

Recursive Program Optimization Through
Inductive Synthesis Proof Transformation

Peter Madden

MPI-I-94-240 September 1994

Authors' Addresses

Peter Madden
Max-Planck-Institut für Informatik
Im Stadtwald
D-66123 Saarbrücken
Germany
maddenOmpi-sb.mpg.de

Publication I~otes

To appear in the Journal 0/ Automated Reasoning

Acknowledgements

This research was supported by SERC grant G R/F /71799, a SERC studentship and a SERC Postdoctoral
Fellowship to the author. I would like to thank Prof. Alan Bundy and Dr Alan Smaill for supervision
regarding the research documented in this paper. A much shorter version of this paper appears in the
Proceedings 0/ CADEll. This paper has been substantially revised, from that originally submitted to the
Journal 0/ Automated Reasoning whilst the author has been a post-doctoral researcher at the Max-Planck­
Institut rur Informatik. The author would also like to thank the many usefull suggestions made by two
anonymous JAR referees. An earlier, and much shorter, version of this paper appears in the Proceedings
0/ CADEll. A far more detailed account, for the reader who wishes to learn about more diverse examples,
can be found in [23].

Abstract

The research described in this paper involved developing transformation techniques
wh ich increase the efficiency of the original program, the source, by transforming its
synthesis proof into one, the target, which yields a computationally more efficient al­
gorithm. We describe a working proof transformation system which, by exploiting the
duality between mathematical induction and recursion, employs the novel strategy of
optimizing recursive programs by transforming inductive proofs. We compare and con­
trast this approach with the more traditional approaches to program transformation,
and highlight the benefits of proof transformation with regards to search, correctness,
automat ability and generality.

1 Introduction

For several years the Mathematical Reasoning Group, MRG, at the Edinburgh De­
partment of AI, has undertaken research into the field of automatie programming
[5, 9, 7, 6]. The research has mainly concentrated on the (automatie) generation
of programs from specifications (input-output relations), and the (automatie) ver­
ification that a program meets its specification. These issues have been tackled
within the OYSTER proof refinement environment: 1 by using logic programming and
constructive logic, the task of generating programs is treated as the task of proving
a theorem. Hence knowledge of theorem proving, and in particular automatie proof
guidance techniques, are used.

A furt her goal within the proofs as programs paradigm concerns the automatie
transformation of programs by transforming their synthesis proofs [21, 22, 23, 24].
This more recent goal forms the central topie of this paper. As weH as having
certain advantages over the more traditional approaches to program optimization
(where pro grams are transformed directly), proof transformation also complements
program synthesis through theorem proving: it enables the synthesizer (human or
mechanical) to construct short, elegant proofs, without clou ding the design process
with efficiency issues, and then to transform them into an opaque proof that yields
an efficient program.

In [22], we described in outline the rudiments of a specialization system for
adapting programs to special situations by performing prooftree pruning transforms
on synthesis proofs. We compared this with the original implementation [17]. In
addition to the specialization system, we have now implemented a more general
purpose optimization system which also functions by transforming synthesis proofs.
Although the proof transformation system (henceforth PTS) should be regarded as in
its embryo nie form it offers one of the first system designs for program optimization
through proof transformation, and is the first such design to be implemented (to the
author's knowledge). The system satisfies the desirable criteria for a transformation
system of correctness, generality, and automatability.

The key feature of the proof transformations is that recursive programs are op­
timized by transforming the induction schema employed within the corresponding
synthesis proofs. Thus we exploit the weH known duality between mathematieal
induction and recursion in order to optimize recursive programs. This is a novel
approach to program optimization. We argue that this approach has several advan­
tages over the more traditional approach to program transformation where trans­
formation rules are applied directly to the source (input) code in order to construct
the target (output) program. The strategy of transforming induction schemas so
as to optimize recursion is supplemented with the tupling transformation technique
adapted from the existing literature [30, 11]. The adaptation of tupling to the
proofs as pro gram paradigm is also a novel aspect of this research and enables the
automatie identification of efficient recursive data-types which usuaHy correspond
to eureka steps in "pure" transformational techniques such as unfold/fold rewriting
[10].

