiary calls to 
fib: the first corresponds to the sum of fib(n - 1) and fib(n - 2), Le. fib(n). 
The second tuple component corresponds to the first argument of the first tuple 
component, fib(n - 1). The tuple functional applies the addition function to the 
first and second arguments. So the goal g(n) is ultimately satisfied by defining it 
in terms of the known course of values definition, i.e: 

g(n) = ((fib(n - 1) + fib(n - 2)), fib(n - 1)). (6) 

Note that the first tuple component is equivalent to the body of the recursive step 
of the course of values definition. Note also that there is no recourse to the original 
fib definition and g(n) requires only n recursive calls (stepping down to the base 
case g(O)). In other words, the computational tree resulting from stepwise induction 
is linear, with a branching rate of 1, and hence the resulting algorithm requires far 
less computational effort in computing fib(n) than that synthesized by employing 
course of values induction. 

Regarding synthesizing a program to compute the stepwise procedure, the first 
step is to apply stepwise induction to (6). This yields the following (instantiated) 
schema: 

I- 3to. g(O) = tO \fy, 3t'. g(y) = t' I- 3t". g( s(y)) = t" 
I- \fx, 3t. g(x) = t 

As with the course of values proof, the proof requires establishing witnesses for the 
existential quantifiers. In this case we are required to find existential witnesses 
for t; the tuple through which g is defined. At the base case of the induction, we 
simply employ symbolic evaluation using the terminating branches, (2) and (3), of 
the source definition in order to provide a witness, (1,1), for tO. A witness at the 
induction step case is provided by a process of unfolding the induction conclusion 
with the source definitional equations (notably (4)) until a match is found with 
the induction hypothesis (i.e. the body of (6)). This enables the unification of 
conclusion and hypothesis (6) there by providing a witness for t in terms of g (thus 
introducing recursion into the program). 

Greater detail concerning both the above proofs is provided in §5, where 
we describe how such stepwise proofs are automatically constructed from source 
course of values proofs. 
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3.3 Background to the Tupling Technique 

The PTS operates by using information in the source course of values proof to guide 
the automatic construction of the target stepwise proof. This research offers the 
first instance of the tupling technique being employed within the context of proof 
transformation (as opposed to the direct transformation of programs). 

Existing systems that automate tupling transformations, within the context of 
program transformation, depend on an analysis of such graphs so as to obtain 
dependency information which guides subsequent transformation [11]. In §5.1 we 
illustrate how, within the context of proof transformation, such dependency infor­
mation can be read directly from the sour ce proof thus circumventing the need for 
DG construction and analysis. 

Tupling, originally developed as an optimization technique in [30], is a form of 
tabulation, albeit constructed in real-time, since the tuple represents arecord of 
previous recursive calls. Tupling is an important means of linearizing exponential 
procedures. lt works by grouping together, in a single recursive tuple function, 
the separate recursive expressions in the source procedure. The main advantage of 
tupling over the most general kind oftable for redundant computation, memo-tables 
[29], is that we store only the subsidiary calls of a specified function, rather than 
calls from the whole program. In the case of memo-tables there is a heavy storage 
requirement as entries inserted du ring function execution, are not usually removed 
even if they are no longer required. 9 

Existing program transformation systems reported within the literature also em­
ploy the tupling technique in order to remove redundancy from recursive procedures 
(e.g. [10], [15, 10], and later in[l1]). However, these systems do not operate within 
the proofs as programs framework. The general strategy of program transformation 
employed by these systems originates from [14] and is referred to as the unfold/fold 
strategy. This strategy basically consists in defining the target program in terms 
of the source, and then, by a process of re-writing recursive definitions, deriving 
a recursive definition for the target program which is independent of the source 
definition. This general strategy has since been incorporated, in a variety of guises 
and applications, in many pro gram transformation systems. The three most prob­
lematic steps in the unfold/fold strategy, regarding search, control and automation, 
are: 

• the so called eureka step: obtaining the initial definition of the target in terms 
of the source ((6) in our example of §3.2.2)j 

• the control problems associated with when to apply the re-writing step(s) 
which eliminate any reference to the source definition from the target recursive 
step, andj 

• the principled application of lemmas (or laws) often required to propagate the 
program derivations. 

We shall return to a more detailed exposition of this related work in §6 in order 
to explain how proof transformation offers a promising means of overcoming these 
problems. We shall compare the work described in this paper with that reported in 
[11]: arecent systemization and extension of the earlier transformation strategies 
discussed in [10]. 

9However, memo-tables do have the advantage of being more general in their range of function 
applications. 

13 



4 Proof Transformation Strategy 

The PTS is tuned to recognize the key positions within inductive proofs that have 
a decisive effect on the recursive behaviour of the extract algorithm. These key 
positions correspond to the application of an induction rule, the constructive type 
of the objects required to witness the induction cases, the actual proof c.onstructs 
introduced to witness the induction cases, and finally the definitions chosen to 
complete the verification component of the proof. 

Although the transformations involve using the source proof to guide the new 
construction of a target proof by mapping, and then transforming, portions of the 
former, the source proof, and extract, is itself preserved. This is an intentional 
design factor since, for some applications, it may prove desirable to have access to 
both the source and target proofs at the termination point of the transformation. 

4.1 Abstracting Salient Features of the Proof 

Proof trees are internally represented within OYSTER as quite complex Prolog data­
structures.10 However, these OYSTER data-structures, and the corresponding proofs, 
contain large amounts of information which is irrelevant to both execution and the 
tupling transformations. Hence inefficiency would result from this additional infor­
mation being subject to extensive manipulation in the course of the transformations. 
To avoid computational effort being expended on attempting to access individual 
semantic units the PTS processes, by abstraction, the OYSTER internal proof repre­
sentations into more accessible list structures called rule-trees. A typical rule-tree 
will either explicitly contain, or contain labels which allow for the direct accessing 
of, the. following information: 

• Some of the assumptions (hypotheses) made during the proof. 

• The branching structure of the proof. 

• The rules applied along with any corresponding arguments. 

• An account of the dependencies between facts in the proof: 

- dependency information concerning inter-relations between (sub)goalsj 
and 

- dependency information concerning inter-relations between (sub)goals 
and assumptions (hypotheses). 

So, recalling the Curry-Howard isomorphism, §2, the rule-trees contain an ac­
count of the dependencies between facts involved in the computation of the A­
function constructed by the corresponding proof. 

Each rule entry consists of a refinement rule such that a rule-tree corresponds 
(schematically) to: 

apply(RuleI) then [apply(Rule2) then[ .,. apply(Rulen )] ••• ]], 

and as such is akin both to a proof plan which combines a number of proof tactics 
andjor rules into a large tactic such that a complete proof can be (re)produced 
from the plan, and to a skeleton of a proof in which the inference rules of the proof 
are recorded, but not the formulae to which they are applied. A source rule-tree 
contains all the information required to reproduce faithfully the source proof from 

lOWithin the pre-processed OYSTER representation there are many Prolog variables hanging on 
to the various (sub )lists and it is generally hard to follow what parts of information form semantic 
units. 
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which it is abstracted. Similarly, at the termination point of a transformation, the 
target rule-tree contains all the information required to produce the complete target 
proof (indeed, once constructed, target rule-trees are automatically applied as large 
tactics to the specification goal there by producing a complete target proof). 

The fact that proofs are transformed indirectly via the transformation of the 
rule_tree proof tactics (or proof-plans) is not a necessary feature of the proof trans­
formations but is rat her employed for purposes relating to the efficiency of the actual 
transformation process. We only mention them here to establish that the intern al 
proof representations of the PTS have no effect other than to increase the efficiency 
of the transformation process. In this paper we are primarily concerned with how 
information in the source proof is used to construct the target proof, and not with 
implementational detail. Hence, unless directly relevant, we shall in subsequent 
sections describe the proof transformation process as passing directly from source 
proof to target proof without the intermediate creation of the rule_tree abstractions. 

4.2 Tactic Transformation: Conditionally Guided Proof 
Modification 

The PTS transformations are, then, akin to meta-level tactic transformations guided 
in part by whether or not certain syntactic properties are true of the source proofs. 
Such syntactic properties function as transformation tactic pre-conditions. We can 
also predict the probable outcome of the application of a transformation tactic in 
terms of syntactic properties of the target proof. A source to target transformation 
will be deemed successful if the target proof satisfies the post-conditions. l1 

We can give fairly high-level pre- and post-conditions for the induction schema 
transformations. For example, transformations from an exponential procedure to a 
linear procedure include, amongst their pre-conditions, that the dominant induction 
in the proof is a course of values induction (i.e the proof must contain a cv..ind 
construct). Amongst the post-conditions will be the presence of a stepwise construct 
in the target proof. In §4.5 we provide further pre- and post-conditions specific to 
the proof tupling transformations. 

Similarly, transformations from a linear procedure to a logarithmic procedure 
have as a pre-condition that the dominant induction in the source proof is a stepwise 
schema. The target must then satisfy the post-condition of having a divide and 
conquer induction. We do not cover logarithmic transformations in this paper. 
A theoretical description of such transformations is given in [23], and we discuss 
systemizing such transformations in [26]. 

4.3 Efficiency, Correctness and Automation 

The presence of a program specification both provides a termination condition and 
guarantees that all proofs tranformed by the PTS yield programs that are correct 
with respect to that specification (cf. fig.1) . Traditional program transformation 
systems have no such formal specification and this this means there is no immediate 
means of checking that the target program meets the desired operational criteria. 
By proving that the target program satisfies the original specification, we avoid 
the need to establish that any re-write rules used are in themselves correctness 
(equivalence) preserving. This will, as a general rule, require as much effort as 
providing an explicit proof of correctness for the source to target transformations. 
For example, many of the systems that employ the unfold/fold strategy re-write the 
recursive step(s) of a source program through the application of various equality 

11 If the source proof satisfies the pre-conditions then only in exceptional cases will a complete 
target proof be produced which violates the post-conditions. 
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lemmas, each of which needs to be proved (by induction) if the source to target 
transformation is to preserve equivalence [27, 33]. 

Furthermore, there is no guarantee that unfold/fold style derivations will ac­
tually lead to any optimization, where as proof transformations replace an induc­
tion yielding an inefficient recursion schema with one that yields a (more) optimal 
schema. Thus target programs are guaranteed to compute the input-output relation 
specified originally for the source, and to do so more efficiently. 