1.1 Motivation
As computer programs play an increasingly important role in aH our lives so we
must depend more and more on techniques, preferably automatie, for ensuring the
high quality (efficiency and reliability) of computer programs. By efficient we mean
that a program is designed to compute a task with minimum overhead and with

I OYSTER is the Edinburgh Prolog implementation of NuPRL; version "nu" of the Proof Refine.
ment Logic system originally developed at Cornell (Horn 88, Constable et a/86].

2

maximum space and time efficiency. By reliable we mean that a program is ensured,
or guaranteed in some sense, to compute the desired, or specified, task.

The most promising technique being developed for the automatie development
of high quality software are formal methods, wh ich are used to provide programs
with, or prove that programs have, certain properties: a program may be proved
to terminate; two prograrns may be proved equivalent; an inefficient program may
be transformed into an equivalent efficient program; a program may be verified to
satisfy some specification (i.e. a program is proved to compute the specified func­
tion/relation); and a program may be synthesized that satisfies some specification.

The research described herein addresses both the reliability and efficiency, as
weIl as the automatability, aspects of developing high quality software using formal
methods. We describe novel theorem proving techniques for automatie program
optimization. The target program is a significant improvement on the source (the
efficiency criteria), and is guaranteed to satisfy the desired program specification
(the reliability criteria).

A further motivation behind exploiting proofs for the purposes of program trans­
formation is that proofs will contain more information than the programs which
they specify. Programs need contain no more information than that required for
simple execution. Proofs, on the other hand, represent a program design record
because they encapsulate the reasoning behind the program construction by mak­
ing explicit the procedural commitments and decisions made by the synthesizer.
This non-algorithmic information, which includes the relations between facts in­
volved in the computation of the synthesized program, is ideal for controlling the
transformations.

Further motivations include the advantages of proof transformation, concerning
search, control and correctness criteria, over the more traditional styles of program
development. We address these in detail in §6. Further applications (potential and
real) of this research are discussed in §6.4.

1.2 Contents

In §2 we provide a background to proof transformation by discussing the duality
between proofs and programs. In §2.1 we describe properties ofthe OYSTER system,
and of (synthesis) proof refinement in general. The duality between mathematical
induction and recursion, in a constructive setting, is discussed in §2.2.

In §3 we provide an overview of the central concepts pertaining to, and the prop­
erties of, the PTS: §3.1 provides a high-level view of the PTS design; §3.2 introduces
one of our running examples, and illustrates how specific recursion schemas corre­
late with the induction schemas used for synthesis; in §3.3 we introduce the tupling
technique for removing redundant computation from recursive procedures. §3 serves
as a gentle introduction to program through proof transformation, and enables the
reader to maintain a high-level picture when we come to the more detailed low-Ievel
expositions.

In §4 we provide details concerning: the motivations for proof transformation;
the abstraction of information from proofs for the purpose of optimization; how
the PTS constructs the synthesis and verification components of an optimized proof;
and the adaptation of the tupling technique to the proofs as programs paradigm.

In §5 we explain, through detailed examples, the methodology of the PTS: §5.1
illustrates linearizing exponential procedures through proof transformation; §5.2
illustrates the removal of nested recursion schemas (Le. loop removal); and §5.3
brieHy describes a more complex example. We also discuss the overall performance
of the PTS, §5.1.6 and §5.2.3.

In §6 we compare the properties of the PTS with existing program transformation
techniques and systems. We highlight the advantages of the former. In particular

3

we compare our approach to the unfold/fold technique and the use of dependency
graph analysis for tupling program transformations. We also discuss applications of
the research, and some anticipated future directions for extending the PTS system.

Finally, in §7, we provide a concluding summary.

2 Background: The Duality Between Programs
and Proofs

Constructive logic allows us to correlate computation with logical inference. This is
because proofs of propositions in such a logic require us to construct objects, such
as functions and sets, in a similar way that programs require that actual objects
are constructed in the course of computing a procedure.2 This duality is accounted
for by the Curry-Howard isomorphism which draws a duality between the inference
rules and the functional terms of the >.-calculus [13, 18].

Such considerations allow us to correlate each proof of a proposition with a
specific >.-term, >'-terms with programs, and the proposition with a specification of
the program. Hence different constructive proofs ofthe same proposition correspond
to different ways of computing a specific program specification. The reasoning for
this can be set out as folIows:

1. proofs of propositions correspond to terms of the appropriate type, such that,

2. the propositions are identified with the type of their proofsj

3. proofs are closely correlated with the terms of the A-calculusj

4. so by 2 and 3: propositions are identified with the type of the A-terms, andj

5. A-terms can be equated with functional programsj

6. therefore, by 4 and 5, the propositions can be viewed as types of programsj

7. in other words, the propositions of the A-calculus can be correlated with descriptions (speci­
fications) of programs which specify what task is computed by the program, andj

8. the proofs of the propositions can be correlated with programs which determine how the task
is computedj

9. hence, different proofs of the same proposition can be correlated with different programs for
computing the task specified by that proposition.

Thus by controlling the form of the proof we can control the efficiency with which the
constructed program computes the specified goal. Here in lies the key to transform­
ing proofs that yield inefficient programs into proofs that yield efficient programs.

A program specification is represented, schematically, as

r Vinputs, 30utput. spec(input, output) (1)

Existential proofs of such specifications must establish (constructively) how, for any
input vector, an output can be constructed that satisfies the specification.3 Thus
any synthesized program is guaranteed correct with respect to the specification.
Furthermore, by finding a constructive proof of (1) we can extract an algorithm, alg
such that,

2Thus we cannot, Cor example, compute (or constructively prove) that there are an infinity of
prime numbers by assuming the converse and deriving a contradiction, rather we must produce
a program that computes them (or a proof that we can a1ways construct another prime number
greater than the ones known so Car).

3Thus constructive logic ezclude6 pure existence prooCs where the existence of output is proved
but not identified.

4

f- "Iinput. spec(inputs, aig(input))

aig is known as the extract term (or extract program) of the constructive proof.
So, for example, suppose we wish to compute a value for the integer log to the

base 2 of our input, then from a proof of the following specification:4

f- "I input: integer, 3 output: integer. (20utput $ input 1\ input< 2output+l)

we extract an algorithm aig which satisfies the following:

f- "I input: integer. (2 olg(input) $ input 1\ input< 2 olg(input)+1)

and which does the required job. Proving that a given extract algorithm does satisfy
the above is known as verijication.

2.1 The OYSTER System

The OYSTER system is an implementation of a constructive type theory which is
based on Martin-Löf type theory, [28]. OYSTER is written in Quintus Prolog, and
run at the Prolog prompt level, so it is controlled by using Prolog predicates as
commands. Proof tactics can be built as Prolog programs, incorporating OYSTER

commands (which are simply Prolog predicates). An advantage of using Prolog as
the meta-Ianguage for defining tactics is that the proof mechanisms can exploit the
unification and back-tracking properties of Prolog.

The main benefit of using type theory is that, recalling the previous section,
it nicely combines typing properties with the properties of constructivism, such
that we can both correlate the propositions of the A-calculus with specifications of
programs and correlate the proofs of the propositions with how the specification is
computed.

The main benefit of using asequent calculus notation, as opposed to that of
any of the numerous natural deduction systems, is that at any stage (node) during
a proof development, all the dependencies (assumptions and hypotheses) required
to complete that proof stage are explicitly presented within a hypothesis list. A
sequent is of the form [HYPOTHESES] f- [CONCLUSION], where, in the course of
proving the conclusion, refinements may either act upon the hypotheses (so called
elirn refinements) or act upon the conclusion (so called intro refinements).

A major motivation behind the development of the OYSTER system is that the
language uniformity of the logic programming environment allows for the construc­
tion of meta-theorems which express more general principles, concerning the object
level theorem proving. This allows for the construction of programs, in Prolog, that
manipulate proofs inside the system itself. One such function is the construction
of tactics which combine the object-Ievel rules of the system in various ways and
apply them to proof (sub)goals. Within the context of the PTS, this allows for the
construction of (meta-level) transformation tactics that operate upon the (object
level) source proofs to produce target proofs from which optimized programs can
be extracted. 5

2.1.1 The Nature of OYSTER Synthesis through Proof Refinement

OYSTER proofs are rejinement proofs, and are edited using a rejinement editor. The
OYSTER proof starts with the expression to be proved at the root of its proof tree,

4 Typing is not, of course, restricted to integers. Types can be natural numbers, lists of natural
numbers (or integers), sets, strings, trees and so forth. Throughout the course of this paper we
shall often omit typing information so as to make formulae more readable . In general, only when
it is not obvious, or when it is pertinent to the text, shall we explicitly label the types of objects.

sThe language uniformity property has also led to the development of an automatie proof
planning system CLAM [9] (cf. §6.4.4).