Regarding automation, the proofs contain sufficient information to allow the 
source to target proof transformations to proceed without any user inter action. In 
other words, in forming proofs from source proofs, the PTS abstracts precisely that 
information which allows for the automatic construction of the target proof. 

4.4 Synthesis and Verification 

The synthesis component of the transformation process is concerned with the for­
mation of the target tuple, the replacement of the source induction by a target 
induction with a more efficient induction rule (e.g., applying stepwise in place 
of course of values induction) and/or merging a nested induction structure in the 
source into a single induction in the target, and the subsequent witnessing of the 
target induction cases. The verijication component is concerned with performing 
specific sequences of unfolding operations at the instantiated induction step using 
both source and target equations. Symbolic evaluation and well-formedness tactics 
are also usually applied at the induction cases. 

We categorize the proof constructs mapped and/or transformed from the source 
proof according to which component of the proof is being transformed. The syn­
thesis component will involve abstracting, and then transforming, (sub) structures 
from the source in order to: 

(i) construct the target tuple; 

(ii) determine the nature, and number, of elimination rule applications; and per­
haps most importantly; 

(iii) witness the existential quantifier at the target induction cases by mapping 
across structures from the source induction cases. 

The connection between (ii) and (iii) is that the elimination rules employed within 
the proof, particularly those used in order to supply the source induction witnesses, 
provide an account of the inter-relations between (sub)goals and hypotheses. This 
dependency information is then used to supply witnesses for the target induction. 

The verification component will involve abstracting, and then transforming, all 
those source proof branches associated with: 

• tactics for controlling unfolding; 

• well-formedness goals; (such as the applications of type-checking rules); and 

• the application of lemmas - lemmas used for the satisfaction of the source 
induction cases are mapped across and, after some simple transformations, 
used by the unfolding tactics in order to satisfy matching target sub-goals. 

Both synthesis and verification involve: 

(1) the fairly extensive mapping,and subsequent transformation, of constructs 
from the source proof; combined with 

(2) heuristic theorem proving strategies; and 
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(3) transformation techniques such as tupling. 

With regard to (1) , by matching target sub-goals with source sub-goals, the PTS 

determines to what extent it needs to patch the corresponding source proofbranches 
in order to apply them successfully to the target sub-goals. 

4.5 Tuple Construction 

As weIl as the more general pre- and post-conditions for optimizing recursive pro­
grams through transforming the source induction, §4.2, we also give lower-Ievel pre­
and post-conditions which are specific to the tactic based proof tupling transforma­
tions: 

1. Pre-condition: There exist two or more induction terms, f'(n), ... , f'(n - i), 
which share some common induction variable(s) in a function definition (where 
i 2: 2). 

2'. Post-condition: There must be present(constructed) a fixed sized tuple - the 
eureka tuple - within which common subsidiary function calls ansing from the 
unfoldings of each of f'(n), ... , f'(n - i) are merged, thus forming a recursive 
function without the original redundancy. 

Note that condition 1 is, in effect, a defining condition of course of values induc­
tion. This means that any proof employing one, or more, course of values induction 
schemes will generally be a good candidate for optimization by tupling. 

We shall refer to the tuple size, or the number of subsidiary calls tabulated 
within the tuple, as <1>. In general, i will provide an accurate, and the best, value 
for <1>. Regarding the induction step of the course of values schema, 

"Ix , Vy. ((y < x) -t P(y)) f- P(x), 

the system evaluates the best tuple size by observing the source course of values 
schema and determining the number of times the induction hypothesis is invoked 
for different values of the induction parameter y. In other words, from areading of 
how many distinct eliminations are performed on the induction hypothesis of the 
source, the system can automatically calculate the best value for <1>. The contents of 
the tuple are then those recursive calls corresponding to the <I> separate invocations 
ofy. 

A quick and simple heuristic for constructing the explicit target tuple definition 
is simply to form the target tuple structure by a direct 1-1 mapping of the function 
calls in the body of the source definition recursive step. This is not, of course, 
guaranteed to produce the best tuple, but it will not produce a target program 
any less efficient than the source. The system will not produce an erroneous target 
program by employing this heuristic, despite the fact that there are examples where 
an erroneous tuple would be produced by mapping the source recursive step.12 This 
is simply because the target specification, identical to that of the source, cannot be 
satisfied by a proof employing an erroneous tuple function. 

12 For example, we would need to use the more rigorous approach to determine the tuple definition 
for a variant of Fibonacci with the following recursive step: 

j iba(n) = jiba(n - 1) + jiba(n - 3) 

The quick heuristic would erroneously produce a tuple of size 2, i.e. (j iba(n - 1),jiba(n -

3), whereas an analysis of a source course of values proof for j iba would reveal that 3 distinct 
invocations of (eliminations on) the induction hypothesis are required. Thus the correct tuple 

should be (jiba(n - 1),jiba(n - 2),jiba(n - 3). 
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Functions which are constructed using schemas other than course of values in­
duction can also satisfy condition 1 in an implicit sense. For example, a func­
tion, f+2, synthesized using (+2)s stepwise induction may well be a candidate for 
proof tupling since an invocation of f+2(s(s(n))) will require two subsidiary caUs 
on h2(s(n)) and h2(n). We formally display the (+2)s schema and provide an 
example of proof tupling on an instance of f +2 in §5.3. 

Regarding the transformation of nested inductions consider the following 
schematic definition: 

f(n) = h(n) + h(n - 1), 

It may be the case that upon unfolding either, or each of, h and 12, two or more 
induction terms, h (n), ... , h(n-i), which share some common induction variable(s) 
are exhibited. This is the case with auxiliary recursive functions wherein the redun­
dancy isnot immediately obvious since it occurs amongst the auxiliary recursive 
calls (viz. the computation of the function(s), in the body of the definition, whieh 
are not self-recursive). Such "auxiliary redundancy" manifests itself in the source 
proof in the form of a nested induction. The task of proof tupling on such nested 
induction structures is to "merge" the computation associated with the innermost 
induction with that of the outermost induction. Hence the explicit definition for 
the target tuple is determined by calculating the value of <1>, and the recursive caBs 
to be tabulated, for the outer and (each of the) nested inductions and then simply 
combining the results. We shall illustrate by example the optimization of these 
kinds of inductively synthesized functions in §5.2. 

It is worth noting that, in practice, tuples are represented in the OYSTER proofs 
by conjunctions of function caUs. That is, the program extraction process sets up a 
correspondence between conjunction proof constructs and tuple program constructs. 
This approach has certain advantages to which we shall return in §6.1.2. 

Henceforth, we shall distinguish proof transformations which employ a tupling 
technique from program tupling transformations by referring to the former as proof 
tupling and the latter as program tupling. 

5 Proof Transformation: Examples 

The proof transformations performed by the PTS can be broadly categorized in two 
ways: 

1. Transformation of induction schemas: The source induction schema is 
replaced by a different, but logically equivalent, target induction schemaP 

2. Transformation of nested inductions, or Loop Removal: A nested ap­
plication of induction in the source is "merged" with the outermost induction 
to produce a target proof with a single induction. We may also refer to such 
transformations as loop rem oval (since a recursion loop is removed from the 
source). 

Both 1 and 2 are automatie and involve essentiaUy the same strategy: the system 
cuts in an extra goal, G into the "simple" proof of the program specification, S, thus 
yielding two subgoals: the first being the original goal S, with G as an additional 
hypothesis, and the second being G itself. The proof of (sub)goal Gis then respon­
sible for synthesizing the more efficient computation of the input-output relation 
specified in S. In both cases the need to treat the identification of G as a eureka 

13 By logically equivalent induction schemas we mean that the associated induction theorems are 
inter-derivable. This guarantees that any two proofs satisfying the same complete specification 
but differing only in which of the two schemas are employed are functionally equi"alent. 
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step is removed by exploiting the structure of the source proof. Furthermore, the 
source proof provides the information required to witness the induction step of the 
target proof (and thereby build recursion into the target program). 

In this section we provide detailed analyses of three examples of proof transfor­
mation which involve tupling. The first corresponds to linearization by the trans­
formation of course of values induction schemas. The second corresponds to the 
transformation of nested inductions. The third example involves both the transfor­
mation of a source induction scheme and the merging of nested inductions. As well 
as combining aspects of the first two examples, it also illustrates the transforma­
tion of a different induction schema, +2 succesor induction, than that in the first 
example. 

The reader should bear in mind throughout this section that we regard the 
construction of source proofs as given (i.e. either as output from a previous trans­
formation, or from an interactive synthesis session within the OYSTER system). The 
construction of target proofs, on the other hand, is automatie given the source proofs 
as input. Thus although a comprehensive explanation requires us to provide a step 
by step description of the target proof constructions, the process is fully automated 
regarding the PTS. 

5.1 Example 1: Linearization 

Remaining with the Fibonacci example, we provide representative figures for syn­
thesizing Fibonacci the source course of values proof, fig.3(a), and for synthesizing 
the target stepwise proof, fig.3(b). Taken as a whole, fig.3 depicts the correctness 
guaranteed transformation of a course of values proof to a stepwise proof. For the 
sake of clarity, we omit some of the type checking, substitution and elimination 
rules (such omissions being indicated by a broken vertical arrow). We shall have 
course to often refer back to fig.3 throughout the text. Thus to aid clarity we adopt 
the naming convention that symbols appearing in the text in calligraphic font refer 
to either the correspondingly named formulae, proof branches, or the arcs depicting 
proof mappings, of fig.3. 14 For example, we use the arcs, MI to MB, that pass 
from fig.3(a) to fig.3(b) to depict those (sub)structures of the source proof which 
are used to develop the target proof. These "mappings" will be explained in §5.1.3. 
We shall first describe the nature of the source proof (i.e. fig.3(a)). The nature 
of the target proof construction,fig.3(b), will become evident when we discuss the 
transformation of the source (§5.1.3). 