5

and constructs the tree back towards the leaves: the inference rules of the logic -
refinement rules - are applied in reverse to a goal, to reduce, or refine, it to a set
of sub-goals which, in turn, require proving in order to complete the overall proof.
Thus, for example, if the user teIls OYSTER to apply 'v'-introduction to a top-Ievel
goal statement, the system applies the rule in reverse - the effect of this is not
to introduce, but to remove the topmost connective (since the proof tree is being
developed backwards).

Any proof is complete when the proof tree has been sufficiently developed back­
wards such that all leaves are accounted for - Le., when every leaf node can be
proved without producing any furt her sub-goals. We refer to such proofs as being
goal-directed. The refinement editor allows proof trees to be traversed, and refine­
ment rules (or combinations thereof called proof tactics) to be applied to chosen
nodes.

The end-nodes, or leaves, of a proof will always correspond either to axiomatic
equalities, well-formedness goals or the discharge of assumptions (Le. where each
component of the goal conclusion matches with one of the proof hypotheses).

2.1.2 Program Extraction

The OYSTER extract programs consist of >.-calculus function terms, >.(x, Ir) where
I is some computed function and Ix the output when I is applied to input x. Since
all type checking (well-foundedness checking) is done during the proof development
then the extract terms need not, and do not, contain any typing information. At
any stage during the development of a proof it is possible to automatically access
the extract term of the proof constructed so far. Each construct in the extract term
corresponds to a proof construct. As such, the extract term refiects the algorithmic
ideas behind the proof of the theorem.

There is a built-in evaluator for type theoretic terms, which allows for the direct
execution of OYSTER programs. Within type theory, each mathematical sentence,
or proposition, is considered as a type, the elements of wh ich are proofs of that
sentence. A type, by definition, is a term which can be inhabited by other terms,
or, equivalently, all types can have members. The existence of an extract term,
corresponding to a particular proposition, is evidence that the proposition's type
is inhabited, and this is equivalent to the proposition being constructively proved.
All constructs of a completed proof that have an associated extract term of com­
putational significance are collectively referred to as the synthesis component of the
proof.

However, establishing that all the extract terms assembled from the synthesis
component of a proof will indeed constitute a program that computes the specifi­
cation embodied in the root node of a proof requires verification: the verification
component of a proof is not used in executing the extract term, but ensures that
the extract term satisfies the specification.

Ideally, as with conventional computational description, the >.-calculus extract
terms should only contain information about the function to be computed (whereas
the proofs will contain additional information, such as verification steps, which is
not concerned with simple execution). In practice, however, it is not so easy to
(automatically) abstract away all the verification information from the extract.

2.2 The Induction-Recursion Duality

OYSTER provides primitive recursion schemas for the basic types: integers, natural
numbers and lists. The recursion schemas enable one to define recursive functions
through case analyses, where the cases are determined by the structure of the type;

6

and apply induction as an inference (refinement) rule, thus enabling one to synthe­
size the dual recursion in the extract program.

2.2.1 Recursive Definitions

An important dass of recursive definition is that which allows one to refer to (stan­
dard stepwise) recursion over the natural numbers. The term p.ind allows one to
construct such definitions. For example, addition, +, over the natural numbers is
defined as

x + Y d;! p_ind(x, y, [-, ree, s(ree)]) ,

which states that if x is 0 then x + y = y, otherwise if (x - 1) + y = ree then
x + y = s(ree), where s is the successor function.

• The first argument, x, is the recursion argument.

• The second argument, y, is the (truth) value if the recursion argument is O.