5.1.1 The Source (Course of Values) Proof 

The specification, :rIß, for a program that computes the Fibonacci numbers, is 
shown below: 

:FIS: T/x, 3y. fib(x) = y, (7) 

fib is defined through the use of three proved, and subsequently stored, lemmas 
corresponding to the three cases of the course of values definition (§3.2): 

lemma 1: fib(O) = s(O); 
lemma 2: fib(s(O)) = s(O); 
lemma 3: T/x, 3Yb 3Y2. x::f 0 /\ x::f s(O) /\ fib(p(x)) = Yl /\ fib(p(p(x))) = Y2 -+ fib(x) = Yl + Y2, 

14The same convention is adopted regarding the later examples and their corresponding proof 
figures. 
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fig.3(a): INPUT: SOURCE PROOF 
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fig.3(b) : Ol'TPUT: TARGET PROOF 
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Figure 3: Schematic Representation of Source to Target Proof Mappings for Fibonacci 
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where p is the predecessor function defined by induction over the naturals such that 
jib(x - 1) == jib(p(x)) and jib(x - 2) == jib(p(p(x))).IS The poperator is usefully 
employed as a destructor function of a function's data-structure (as opposed to using 
the canonical successor function, s, to build constructor definitions). The reason 
for specifying Fibonacci indirectly, through the use of proved lemmas. is so that the 
proof specification, (7), does not constrain the dominant induction of the proof to 
course of values (since in the case of the target proof we will wish to construct a 
stepwise proof of (7)). 

Lemmas 1 and 2 define the base cases of the Fibonacci definition. Lemma 3 
defines the recursive case and is naturally a course of values definition: values are 
given for inputs 0 and s(O), and jib(x) requires appealing to a pair of output values 
obtained when the input is less than x, specifically, jib(p(x)) and jib(p(p(x))). A 
ramification of the induction-recursion duality is that the behaviour of the induc­
tion variable should mirror that of the recursive terms in the function definitions 
[8). Hence (7), or :FIB, is most naturally proved by course of values induction. The 
proof requires an initial application of the "fI - intro refinement. This has the ef­
fect of removing the universal quantifier .16 This is followed by applying course of 
values induction on x (denoted, in fig.3(a) by CV induction(x)). The cases of the 
induction schema are then satisfied by setting up a nested case analysis structure by 
performing two case-split refinements, where the second case-split is nested within 
the first. The outermost case split corresponds to x = 0 V x # 0, and the innermost 
case to split to x = s(O) V x =I- s(O). By having the case splits nested in this way, 
we cover all the conditions specified in the course of values definition. By using 
the 3 - intro(w) rule, a suitable witness, w, is introduced at each case, and then 
verification is performed by appealing to (unfolding with) the relevant lemma (with 
various well-formedness goals being satisfied along the way). Within the dashed­
boxes (fig.3) we have included key hypotheses and (sub)goals (condusions): the 
application of course of values induction yields the induction hypothesis, I1{., 

I1{.: "fix'. x' < x -+ 3y' jib(x') = y', 

and the induction conclusion, Ic, 

Ic: f- 3y. jib(x) = y. 

At the two base cases, BI and B2, we provide in both cases, a witness of s(O). 
The goal at the induction step case, S, is to reduce the induction conclusion, 

'Le, to terms which can be unified with those in the induction hypothesis, there 
by providing a witness for the existential variable - y in the case of Ic - which 
introduces recursion into the step branch of the function. This is achieved by: 

• eliminating on the induction hypothesis, I1{., twice: first with a value for 
x' of p(x), and subsequently with a value of p(p(x))Y In fig.3(a) this is 
depicted by the term "Ind-Elims on I1{.". The constructs resulting from the 
eliminations appear as two new hypotheses, 11. 1 and 11. 2 , which provide outputs 
for jib(p(x)) and jib(p(p(x))), named Y1 and Y2 respectively; and, 

• recursion is then built into the function being constructed by using 11. 1 and 11. 2 

as unifiers, or jertilizers, to provide a witness for the step case jib(x), namely 

15Depending on context, we shall subsequently use the postfix notation. e.g. (x - 1). inter­
changeably with the prefix notation, e.g. p(x) (similarly for, e.g., x + 1 and s{x)). 

16 Recall, §2.1.1, that a feature of the goal-directed proofs is that introduction (i"1tro) rules have 
the quantijier stripping effect usually associated with elimination rules in forward, proof systems. 
Conversely, elimination (e/im) rules have the effect of introducing an existential instantiation in 
the hypotheses of sequents. 

17Following these eliminations, the proof also requires us to establish that both p(x) < x and 
p(p(x)) < x are true. 
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Yl + Yl· This completes the recursive branch synthesis (since Yl + Yl 
fib(p(z)) + fib(p(p(z)))). 

Thus, to witness a value for the induction step we appeal, twice, to the induction 
hypothesis I1/.. These eliminations on the induction hypotheses, and the fact that 
they are explicitly recorded in the sequent hypothesis lists, will be seen to be crucial 
for the automatie construction of the target induction (§5.1.3). 

Upon completion of the synthesis component of the target proof, verification is 
performed by appealing to the stored lemmas: lemmas 1 and 2 for the base cases, 
and lemma 3 for the step case. 

The unification of the induction conclusion with the hypothesis is called fertil­
ization. Formulae are "unpacked" - or unfolded - by replacing terms by suitably 
instantiated definitions. Fertilization is facilitated by the fact that the induction 
conclusion is structurally very similar to the induction hypothesis except for those 
function symbols which surround the induction variable in the conclusion. An im­
plemented rewriting technique known as rippling exploits this property of inductive 
proof by proliferating the process of unfolding such that recursive terms are grad­
ually removed from the recursive branches until a match - fertilization - can be 
found with the induction hypothesis [6]. In §6.3 we say a little more concerning the 
general inductive proof strategy and how this has positive ramifications regarding 
the completeness of the proof transformation system. 

5.1.2 The Source (Course of Values) Extract Program. 

The complete extract program results from the combination of all the separate 
proof branch constructions appearing at the proof branch leaves of the first base 
case, second base case, and step case respectively. We indicate, in fig.4, the in­
put/output associated with each case computation in the >.-calculus representation 
of the complete extract program (cf. §2.2.3 for an explanation of the cv_ind proof 
construct). The program construction associated with a case analysis is of the form 
eq(z, y, P, Q), which specifies the required decision procedure: if z = Y then P, 
otherwise Q. 

,. 
complete e%tract 

..... 
2"d ba"e l· t baae jtep ca"e 
..---.. ~I' ,. , 

Ax.cv...ind(x, [x', I1t,~x' , 0, 8(0) '~$)x', 8(0), 8(0), I1t(P(x')) + I1t(P(p(x')))))]) 

l· t ccue-"plit 2,,41 Gcue-apht 

Figure 4: The course of values extract for FIB 

The >.-calculus functional program extracted from the course of values inductive 
proof will compute the Fibonacci numbers according to the course of values defini­
tion (corresponding to the three lemmas). The proof reflects the same inefficiency 
generated by the extract program. This could not be otherwise since the procedu­
ral commitments and/or decisions made during the synthesis determine the nature 
of the recursive process generated by the synthesized (extract) program. The ex­
tract program dictates that in order to compute the step branch of the recursion 
the induction hypothesis, I1/., is evoked twice. This means that the recursive pro­
cess generated by the extract pro gram will be exponential (Le. the tree recursive 
represented by the dependency graph of fig. 2(a), §3.2). 

It is clear, therefore, that there is a one-to-one correspondence between terms in 
the extract and terms in the proof from which it was extracted. However, it should 
also now be clear that the correspondence is not bi-directional: the course of values 
proof contained many steps which are not refiected in the extract program. Notably, 
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due to the absence of anything resembling a hypothesis list, the extract program 
does not contain arecord of the dependencies between facts involved the computa­
tion. Nor does it contain a complete representation of the verification component(s) 
ofthe proof (required for establishing the correctness ofthe computation). This pro­
vides a graphie illustration of how proofs contain information which is extraneous 
to that required for simple execution, but valuable for understanding the program 
design. 

5.1.3 The Target Proof Construction: Exploiting Source Dependency 
Information 

Regarding fig.3(a), if one looks at the source proof branch corresponding to the 
step case of the course of values induction then we can represent the proof nodes 
constituting the synthesis part of this branch as in fig.5 below. 

induction hypotheses: 
refinement: 
resultant hypotheses: 

induction conclusion: 

I1{: Tlx' . x' < X ~ 3y' .fib(x' ) = y' 
Ind-Elims on I1{ 
11. 1 : p(x) < x -+ 3Yl. fib(x - 1) = Yl 
11.2: p(p(x)) < x ~ 3Y2. fib(p(p(x))) Y2 
Ic: f- 3y. fib(x) = y 

witnessing refinement: !3-intro(Yl + Y2) ! 

fertilized conclusion: f- fib( x) = Yl + Y2 

Figure 5: Elimination and Witnessing Steps of Source (Course of Values) Proof 

Fig.5 represents the elimination and subsequent witnessing step required for the 
fertilization of the induction conclusion with the hypothesis. From this information, 
the PTS can extablish that the source proof satisfies the pre-condition for proof 
tupling (§4.5): that there are two or more induction terms whieh share the common 
variable, x, at the induction step of the proof construction. 

In order to identify the (eureka) tuple, the PTS records the maximum difference 
between the induction term in the induction conclusion and the smallest of the sub­
sidiary calls used to witness a value for y. 18 Since p(p( x)) < p( x), and the induction 
term x is greater than p(p(x)) by 2 then the required tu pie size, ~, is 2. So in or­
der to calculate fib(x), for any x, the PTS must "store", or tabulate, 2 subsidiary 
calls: fib(p(x)) and fib(p(p(x))). Thus, in order to determine the size and contents 
of a target (tupie) definition, the PTS observes: how many times the hypothesis, 
I1{, is evoked in order to provide a witness at the induction conclusion Ic, andj 
the greatest number of applications, 2 in the case of Fibonacci, of the induction 
constructor/destructor function the proof employs when eliminating on the induc­
ti on hypothesis in order to synthesize constructs for the induction witnesses. This 
procedure completely identifies an explicit definition, g, for the auxiliary recursive 
procedure through wh ich Fibonacci can be defined: 

g: seq(3u, 3v. fib(s(x)) = u 1\ fib(x) = v, tuple: (u, v)) 

Hence, by having access to the OYSTER internal proof representations of the source 
elimination and witnessing steps, the PTS has all the information needed for the 
automatie generation of the target tuple definition (depieted by M5 of fig.3). Fol­
lowing the mapping across of the initial portions of the source proof - the specifi­
cation and the TI-intro applications - giscut into the target proof as a new fact. 

18By smallest we mean that subsidiary call which has the greatest (least) number of applications 
of the induction destructor (constructor) function applied to the induction variable. 
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In effect, g is a nested specification goal that states the existence of a tuple of two 
components (Le., ~ = 2). Such new facts are cut into proofs, as a new sul>-goal, by 
a generalized version of the sequence, or seq, rule. The generalized seq rule allows 
one to cut in, or sequence, a new fact into a proof by introducing a new node in 
the proof tree with two subgoals where: the first subgoal represents the original 
proof tree with the new fact as an additional hypothesis (which in constructive 
terms amounts to an additional hypothesis that there is a proof of the new fact), 
and; the second subgoal is responsible for constructing a proof of the new fact. 
So, sequencing g into the developing target proof produces the corresponding two 
sub-goals: 

• the first (sub)goal, at proof branch PI in fig.3(b), will be the original nBgoal, 
with the universal quantifier removed, and with g as an additional hypotheses, 
and 

• the second (sub)goal, branch Pz, will require proving g itself. 

Stepwise induction is applied at the second subgoal in order to prove the se­
quenced in goal g (this is denoted, in fig.3(b), by "stepwise ind.(x') to g": Le. 
stepwise induction on x' is applied to g). At the base case an ,,- intro rule is 
applied which has the effect of decomposing the goal into the separate tuple com­
ponents. Such decomposition of the tuple will always be controlled by the tuple 
size, ~. The PTS then maps across the base case witnesses, 0 and s(O), from the 
source proof in order to witness a base case value for each of the tuple constituents 
u and v (MI and M2, fig.3). The base case is then verified by mapping across and 
applying the source base case lemmas and well-formedness tactics. 

At the induction step we have the following goal to prove (of the form hypothesis 
I- conclusion): 

3u,3v.fib(s{x')) = u "fib(x') = v I- 3u',3v'. fib(s(s(x'))) = u' "fib(s(x')) = v', 

i.e., regarding figs.3(b) and 5, the PTS must establish that I1lI- Ic. The PTS must 
then provide witnesses for u' and v' in the conclusion. Furthermore, it must do so 
in terms of u and v in the hypothesis. This will both introduce recursion into the 
target function and eliminate aB reference to the source fib function from the target 
definition. An application of "-intro splits the induction conclusion, into separate 
conjuncts producing two new sul>-goals (the number of applications of intro being 
determined by ~): 

I- 3u'. fib(s(s(x'))) = u' 

I- 3v'.fib(s(x')) = v' 
(8) 
(9) 

A witness for u', in (8), is required wh ich is equal to fib(s(s(x'))): since, in this 
example, ~ = 2, then a value for u' is obtained by appealing to those two subsidiary 
calls wh ich take recursive arguments that differ from s(s(x)) by, respectively, 1 and 
2 applications of the successor function s, i.e. fib( s( x)) and fib( s( s( x))) .19 These 
subsidiary calls are precisely those labelIed u and v in the induction hypothesis. 
However, to avoid all charges of eurekas, the PTS must automatically determine 
what function to apply to u and v in order to construct the witness for u'. This is 
done by observing the witnessing step ofthe source proof: a call to the main function 
requires adding the ~ subsidiary calls (cf. the witnessing refinement slot of fig. 

19In the general case, if ~ = n then a tuple of size n is constructed, and the value of n subsidiary 
calls would be required to construct a witness for the 1st component, n - 1 for the second, and so 
forth. 
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5). Thus the identity of the first tuple component is provided by substituting the 
subsidiary calls in the target induction hypothesis for those in the source induction 
conclusion (depieted by M4, fig.3), there by witnessing a value for u' of u + v. 
A similar analysis of the source proof could be performed to identify the second 
component of the target tuple corresponding to (9). However, a witness, v, for v' 
is provided by one of the target hypotheses andcan hence be directly appealed 
to in order to witness a value for the remaining component. Once the witnessing 
steps have been completeted, the instantiated, or fertilized, conclusion is verified by 
appealing to the same tactics for unfolding and the same lemma, lemma 3, as used 
to verify the source induction step (M3, fig.3). This completes the construction of 
the target proof, fig.3(b), which is then passed on to the OYSTER automatie program 
extraction process (§2.1.2). 

So, by utilizing the eliminations and witnesses in the source proof induction, the 
PTS is able to automate the difficult tuple construction process which, within exist­
ing program transformation, systems has constituted a eureka step. We elaborate 
on this performance advantage in §6. 

5.1.4 PTS Lemma Translation 

Regarding the use of lemmas, the PTS is equipped with a simple translation proce­
dure that turns a destructor type lemma of the form: 

h(~) h(Jd~-a),fd~-b)), whereb?a, 

into a constructor version of the following form: 

h(~ + b) h(h(~ + (b - a)), h(~)). 

Hence there is no problem in using source proof lemmas that define a function 
f(~) in terms of predecessors of ~, since, if necessary, we can translate it into the 
equivalentlemma that defines f(~) in terms of Stlccessors of x. 

5.1.5 The Target (stepwise) Extract Program 

The lambda calculus extract program, shown in fig.6, for the target stepwise proof 
is somewhat more esoteric than the more standard representation of the stepwise 
recursive Fibonacci that we gave in §3.2. The basic explanation of the p..ind proof 
construct was provided in §2.2.2. The unfamiliar construct is the spread function. 
The spread function takes a pair (first argument) and a list (second argument) 
specifying two variables and a term which may include them; on execution the 
function returns this term with the variables substituted by the elements of the 
pair. 

complete eztrcct .. 
ba..se cc.se .step ca"e 
~, .. , 

~x.((~tuple.8pread( (u, v), [""', y, y]))(p..ind(x, (8(0),8(0»), [x' , I?(, 8pread(I?(, [U/, v', (u ' + v') 1\ u/D]))) 

Figure 6: The stepwise extract for :FIT3 

So, regarding fig.6, the innermost spread term (that constructed through the PI 
branch of fig.3(b)) specifies that the two components, tl and v, of the pair (tupie), 
I 1t , whose existence is assumed through the induction hypothesis, are substituted, 
respectively, for u and v in the term (u + v) A tl. The outermost spread term 
(that constructed through the P2 branch of fig.3(b)) specifies that the output for 
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Fibonacci is obtained by substituting the second element of the tuple, synthesized 
through 'Pb for y in the root node specification. Note that the stepwise extract, as 
in the stepwise proof, contains only a single evocation of the induction hypothesis, 
I ll . The recursive process generated by the stepwise extract is hence linear. 

It is the use of tupling which allows us to construct such a linear process: the so­
lution for Fibonacci corresponds to v in the above extract (i.e., the second argument 
of the first tuple component). Parameter u acts as an accumulator since its value 
in successive invocations accumulates the value(s) of the function. So, the process 
generated is linear recursive since, with u and v initialized to 1 and 0 respectively, 
the procedure applies the simultaneous "transformations" shown on the I.h.s. of 
the following informal equivalence (where A I----t B means P "transforms" to B), 

{ ~ I----t 

I----t 
~+v }=={(u,v)l----t(u+v,u)} whereu=Jib(i) and 

v = Jib(i - 1), (Jor some i). 

This represents a single recursive call where to obtain (u + v, u) we require a single 
evocation of the induction hypothesis construction, corresponding to (u, v). 

So after applying this "transformation" n times then u and v will be equal to 
Jib(s(n)) and Jib(n) respectively, i.e., (schematically), 

{ ~ t---+ u + V } x n == (Jib(s(n)) + Jib(n), Jib(s(n))). 
t---+ u 

5.1.6 Scope of Induction Schema Transformations 

In this section we provide an indication of the performance of the PTS as currently 
implemented. Although the PTS should currently be regarded as in an embryonic 
form, it is capable of linearizing, through the transformation of source proof in­
duction schemas, a large dass of program characterized by what Cohen describes 
as the common generator redundancy, CGR, dass of programs [12]. This dass is 
represented by the below schematic definition for a function J, with n self-recursive 
caUs, and where dl, d2, ... , dn, are descent Junctions. Descent functions are those 
functions which are applied to the main recursive arguments used in subsidiary 
calls.20 

J(x) <= if b(x)then c(x) 

else h( x, J( d1 (x)), ... , J( dn(x))). 

The CGR dass of programs are those programs where there exists a common descent 
Junction, 0, in terms of which each of d1, d2, ... , dn can be defined. This means 
each descent function is related to each other through 0 in that each is cashed out 
in terms of applying 0 a certain number of times, i.e., d1 = Oi and d2 = oj, where 
on is to be interpreted as the application of 0 n time:;;. 

The general schematic function, shown above, for the CGR dass of programs can 
hence be re-represented by 51 below:21 

(51) J(x) <= if b(x) then c(x) 
else h(x, J(Oi(x)), ... , J(oi(x))) 

20S0 , for example, there are two subsidiary recursive calls entered in the Fibonacci source 
course of values proof in order to satisfy the induction step, p(x) and p(p(x»). The corresponding 
two descent functions for the two subsidiary calls are in both cases the predecessor function p. 

21 The CGR dass also covers the dass of programs, referred to by Cohen as the erplicit redundancy 
dass, where d1 = d2 . 
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Fig.7(a): INPUT: SOURCE PROOF 

(NESTI;D INDUcnON) 

: ----I~-I-:-"3i ~Ii;t .-j ;tii;'j -;, -1- - - --: 
~ ........................................................ ............. 1 

: ZCI : ~ 31' : Ii~t. fetl(.(r')) = I' : 
'"................................. ... .................................. _1 

a ___________ ... _______ • ______ • 

: Z1(l: 3z . fet(r") = z : l ___________________________ ~ 

: ZC2: ~ 3z'. fet(.(.(r"))) = z' : l .. ____________ _________ • ___ J 

4 

-------- ------------
: f- fetl(.(r'» = z :: I : ~ _______ ~ __________ --' 

~l I lemma 4 I 
: --~ -i~;i;(~(;;'i))-~; ;[.(;7,) i -x-; ---: .1.-13 

~ ----------; ~el~~ ------------~ /--....;-:.---------='-'''----, 

Fi&.7(b): OUTPUT: TARGET PROOF 

(SINGW' INDUcnON) 

Y2: seq(Vr,3u . 3v . fet(.(r)) = uAfetl(r) = v,tuple : (u,v)) 

-------- -----r--y· 
9}~ .. : -... 0;' .. t:,l'!: ~ _'-tl ... , ~ 1_ j 

~ 31 . fetl(r) = I : ________ __________ J 
stepwi~ ind .(r) on Y~ 

MS 

Figure 7: Schematic Representation of Source to Target Proof Mappings for Factlist 
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Fo.r the sake o.f brevity, we illustrated the transfo.rmatio.n pro.eess using a fairly 
simple bi-linear instanee o.f SI, namely Fibo.nnacci. Ho.wever, the PTS will o.ptimize 
any instanee o.f S1.22 Fo.r furt her examples the reader is referred to. [23]. 