• The third argument, [-, ree, s(ree)) is a tripIe and describes how to compute
its value if it is of the form s(x). The expression, ree, denotes the value of
the function being defined when applied to (x - 1). The expression s(ree)
denotes the value of the function being defined when applied to x. Thus ree
and s(ree) correspond, respectively, to the induction hypothesis and induction
eonclusion.6

Similarly, ev.ind, specified thus:

ev_ind(x, [y, h, P(x)])

allows one to refer to course 01 va lues recursion over the natural numbers. x names
the induction candidate (the argument over which the recursion is defined). The
second argument, [y, h, P(x)), is a tripIe which defines the reeursive ease for the
function being defined. The first two elements are y and h where: y is any natural
number less than the recursive argument (i.e. y < x). Hence, during the course
of a proof, y can be instantiated to any desired value less than x. Furthermore,
we can, depending on the function being defined, have multiple values for y (as
long as each is less than x). This is, in effect, how cases can be introduced into a
proof employing course of values induction (cf. §2.2.3 below). h is the value of the
function being defined when applied to y. The third element of the tripIe, P(x),
provides the step ease value for the function in terms of the first two elements, y
and h, of the tripIe. Hence the third element, P(x), computes the output value for
the function/program being defined/synthesized. So P(x) is a conditional function
which branches according to the value of y (where the restrietion y< x holds).

2.2.2 Primitive Schemas

Employing any of the induction schemas in a (synthesis) proof will induce the
corresponding, or dual, recursion schema in the extract algorithm. So, for example,
stepwise recursion over the natural numbers is synthesized by applying stepwise
induction, conventionally represented thus (where s is the successor (constructor)
function):

f- P(O) Vy: nato P(y) I- P(s(y))
I- "Ix: nato P(x)

6In general the value of the p_ind function at s(i) can be any function of i and of the value of
the function at i. In our example the value depends only on the recursive value and hence the first
argument of the tripIe is the anonymous variable "'.

7

This states that P holds of any natural number, x, iff one can establish that A
holds of 0 (the base case), and that, assuming P holds of some natural number y,
that P holds of s(y) (the step case).

Terms of the form a: A should be seen, in constructive terms, as denoting the
existence of a proof of P along with a corresponding extraction term P. Depending
on context, P may be a hypothesis or (part of) a goal conclusion. We refer to
terms such as s(y) as induction .terms (Le. those terms consisting of the induction
constructor (or destructor) function applied to the ind uction variable). The proof
extract construction resulting from an application of stepwise induction is the p_ind
construct shown in previously in §2.2.1.

Stepwise induction on the naturals, along with stepwise induction on the inte­
gers and on lists, constitute the primitive induction schemas, and are built into the
OYSTER system. Employing such induction as an inference rule will split the proof
into the corresponding cases. Each case will have a corresponding proof and extract
component. The structure of the program extracted from the complete proof will
mirror that of the (instantiated) dual induction schema. This is a general observa­
tion: to each induction schema there corresponds a dual recursion schema. Hence
a reliable heuristic that applies to synthesis through inductive theorem proving is
that the behaviour of the induction variable should mirror that of the recursive
terms in the function's definition.

Standard stepwise induction is sometimes referred to as +1 succesor induction,
or (+1)8 induction for short. This is to distinguish it from any number of (+n)s
inductions where n applications ofthe induction constructor function are applied, in
the conclusion, to the induction variable. §5.3 illustrates a (+2)s stepwise schema.

2.2.3 Non-Primitive Schemas

More sophisticated induction schemas can be established by performing higher order
proofs that appeal to the primitive schemas in order to justify the sophisticated
scheme . . An example of a non-primitive scheme is course of values induction.7 As
with the primitive schemas, course of values recursion over the natural numbers is
synthesized by applying course of values induction. This is done by employing the
following general induction:

"Iz: nat, "Iy : nato ((y < z) -+ P(y)) I- P(z)
I- "Ix: nato P(x)

This states that P holds of any natural number, x, iff one can establish that A
holds of any natural number, z, assuming that P holds of any natural number, y,
less than Z. If two, or more, different values of y are appealed to then the induction
becomes course of values.

Employing course of values induction as an inference rule does not automatically
split the proof into a separate base and step case. Rather, the resulting subgoal
represents the original proof tree with the induction hypothesis, (y < z) -+ P(y),
entered into the proof as a new assumption (which tacitly includes the assumption
that the hypothesis itself has a proof). The onus for splitting the proof into various
cases, as defined by the function being synthesized, then lies with the user.

The proof extract construction resulting from an application of course of values
induction is the cv.ind construct shown in §2.2.1.

70ther non-primitive examples include divide_antLconquer induction and induction based on
the construction of numbers as products of primes.