5.2 Example 2: Optimization By Transforming Nested In­
ductions 

With the Fibo.nacci example o.f §5.1 the o.ptimizatio.n was achieved thro.ugh trans­
fo.rming the so.uree inductio.n schema into. a different schema with a mo.re eflicient 
eo.mputatio.nal rule. We no.w illustrate, by example, ho.w the PTS is eapable o.f trans­
fo.rming a so.uree pro.o.f that invo.lves a nested applieatio.n o.f inductio.n to. a target 
pro.o.f with a single inductio.n. 

Our seco.nd example eo.neerns the o.ptimizatio.n o.f a pro.gram that eo.mputes the 
fact/ist functio.n, fetl, with the fo.llo.wing definitio.n: 

fetl(O) = []j 
fetl(n) = faet(n):: fetl(n - 1), 

where the auxiliary functio.n faet is defined as fo.llo.ws: 

faet(O) 

faet(n) 
= 1; 

= n x faet(n - 1). 

(10) 

(11) 

(12) 

(13) 

Here redundaney do.es no.t o.eeur direetly due to. any self-reeursive eall but rat her 
amo.ng the auxiliary reeursive fact ealls. This redundaney is exhibited by the sym­
bo.lie dependeney graph fo.r fetl, the initial po.rtio.n o.f which is sho.wn in o.f fig.8. 
Recall fro.m §3.2 that a symbolic DG is based o.n the ealling structure o.f subsidiary 
symbo.lie functio.n calls (and is therefo.re po.tentially infinite in size). The multiple 
evo.catio.ns o.f subsidiary ealls, the redundaney pattern, is exhibited by mo.re than 
o.ne arrow directed at any partieular no.de. 

Figure 8: The symbo.lic DG fo.r fetl(n) 

A pro.gram fo.r eo.mputing this ineflicient pro.eedure is synthesized fro.m the fo.l­
lo.wing specifieatio.n, :F C, fo.r the factlist functio.n: 

Fe: "'Ix, 3/:/ist. fetl(x) = I. 

As with the Fibo.nacei example, fetl is defined thro.ugh the use o.f lemmas, fo.ur in 
this case, whieh eo.rrespo.nd to. the terminating ((10) and (12)) and reeursive ((11) 

22In fact Si is a slight simplification since h may differ depending on which subsidiary call 
to which it is appled. thus the M'PTS will also, for example, transform a source proofs of the 
following function 1'(n) = 1'(n - 1) X (1'(n - 3) + 1'(n - 4)). 
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and (13)) branches of the above definitions. However, unlike the source synthesis 
proof for the Fibonacci function, fctl is defined by a stepwise recursion schema -
since fctl function does not invoke itself more than once at each recursive call -
and so is therefore most naturally synthesized using stepwise induction. 

In fig.7 we provide a diagram that, as with fig.3, depicts the source and target 
proofs, and the (sub)structure mappings between them. 23 The redundancy mani­
fests itselfin the source proof, fig.7(a), in the form ofthe nested stepwise induction, 
NI, required to synthesize an extract term for the auxiliary fact call. The nested 
induction requires a prior sequencing step, at the induction step of the outer induc­
tion, to cut in the specification goal g1 for the fact sub-routine: 

g1: seq('v'x' , 3z.fct(s(x' )) = z). 

The nested schema means that for each recursive pass corresponding to the out­
ermost induction, OI, the source program must fully recurse on the innermost 
schema. This is also refiected by the dual nested recursion schema construct of the 
source proof extract program, a simplified representation of which is shown in fig.9: 
the p_ind function defines stepwise recursion and is evoked by the application of the 
corresponding induction. The nested p_ind structure mirrors the nested induction 
structure of the source proof. Thus if the induction variable, x' is 0 then the output 
is nil, otherwise the output is z :: I, where z is provided by the induction hypothesis 
I1/.2, of the nested induction on x", and I is provided by the induction hypothesis, 
I1/.b ofthe outer induction on x'. SO the nested inductive proof provides an output, 
z, for fact(s(x ' )), which is then used in the computation, z :: I, for fctl(s(x)) (i.e. 
z :: I serves as a witness for the outer induction conclusion Ic2)' 

complete estract 

~------------------~~~------------------~ 
fctl ba.e fctl .tep fact ba.e fact .tep 
~ ~ ~ ~ 

AX. p_ind(x, [] ,[x', l, (AZ.Z :: l (p..ind(x', 8(0) ,[x", Z, 8(S(X")) X z]))))]) 

Figure 9: The Source Extract for fctl 

So the task of the PTS transformation is to remove this nested induction, and 
thereby the redundancy caused by the nested recursion, by effectively specifying 
the auxiliary call at the level of the outermost induction. 

5.2.1 Exploiting Dependency Information for the Target Construction 

As with the source to target transformation ofself-recursive functions, the opti­
mization of the source auxiliary recursive fctl function involves proof tupling and 
the exploitation of dependency information contained in the source proof. The step 
case existential witnesses of the inner and outer inductions of the fctl source proof 
are expressed in terms of the source induction hypotheses (necessarily since the 
)"-function constructed is recursive). These witnesses are directly exploited in order 
to satisfy the single step case of the target proof. 

In fig.10 we have represented the witnessing steps of both the source proof 
inductions (i.e. the outer and inner inductions of fig.7(a)). Fig.10(a) corresponds 
to the witnessing of the existential variable at the step case of the nested induction, 
and fig.10(b) to that of the outermost induction. 

23The same conventions apply to fig.7 as did to fig.3: symbols in the text in calligraphic font 
refer to the corresponding symbols in fig.7; terms such as "step(x = s(x'))" denote that the 
induction variable. x. in the hypothesis is instantiated to 8(X') in the conclusion, and; terms such 
as "stepwise ind.(x') to (in mean stepwise induction on x' is applied to y. We also. due to space 
constraints. abbreviate some formulaes with ... • and omit some of the V-intro applications. 
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ref: I stepwise index') I ref: I stepwise ind( x) I then I seq ( 3z·f ct( s( x')) = z 

hyps: 3z. fct(s(x")) = z hyps: 3z . fct(s(x')) = z and 31' :list. fctl(x') = 1 
conc: f- 3z'. fct(s(s(x"))) = z' 

~: f- 31' :list. fctl(s(x')) = I' 
------------------ - --------------------~---

next ref: !3-intro(s(s(xll
)) x z)! next ref: 13-intro(z :: 1) I 

next conc: f- fct(s(s(x"))) = s(s(x")) X z next conc: f- fctl(s(x')) = z :: t 

9(a) Step witness for fact (at NI). 9(b) Step witness for fctt (at OI). 

Figure 10: The witnessing steps of the source fetl proof 

The PTS is able to determine from the above witnessing steps of the source proof, 
and from the subsequent unfoldings with the lemmas, that the recursive definition 
of the target tuple requires tabulating two function calls (Le. ~ = 2): there is 
one elimination performed on the respective induction hypothesis at each of the 
two inductions in order to provide a witness at the respective step cases (thus 
introducing recursion in the main and auxiliary functions being constructed). The 
actual witnesses tell us that the first is an occurrence of the auxiliary faet function 
which takes the same argument, n, as in the head of the definition. The other 
tabulation is a subsidiary fetl call which takes the predecessor, n-1, of the argument 
n in the head of the definition. The two arcs corresponding to M5 of fig.7. depict 
the mapping of information from the source proof in order to identify the requisite 
tuple. The target definition is given the hypothesis label tuple and, as in the 
Fibonacci example, is expressed as a conjunction and sequenced into the target 
proof as a new fact 92: 

92:seq(('v'X, 3u, 3v. fet(s(x)) = u 1\ fetl(x) = v), tuple : (u, v}). 

Stepwise induction is then performed on the sequenced in goal (where the induction 
variable, x, is the same as that for the outermost application of induction in the 
source proof). 

At the induction step of the target proof, s(x) in the hypo thesis, I1t3, is instan­
tiated to s(s(x)) in the conclusion, IC3, yielding: 

(3u',3v'. fet(s(s(x))) = u' 1\ fetl(s(x)) = v'), tuple: (u', v'}. (14) 

Both the tuple components (conjuncts) u' and v', of (14), unfold to terms that are 
provided by mappings from the source proof: 

• fact(s(s(x))) is equivalent to s(s(x)) x faet(s(x)) where fact(s(x)) matches 
the hypothesis u = faet(s(x)). Hence we require a witness value for the 
first tuple component of s(s(x)) x u. This is obtained by mapping across the 
witness for the sour ce nested induction and substituting u' for z. In fig.7 this 
corresponds to M3 . 

• fctl(s(x)) is equivalent to fact(s(x)) :: fetl(x) where fact(s(x)) matches 
the hypothesis u = faet(s(x)), and where fetl(x) matches the hypothesis 
v = fetl( x). Hence we witness a value for the second tuple component of u :: v. 
The PTS obtains this witness simply by substituting the target hypothesis 
labels, u' and v', for the labels, z and 1', in the step case witness of the 
outermost sour ce induction (depicted by M4 of fig.7) 
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As with the previous examples, the base case witnesses are mapped across, one 
on one, from the source, as are the lemma applications required for verifying both 
the base and step case witnesses (MI and M2 of fig.7). 

The completed target proof constructed by the PTS, corresponding to fig.7(b), 
is then passed on to the OYSTER extraction process. 

5.2.2 The Target (stepwise) Extract Program 

The target program construction is shown below in fig.lI. 

c:omple'c cz-trocC ... 
I " 

ba.e .te,. ----- ... 
AX. ((Atuple . • pread( (u, v), [-, 11, 11])) (p..ind(x , (.(0) ,0), [x', g2 : (u , v), ~pread(g2' [u ' , Vi, (.(.(x /)) X u /) 1\ (u ' :: v/)l~))) 

Figure 11: The target extract for fctl 

Note that just as the source proof - fig.7(a) - contained two stepwise inductions, 
with the nested induction being applied at the step case of the outermost induc­
tion, and the target proof - fig .7(b) - contains only a single induction (on a tuple 
structure), so the source extract pro gram - fig.9 - contains a dual nested recursion 
schema, with the nested recursion being applied at the step case of the outermost 
recursion, and the target extract program - fig.11 - contains only a single dual 
recursion (on a tuple structure). 

5.2.3 Scope of Loop Removal Transformations 

The situation for proof tupling auxiliary recursive functions is different from that of 
functions which contain only self-recursive cal1s in the body of the definition. CGR 

functions which are auxiliary recursive fit the following schematic definition 52: 

52 f(z) {:: if b(z) then k(z) 
else h(z, h(6i (z», ... , fnW (z))) 

where there is at least one auxiliary function call in the body of 52. So for abi-linear 
instances of 52, such as the factlist function, the following holds: (f = h V f = 
12) A h f= h· The PTS is, however, capable ofperforming tupling transformations 
on any instances of 52. 

As we illustrated in §5.3, the PTS will also transform functions where, regarding 
52, one or more of the functions, h, ... , fn, in the body of 52 is an instance of 5I. 
This increases the performance of the PTS since the scope of transformable functions 
is not soley those that pertain to 51 or 52, but in addition those that pertain to 
some combination of 51 and 52. A thorough account of example transformations 
can be found in [23]. 

5.3 Example 3: Loop Removal By Transformation of (+1)8 
to (+2)8 Induction 

Consider the following variant of factlist: 

factlist(s(n» = fact2(s(n» :: factlist(n), 

where the auxiliary function fact2 is a (+2)s recursive function thus: 

fact 2 (0) 

fact 2 (s(O» 

f act2(s(s(n») 

= s(O); 
s(O); 

= s(s(n» x fact2(n), 
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and where the PTS constructs a target tuple of length 3, where one component is 
the subsidiary factli8t call and the remaining two components are the 2subsidiary 
calls for the fact computation. 

(+2)8 induction is best suited to construct the auxiliary fact2 function since 
fact2 is naturally a (+2)8 definition. The schema for (+2)8 induction is as follows: 

f- P(O) f- P(8(O)) "Iv: pnat. P(v) f- P(8(8(V))) 
f- "Ix: pnat. P(x) 

So in order to synthesize a program which computes the fact list varient (15), we 
must construct a proof where in a (+2)8 induction is nested within (at the step case 
of) an outer (+1)8 induction. The nested (+2)8 inductive proofis almost identical 
to the nested (+1)8 proof of example 2 (cf. fig. 9(a)). The only difference is that 
the recursive argument in the goal conclusion is two, rather than one, applications 
of the successor function out of step with the recursion argument in the induction 
hypothesis. In fig.12 below we show the corresponding (+2)8 induction node: 

refinement: 

induction hypothesis: 
induction conclusion: 

I (+2)s induction(x') I 
3z. fact2(x") = z 
f- 3z' . fach(s(s(x"))) = z' 

witnessing refinement: 13-intro(s(s(x")) x z) I 
fertilized conclusion: f- fact2(S(S(X"))) = s(s(x")) x z 

Figure 12: Source nested (+2)8 induction (for fact2 construction). 

To perform the proof tupling transformations on such a nested induction, the 
PTS needs to tabulate 2 fact2 function calls, along with the factli8t call. That 
the target tuple includes 2 fact2 function calls is determined by precisely the same 
reasoning that is used to form a target tuple for the Fibonacci example: the body 
of the step case definition for fact2 contains a self recursive call to fact2 that is 
2 applications of the common generator function, in this case 8, out of step with 
the head of the definition. This is clearly illustrated by replacing z in the next 
conclusion slot, of fig.12, by the hypothesis that it labels thus: 

f- fact2(8(S(X"))) = 8(8(X")) x fact 2 (x). 

Hence, the optimization of the fact2 function requires a tuple of two components 
(i.e., ~ = 2), where the tabulations would correspond to fact2(8(n)) and fact2(n). 
Since fact2 appears as the auxiliary function call of factli8t, then the required 
target tuple contains three components (i.e., ~ = 3), and the PTS sequences the 
following goal into the target proof: 

((3u, 3v, 3w. fact2(8(X)) = u 1\ fact2(X) = v 1\ fctl(x) = w) , tuple: (u,v,w)) . 

Note that, in effect, in performing the above source to target transformation we 
have both: 

• transformed a source proof with a nested induction to a target proof with a 
single induction (employed on a tuple); and 

• in doing so, transformed the (nested) (+2)8 induction into a standard (+1)8 
stepwise induction. 

Hence proof tupling on source proofs that contain a nested induction structure, 
where either of the inductions is in itself susceptible to optimization through tu­
pling, is tantamount to combining the transformation of induction schemas with 
the merging of nested inductions. 
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6 Merits and Applications of Proof Tupling and 
Comparisons with Program Tupling Transfor­
mations 

In §3.3 we mentioned that one of the most influential strategies for program trans­
formation is the unfold/fold technique [15] . This technique is employed within 
Darlington 's interactive NLP program transfQrmation system, and used by Chin to 
perform automatic tupling transformations [11]. 

In §3.3 we identified three key steps for transformation using the unfold/fold 
strategy. These steps correspond to the most difficult aspects as far as automation 
is concerned, and in NLP, and similar systems, require some form of user guidance: 

• Lemma generation: the introduction of an appropriate function definition 
in terms of the source definition. The provision of such explicit definitions, 
where the target is defined in terms of the source, generally constitute the weIl 
known eureka step in unfold/fold transformations, and are notoriously difficult 
to automate [10]. The unfold/fold strategy is motivated by the observation 
that significant optimization of a (declarative) program generally implies the 
use of a new recursion schema. This process usually depends on the user 
providing the requisite explicit target definition. The strategy then proceeds 
to evaluate the recursive branches of the target definition, primarily through 
unfolding with the source definitions, until a fold (match) can be found with 
the explicit definition. 

• Folding: when to fold the eureka definition with the source definition. This 
requires using matching as a means of testing for the successful folding of the 
target function definition with the source definition. 

• Application of laws: for example, when to apply associativity. 

In subsequent sections we discuss the differences, and advantages, that the PTS 

approach to optimization has over unfold/fold style program development. 

6.1 The Reduced Workload Regarding Dependency Analyses 

To understand how the proof tupling approach circumvents the need to produce 
and analyze dependency graphs we shall briefly describe an existing program trans­
formation system that employs the tupling technique. 

Recently, Chin, a student of Darlington's, has described several methods for 
automatie program transformation within the HOPE+ system [11] . By an analysis 
of symbolic dependency graphs, based on [30], Chin is able to describe an automatie 
procedure for finding a pair of matching tuples by the unfolding of selected calls to 
the source program, and then using matching as a means of testing for successful 
folding. This is a significant achievement and represents the first successfull attempt 
to automate the notoriously difficult unfold/fold eureka steps. Chin's automatie 
tupling method is best described by example (we shall remain with the Fibonacci 
function). 

The initial portion of the symbolic DG for Fibonacci is shown below in fig.13. 
As with the symbolic DG for the factlist function, fig.9, redundancy is exhibited by 
more than one arrow directed at any partieular node. 
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Figure 13: The symbolic DG for fib(n) 

The main idea taken from [30] is that: 

An appropriate eureka tuple can be found if and only if there exists a 
progressive sequence of cuts that match one another, in the function 's 
dependency graph. 

A cut is defined as a subset of nodes across a dependency graph that when removed 
will divide the graph into two disconnected halfs. A progressive sequence of cuts is 
a sequence of cuts ordered according to size (i.e., according to the number of nodes 
in the subset). A pair of cuts match if a consistent substitution can be obtained 
when each function call of the first cut is matched with the corresponding function 
call of the second cut.24 

The finding of an appropriate eureka tuple depends on the notion of a continuous 
sequence of cuts. This is defined in [11] as folIows: 

"A continuous sequence of cuts, cutl, cut2, ... , cutN , is a successive series 
of cuts which starts with the root node as its first cut. This sequence 
successively obtains the next cut by giving up a subset of nodes ... from 
the topmost set of the current cut in order to acquire the children for 
the next cut." 

The topmost set of a cut is defined as a set of nodes whose ancestors are not present 
in the cut itself. 

Returning to the example and starting with the main function call, Chin's analy­
sis replaces fib(n), the first cut, with its two subsidiary calls, (Jib(n-1), fib(n-2)). 
This gives us the second cut. The analysis then proceeds by unfolding only that call 
in a cut which is not a subsidiary call of the other call, i.e., the topmost item. So, 
since the functioD call fib(n - 2) is a subsidiary call of fib(n -1), only fib(n -1) is 
unfolded. This gives the third cut, (Jib(n - 2), fib(n - 3)). The third cut matches 
the second cut, thus providing the analysis with a matching tuple. 

Chin's process is essentially the same as that described for Darlington's un­
foldlfold tupling technique: the unfold/fold steps required for the tupling trans­
formation are achieved by locating a pair of matching tuples by the unfolding of 
appropriately selected calls and then using matching as a means of testing for suc­
cessful folding. 

The main difference between Chin's and Darlington's systems is that the use 
of such selection ordering allows for a considerable degree of automation, since 
once this analysis succeeds the main task of the tupling transformation - finding a 
successful fold - will have been achieved. 

24These tenns are fonnally defined in [11). 
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6.1.1 Comparison with Proof Tupling 

Chin's DG analysis tells us two things: 

1. firstly, the number, ~, of subsidiary calls of the main function calls required 
to form the tuple (i.e., the determination of the tuple size)j and 

2. secondly, which subsidiary calls are to be tabulated. 

An advantage of proof tupling is that both of these things, required for the tuple 
formation, are contained in the source proof. This means that they can readily be 
abstracted from the proof and exploited for the construction of the target tuple with­
out any additional dependency graph construction and analysis procedures. This 
will always be the case for tupling transformations since the eliminations performed 
on the induction hypothesis in the source will always provide an accurate measure of 
what recursive calls are (a) required to compute the source course of values proce­
dure, and (b) require tabulation in order to compute the target stepwise procedure. 
Returning to the Fibonacci example, the required information is read directly from 
the witness, 

3-intro(Yl + Y2), 

of the source induction step. In OYSTER notation this witness is specified in terms 
of the eliminations on the induction hypothesis I1I,: 

(intro(I1I, of p(x) +I1I, of p(p(x)))), 

This tells us precisely the number of, 2, and the identity of, p(x) and p(p(x)) the 
eliminations on I1I, performed in the soutee induction in order to introduce recursion 
in the source function. In the general case, the dominant function of the first tuple 
component will always be that employed at the induction step of the source (where 
the number of tuple elements corresponds to the number of source proof eliminations 
on the ind uction hypothesis ). 