8

3 Optimization of Recursive Algorithms By
.Transforming Inductive Proofs: an Overview

Rather than enter directly into the techniealities of program through proof transfor­
mation, we shall first provide an overview of the main concepts involved. In §3.1 we
provide a high-level description of the proof transformation system. In §3.2 we give
abrief introduction to program synthesis by theorem proving. We illustrate how
the efficiency of (recursive) program is dependent on the nature of the induction
scheme employed and on the subsequent proof commitments. Finally, in §3.3, we
introduce the reader to tupling.

3.1 The PTS: Inductive Proof Transformation

Boyer and Moore have done extensive work on heuristics for inductive proofs [3,4].
Relationships between induction and recursion have been generalized such that most
recursive structures have a corresponding induction schema whieh can be employed
to synthesize programs exhibiting the desired recursive behaviour [31].

The computational efficiency of a recursive algorithm is directly related to the
form of the recursion. The way in which an algorithm recurses on its input can
be controlled by the way in whieh mathematical induction is employed in the algo­
rithm's synthesis. This provides the theoretieal under-pinning ofthe transformation
system: recursive programs are optimized by transforming the induction schema
employed within the corresponding synthesis proofs.

Fig. 1 schematically depiets the source to target meta-level transformation. Pro­
gram optimization through proof transformation consists in the automatie trans­
formation of a source induction proof to a target proof whose induction schema has
a more efficient associated complexity. The pre- and post-conditions of the trans­
formation correspond to the induction schema, and the recursive data-type, of the
source and target proofs. The input consists of a complete source inductive synthe­
sis proof. This is depicted on the left hand side of the diagram. The triangle labeled
proof tree depiets the tree shape of the refinement proof (recall that the proof, or
refinement, tree is constructed backwards from the specification toward the leaves).
The source proof yields a complex source algorithm, exp, whieh recurses with expo­
nential behaviour due to the fact that a particular induction - course of values - is
employed during the synthesis. The term ertract represents the automatic program
extraction process.

The target proof is represented on the right hand side and is constructed com­
pletely automatically, by the PTS, from the source through the application of op­
erators which map and then transform portions of the source proof. In particular,
the source course of values induction is transformed into the more efficient step­
wise target induction, thus yielding a target extract algorithm that recurses on its
data-structure in more efficient linear fashion.

The PTS controls the transformations by exploiting extra information contained
in proofs which is extraneous to that required for the simple execution of straight­
forward programs: a description of the task being performedj a verification of the
method, andj an account of the dependencies between facts involved in the compu­
tation.

With reference to fig.1, and recalling §l.l, the demands for efficiency ofprograms
are succinctly expressed by quoting from [2] (italics added by the author):

The first criterion on whieh a program is judged is the correctness with
respect to its specification. The second criterion is the efficiency of the
program with respect to other programs satisfying the same specifica­
tion, which is reßected by time and space complexity of the program.

9

INPUT: SOURCE
obtained manually, or via

previou_ tran_formation

OUTPUT: TARGET
obtained automatically via

.ource proof tran_formation

Figure 1: Recursive program optimization through induction schema transforma­
tion.

Efficient programs obtained through proof transformation satisfy both these cri­
teria: the target program necessarily satisfies the specification from which it was
constructedj both source and target programs are derived from the same specifi­
cation, andj the recursive procedure traced by the target program will be more
efficient than that of the source.

3.2 Proof Construction and the Induction-Recursion Duality

We can construct at least two proofs, within OYSTER, from which two alternative
recursive algorithms can be extracted, each of which computes the Fibonacci func­
tion. The difference between the two syntheses is that each employs a different
induction schemata: course of values induction will induce course of values recur­
sion in the Fibonacci extract algorithm and stepwise induction will induce stepwise
recursion.

3.2.1 Course of Values Induction

To employ course of values induction in the synthesis of an algorithm which takes
as input n requires appealing to all , or a subset of, the output values obtained
when the input is any value less than n.s Using a standard functional notation, the
Fibonacci function is usually defined by the following course of values definition:

• source definition:
fib(O)

fib(l)

fib(n + 2)
=
=

1j

1· ,
fib(n + 1) + fib(n).

(2)

(3)
(4)

We can give a formal specification for a program that computes the above definition
as follows:

'Vinput, 3output. fib(input) = output (5)

8 Representations of the completed proofs are displayed, and examined, in §5.1.

10

where fib is defined through three lemmata corresponding to the three branches,
(2), (3) and (4), of the above course of values definition. Note that (5) is an instance
of the specification schema, (1), given in §2.