Note also that no extensive search is involved in the analysis of the source 
proof in order to determine ~ and to witness a value for the tuple components. 
The portions of the source proof that are accessed for the analysis correspond to 
specific semantic units: the specification, the application of induction, the induction 
base and step cases, the unfolding step, and the witnessing rule. These are clearly 
represented as distinct sub-lists within the rule-tree abstractions (§4.1) and the PTS 

knows precisely where to look in order to access any of the aforementioned units. 
For example, the induction step will always correspond to that rule applied at the 
deepest node of the decision tree employed to separate the various cases. So, within 
the rule-tree, the induction step occurs as the last case of a nested case analysis. 

So, unlike program tupling, the PTS proof tupling optimizations do not require 
the construction of a (potentially infinite) dependency graph, nor does it require any 
procedures for searching the dependency graph in order to find a matching tuple. 

6.1.2 Tuples As Conjunctions 

Within the object-Ievel OYSTER proofs the tuples are represented simply as conjunc­
tions (hence a tuple (A, B, C) is represented as A 1\ B 1\ C). Hence, we bypass the 
need to invent new data-types for tuples solely for the purposes of transformation. 
This means we avoid the charge that (program) tupling techniques rely heavily on 
the somewhat ad hoc requirement to introduce tupies, memo tables or similar ob­
jects, and that we do not require arbitrarily complex tabulating constructs. For 
example, program transformations within Darlington's FPE environment automate, 
to some extent, the construction of the eureka tu pie by incorporating a large table 
and managing system [16]. However, this causes considerable inefficiency since it 
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has the effect of carrying round potentially huge open-ended tuple structures whose 
length is tailored to the functions needs. 

6.2 Further Advantages Regarding Search, Control and Cor-
rectness 

The fact that the PTS transformation tactics are (partiaIly) specified at the meta­
level, in terms of syntactic pre- and post-conditions, reduces the amount of search 
that would be involved if the target proof were constructed at the object-Ievel. 
In other words, since we can regard the rule-trees, together with pre- and post­
conditions, as proof plans then a general advantage of performing tactic transfor­
mations - Le., meta-level transformations on the object-Ievel tactics - is that the 
transformation space is equivalent to a planning search space which is far smaller 
than the object-Ievel search space. 

As weIl as the way that dependencies are sought during tupling transformations, 
further factors which playa beneficial role regarding search and control include the 
means by which the target recursive step is completed, and the form of equation 
development used all have a significant effect on the amount of search involved 
during the transformation. 

We shall consider in turn how the PTS reduces the search involved with each of 
these factors in comparison with previous program tupling systems (notably [15, 11] 

6.2.1 Derivational Form: Folding Vs. Fertilization 

Darlington 's NLP, and Chin 's HOPE+, tu pie analysis is motivated by the desire to 
find a matching tuple which can be used for folding. This can involve extensive 
search. To illustrate this property, we display, in fig.14, the unfold/fold derivation 
of the efficient Fibonacci procedure: 

• Equational def. of fib: 

(1) fib(O) 
(2) fib(l) 
(3) fib(x + 2) 

1 
1 

= fib(x + 1) + fib(x) 

• Derivation of auxilliary tuple function g: 

(4) g(x) = (fib(x + 1), fib(x» 
(5) g(O) = (fib(I), fib(O» 
(6) = (1,1) 
(7) g(x + 1) = (fib(x + 2), fib(x + 1» 
(8) = (fib(x + 1) + fib(x), fib(x + 1) 
(9) = (u + v, u) where (u, v) == (fib(x + 1), fib(x) 
(10) = (u + v, u) where (u, v) == g(x) 

• Derivation of fib in terms of g: 

(11) fib(x + 2) 
(12) 

= u + v where (u, v) == (fib(x + 1), fib(x» 
= u + v where (u, v) == g(x) 

Figure 14: Unfold/Fold development of efficient Fibonacci 

Given 
Given 
Given 

Eureka - Definition 
Instantiation 
Unfolding with 1 and 2 
Instantiate 4 
Unfold with 3 
Abstract 
Fold with 4 

Abstract 3 
Fold with 4 

The development of the target terminating branch is straightforward. Regarding 
the recursive branch, unfolding must be performed in order to obtain the explicit 
definition, (8), from the eureka definition (4). A fold step is nowrequired so as to 
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introduce a recursion into (8). The search for a fold involves observing that aB the 
components necessary to match the above equation are present within the initial 
definition, (4), for the auxiliary function g. Hence (8) is re-written using unfolding 
and where abstraction, to (10) which easily folds with the eureka definition (4) 
yielding the desired optimized recursive definition (10).25 

The derivation of fig.14 illustrates how, within unfold/fold style systems, the 
head of the developing equations remains constant, and it is only the body that is 
modified, i.e., re-write rules are only applied to the left hand side of equations. This 
form of equation development, together with the formal definition of folding [10]: 

If E = E' and F = F' are equations and there is some occurrence in 
F' of an instance of E', replace it by the corresponding instance of E 
obtaining F"j then add the equation F = F", 

means that, throughout the equation development, the same equation head is re­
tained. Hence folding with the source equations is a necessary requirement at some 
point in order to introduce a recursion into the tail of the developing equations. 
There is not, however, any procedure for knowing when to halt unfolding and in­
troduce a fold (nor when to perform a forced fold). Thus the folding requirement 
presents control problems, and is one primary reason why user guidance is usually 
required in such systems in order to avoid flawed attempts at folding. The other 
reason being the provision of the eureka step corresponding to the generation of the 
auxiliary tuple. Note that, regarding fig.14, the control problem is, in fact, doubled 
since following the first fold, (10), further (forced) folding is required, at steps (11) 
and (12), to express fib in terms of g. 

An advantage of the PTS transformations is that they inherit the properties 
of theorem proving: inductive proofs are driven by the heuristic requirement to 
find a fertilization: the proof construction is developed in a bi-directional manner 
since both sides of the induction conclusion can be re-written in the search for 
matching (unifiable) terms. The simplest way to illustrate this is by fig.15 where 
we employmeta-variables (in upper-case) for those "unknown" portions ofthe proof 
(corresponding to the initial eureka step and the witnessing steps). We also adopt 
the standard conventional notation for tupies, rather than use OYSTER'S conjunctive 
representation, and use a where construct to refer to the induction hypothesis. 
These changes do not alter the bi-directional form of the proof development, but 
rather makes it easier to see and compare with the unfold/fold style derivation of 
fig.14. 

g(s(n)) = (Mt(u, v), M2(u, v)), where (u, v) = g(n); 

unfold 9 unfold g; 

(Jib(s(s(n))),fib(s(n))) = (M I (u,v),M2(u,v)), where (u,v) = (fib(s(n)),fib(n)); 

unfold fib 

((fib(s(n)) + fib(n)) , fib(s(n))) = (MI (u, v), M2 ( u, v)), where (u, v) = (Jib(s(n)), fib(n)); 

fertilize (ul fib(s(n)), vi fib(n)) 

(u+v,u) = (M I (u,v),M2(U,V)); 

instantiation MI = AU,V.U + v and M2 = AU,V. u. 

Figure 15: Parallel development of induction conc1usion 

23 Abstraction consists of replacing parts of an expression, in the body of an equation, by vari­
ables, and then defining these variables in a where c1ause. The combination of unfolding and 
abstraction is sometimes referred to as forced folding. 
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A characterizing feature of tupling proofs is that the recursive definition will consist 
of some, as of yet unknown, function(s) applied to the tuple components of the 
induction hypothesis [25] . Hence we shall use the meta-variables to represent such 
functions in our comparative illustration, fig.15, of the target Fibonacci proof (we 
show only the induction step case of the auxiliary proof, corresponding to steps (4) 
to (14) of fig.14). 

The important feature to note is the "parallel" development of both head and 
body towards a unifiable pattern, such that induction terms may be eliminated from 
the condusion. This means that since we can modify both sides of the equation 
we can avoid the decision(s) as to when, and with what, to fold. That is, we can 
limit the process to the iterative application ofunfolding with equational definitions. 
This significantly reduces the search space, and on the available evidence is much 
easier to control (it is precisely what is formally captured by the rippling technique, 
§6.3 and §6.4.4). 

6.2.2 Law Application 

A notorious problem with unfold/fold is that there is no principled means of ap­
plying semantic laws. That many unfold/fold transformations may require the nu­
merous and somewhat arbitrary application of laws, for which any overall strategy 
is difficult to characterize, means that user-interaction is usually required. Thus 
an advantage of operating within a proof theoretic framework is the capability to 
automatically form and apply rewrites from semantic laws. By semantic laws we 
usually mean lemmas such as the associativity 0/ append, rather than the lemmas 
used for the purposes of verification in our examples. Several examples of such 
principled law application can be found in [25]. 

6.2.3 Correctness 

More recent incarnatiQns of the unfold/fold strategy have been shown to be correct­
ness guaranteed for specified dasses offunctions (cf [32] and [11]). However, each 
extension to the dass of functions requires a corresponding extension to the cor­
rectness procedures, and this leads to a considerable work overhead (proportional 
to the range of transformations .:... or generality - of the system). 

This is not a problem regarding the PTS, and any future extensions thereof: 
synthesis proofs must contain a verification proof that the extract term computes 
the task described by the specification. Thus, extract programs are correct with 
respect to the complete specifications of the synthesis proofs from which they are 
extracted. Hence the correctness of all transformations is ensured without having 
to additionally provide, or extend, any correctness criteria, or proof, each time we 
extend the range of programs to which the transformations are applicable. 

Stricktly speaking, we have only addressed partial correctness. Total correctness 
involves providing termination conditions in addition to ensuring that the output 
program computes the desired function. As stated in the previous section, a prob­
lem with controlling unfold/fold transformations is knowing when to stop unfolding 
and introduce the crucial fold step into the derivation. This can lead to an infinite 
regression of unfolding and lemma applications. In the case of proof transforma­
tion, termination simply corresponds to the completion of the target proof: when 
the rewriting of the induction condusion has been successfully driven toward fertil­
ization with the hypothesis. Unlike folding, fertilization is well-founded. 
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6.3 Generality: Exploiting Proof Plans 

In §6.2.1 we remarked that since the majority inductive proofs pertain to the same 
(formal) pattern that the PTS design need not be altered for disparate inductive 
proof transformations (thus the majority of proofs employing course of values in­
duction can be transformed into an equivalent, but more efficient, stepwise inductive 
proof). That there is a high degree of similarity in the overall shape of the inductive 
proof trees (and in the strategy employed in inductive proofs) requires some expla­
nation if our claims concerning the generality of the PTS design are to be justified. 
This will also be relevant to the subsequent section on future research. 

Inductive proofs, including the source and target Fibonacci proofs, invariably 
involve a process whereby formulae are unfolded by replacing terms by suitably 
instantiated definitions. The proliferation of this process such that recursive terms 
are gradually removed from the recursive branches - by the repeated unpacking of 
induction terms - is part of the (heuristic) process known as rippling. A simple 
examples of this would be the application of the recursive branch of the append 
definition: 

append(e::ll,l2) => e::append(lt,l2) 

The terms append(ll, l2) would unify (fertilize) with the respective induction hy­
pothesis. Thus the goal of rippling is precisely that of the induction step: to reduce 
the induction step case to terms which can be fertilized with those in the induction 
hypothesis, or those in subsequent derivations of the induction hypothesis. 

"t:r: input 3y output spec(input,output 

<= Ipecijic to Iynthelü 

additional C4lel (iJ an additional C4lel (iJ any) 

<= .pecijic to .ynthe.i. 

; 'nested'}-induciiön-: 
.L _____ e------. 

; (iie"Ste<f'- inCiucÜöii: ._------Q§ --------

Figure 16: Proof plan for induction strategy 

This common pattern to inductive theorem proving allows for the construction of a 
general induction proof plan, specified at the meta-level, which can then be used for 
guiding a whole gamut of object-Ievel proofs. In fig.16 we have represented the key 
decisions and choice commitments made during a typical inductive proof. These will 
involve applying one of the numerous OYSTER induction rules and then witnessing 
the existential quantifier, using 3 - intro, at each of the induction cases (where, 
as indicated in fig.16, the application of the intro rules are specific to inductive 
synthesis proofs). We have indicated, within dashed boxes, that, following the 
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witnessing steps of the (outermost) induction, there may oeeur a further nested 
induetion. These will take the same format as the outermost induetion. Finally, 
we must verify that the instantiated schema will yield a reeursive schema that will 
compute the input-output relation specified in the main eonjecture. 

The fact that inductive proofs invariably pertain to this common form increases 
our expeetations that there will be no need to build into the PTS ad hoc and diverse 
mechanisms for dealing with substantially different patterns of proof. 

In §6.4.4 we briefly discuss directly exploiting proof plans for the purposes of 
proof transformation. 

6.4 Applications and Future Research 

In this section we consider the applications (potential and real), and future avenues 
of research, regarding proof transformations. 

6.4.1 Optimizing Recursion 

The vast majority of eommercial software involves the eomputation of recursive 
functions, and to prove theorems about such functions it is neeessary to use mathe­
matical induction. To manipulate such proofs, wh ether or not the aim is to optimize 
associated program constructs, requires the maehinery for correct and well-founded 
induction transformations. This research, albeit embryonic, makes a first inroad 
into this requirement: the more that theorem proving, and in particular inductive 
theorem proving, forms the basis of automatie programming then the more that 
proof transformation becomes a viable means for providing automatie, correctness 
guaranteed optimization. 

Anticipated future applications of this research include the optimization of elee­
tronic circuit design and the optimization of computer configurations. This is be­
cause both these design problems ean be f9rmally cast as processes of inferenee 
[1, 19]. Thus, we can apply the same automated theorem proving teehniques that 
we use for high quality software production. 

6.4.2 Software Quality: Efficiency and Reliability 

As stated at the outset, §1.1, the research deseribed herein addresses both the 
reliability and efficieney, as well as the automat ability, criteria of developing high 
quality software using formal methods. Formal methods allows us to employ the 
better understood techniques of theorem proving to guarantee these criteria. 

In this paper we used simple examples of linearization and the removal of nested 
reeursion to illustrate the methodology. However, more complex optimizations are 
possible by using different (non-primitive) inductions to eonstruct the target proof: 
in [26] we explain how linear procedures can be optimized to logarithmic proeedures 
through proof transformation by using the method of matrix multiplication and 
replacing the stepwise induction employed in the souree proof by a target divide 
and conquer induction. 

Future anticipated extensions include the systemization of more esoteric indue­
tion transformations involving schemas such as induction based on the construction 
of numbers as products of primes [26]. 

6.4.3 An Aid for Synthesis 

On empirical evidence alone, there appears to be an inverse relation between, on the 
one hand, the efficieney ofthe recursive process generated by an extract, and on the 
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other; the complexity of the prooffrom whieh it was extracted.26 This evidence has 
been gleaned from a study of synthesizing several sorting algorithms in the NUPRL 

system where the extracts corresponding to various synthesized sorting algorithms 
are compared with the syntactic density of the associated proofs [20]. Further ev­
idence is provided from research regarding pruning inductive proof trees in order 
to adapt the associated extract program [22, 23]. So, for example, transformations 
which increase the syntactic complexity of a source course of values proof, by per­
forming proof transformations that cut in (or sequence) an additional sub-proof, will 
decrease the complexity of the recursive behaviour of the extract programs (from 
exponential to linear). One practical contribution of a proof transformation system 
is, therefore, that it enables the synthesizer (human or mechanical) to construct 
short, elegant proofs, without douding the design process with efficiency issues, 
and then to transform them into opaque proofs that yield efficient programs. 

The inverse complexity relation is something which merits further attention 
but for which, as of yet, there is only empirical justification and a quasi-theoretical 
foundation [34]. Intuitively speaking, however, the extra complexity associated with 
a target proof can be thought of as additional information required to compute the 
specified input/output relation efficientlyas opposed to simply ensuring that the 
specified input/output relation is computed. 

6.4.4 Exploiting Proof Planning 

The automatie CLAM proof-planning system jormally encapsulates, in a meta-Iogic, 
the common shape of inductive proofs discussed in §6.3. The system automati­
cally constructs meta-level prooj plan representations from proof specifications [7]. 
These proof plans can then be used to guide the object level synthesis/verification, 
with the advantage that the planning search space is considerably smaller than the 
object-Ievel OYSTER search space. The proof plans can then be used, as a general 
strategy, to guide the refinement of specific specifications [7, 9]. Of particular signif­
icance is the systemization of the rippling re-writing process: definitional equations 
are converted into appropriate re-write rules through a special annotation process. 
The annotations mark the differences between the two sides of the equation. The 
annotated rewrite rule so formed can then be matched against proof (sub)goals and 
the (sub)goal rewritten accordingly.27 

Anticipated future research includes extending the PTS to be fully compatible 
with the CL AM system. This means that any source to target proof transforma­
tions can exploit the proof planning facilities thus leading to greater generality and 
automatability of the dass of optimizations amenable to the system. At present 
the PTS must constantly access the source proof in order to complete the target 
proof. The adapted version will need only to access the source to obtain informa­
tion such as tuple identification and induction witnesses. The target proof can then 
be completed using the automatie reasoning systemized in the CLAM proof-planning 
system. 

7 Summary 

We described the fundamentals of a working synthesis proof transformation sys­
tem. The novel aspect of this research is that program optimization is achieved 
through the transformation of synthesis proofs. In particular, recursive programs 

26This is despite the faet that human theorem provers are usually trained to find short, elegant 
proofs rather than long opaque ones. 

27This very brief outline is only barely representative of the eurrent state of rippling, and of its 
use in automatie proof plan formation. For fuH details the reader should eonsult [6]. 
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are optimized by transforming inductive synthesis proofs. Techniques from the field 
of program transformation may be used to transform the computational content 
of a proof. An important technique for transforming exponential behaviour into 
linear behaviour is tupling. The PTS, unlike other existing transformation systems, 
performs this technique on (synthesis) proofs. The system satisfies the desirable 
properties for a transformation system of correctness, generality, automatability 
and the means to guide search through the transformation space. 

The benefits of the proof transformation approach include the fact that extra 
information contained in the proofs, but not programs, can be exploited to auto­
matically guide the transformations. In particular: proofs contain a verification 
component, and; dependency information abstracted from the source proof guides 
the transformations without the need for any extensive dependency graph analysis. 

The source and target programs of traditional program transformation systems 
do not have a formal specification present, nor, as mentioned above, a verification 
component. This means there is no immediate means of checking that the target 
program meets the desired operational criteria. Regarding proof transformation, 
all transformed programs are correct with respect to their specifications, and we 
ensure that the target computes the same specified input/output relation as the 
source (only more efficiently). 

With the more traditional program development systems which employ the un­
fold/fold technique, it is the automation of the lemma generating procedures and, 
in particular, the subsequent folding with the lemmas, that have proved, to date, 
difficult to automate. We described how, within the context of proof transforma­
tion, target tuple definitions can be automatically generated by analysing source 
definitions. The problem of folding has been circumvented within the proof trans­
formations since, due to the sequent calculus notation and the manner in which 
proofs are refined, we need use only unfolding: recursive terms, corresponding to 
source proof induction terms, are eliminated from the target recursive branches, cor­
responding to the target proof induction branches, by unfolding until fertilization 
applies. 

The source and target programs of traditional program transformation systems 
do not have a formal specification present. This means there is no immediate 
means of checking that the target program meets the desired operational criteria. 
Regarding proof transformation, all transformed programs are correct with respect 
to their specifications, and we ensure that the target computes the same specified 
input/output relation as the source (only more efficiently). 

An important commitment regarding the recursive behaviour of an extract pro­
gram is the choice of induction schemata (and how the cases are satisfied). By 
exploiting the common structure of OYSTER inductive synthesis proofs we can trans­
form the induction schema employed in a proof yielding an inefficient program into a 
schema such that the new target proof yields a more efficient program. Transforma­
tion is achieved through the application of proof transformation tactics to internal 
representations of the OYSTER proofs. Since we can provide a general proof plan 
for inductive (synthesis) proofs, then we can build general transformation tactics 
for optimizing the recursive programs that they synthesize. 
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