The most natural way to synthesize a procedure for computing the Fibonacci
numbers is to employ the course of values induction to (5). This is because it
directly mirrors the course of values recursion exhibited by the standard Fibonacci
definition. The induction schema of §2.2.2 becomes instantiated as folIows:

H: (Vz, Vy.((y < z) -+ 3n'.fib(y) == n') f- 3n".fib(z) = n"
C: f- "Ix, 3n.fib(x) = n

The proof of the induction conclusion, C, requires identifying an existential witness
for n. That is, an instantiation for n must be provided that makes C true. Since
this is a course of values proof, fib(x) is constructed as a conditional, branching
according to the value of y: first with a value for y of x-I, and subsequently
with a value of x - 2. The resulting constructs for fib(x - 1) and fib(x - 2)
appear as two new hypotheses. These are then added to obtain a witness for n, Le.
f- Vx,fib(x) == fib(x -1) + fib(x - 2).

Fig. 2(a) depicts the computational trees for fib(5) using course of values induc­
tion. Note especially the redundant (repeated) nodes in the tree for course of values
induction. In order to calculate fib(n) one must first calculate fib(n - 1) and
fib(n - 2). Each of these sub-goals leads to another two recursive calls on fib and
so on. In short the computational tree is exponential where the number of recur­
sive calls on fib approaches 2n • Such a procedure is termed tree recursive since it
resembles a tree where the branches split into two at each level.

Fig. 2(a) can also be regarded as a dependency graph, DG, for the course of values
recursive procedure since it is a representation of a particular function call's evalua­
tion tree which shows the calling structure of the subsidiary recursive calls. Strictly
speaking, fig. 2(a) is a grounded DG, since it is constructed using grounded function
calls. A symbolic DG, on the other hand, is based on symbolic function calls and is
potentially infinite in size. The reader may wish to look ahead to fig.13, §6.1, which
shows a portion of the symbolic DG for fibn.

(a) course. oe values tree:

fib(3) fib(2)

~ ~
fib(2) fib(1) fib(1) fib(O)

~
flb(1) fib(O)

fib(5)

fib(3)

~
fib(2) fib(1)

~
fib(1) fib(O)

(b) stepwise tree:

fibr

(fib(4!'fib(3))

(fib(3 ,fib(2))

(fib(2rb(1))

(fib(1),fib(O))

Figure 2: Computational tree for fib(5) induced by (a) course of values induction,
and, (b), stepwise induction

3.2.2 Stepwise Induction and Tupling

Alternatively, we can also employ stepwise induction over the naturals to syn­
thesize a program that computes the same specification, (5), as the previous

11

course of values extract. This is achieved by employing tuple constructs, at the
stepwise induction cases, in order to evaluate the Fibonacci numbers. Tupling re­
moves redundancy by grouping together, or merging, potentially re-usable function
calls - repeated computation - that appear in the tree recursive process generated
by the course of values definition (cf fig.2). The result of tupling in this case is
linearization: the production of a stepwise recursive algorithm which computes the
Fibonacci function, fib, through an auxiliary linear process g .

• target definition:
fib(n)

g(O)

g(n + 1)

m where (.., m) = g(n);

(1,1);
(u1 + u2, u1) where (u1, u2) = g(n).

The auxiliary function g(n) is constructed in terms of g(n - 1), where the first
argument in both cases takes the "combined values" form (in effect, the tupling
combines the values of the two step cases of the less efficient course of values defini­
tion). The linear trace for computing fib(5) through the auxiliary procedural call
g(5), is depicted in fig. 2(b): the angled brackets in the stepwise sequence symbolize
tuple formation in that the output of each recursive pass is some function of the
arguments within the brackets. The function g is defined in terms of a tuple that
consists of two components, each of which are made up from subsidiary calls to
fib: the first corresponds to the sum of fib(n - 1) and fib(n - 2), Le. fib(n).
The second tuple component corresponds to the first argument of the first tuple
component, fib(n - 1). The tuple functional applies the addition function to the
first and second arguments. So the goal g(n) is ultimately satisfied by defining it
in terms of the known course of values definition, i.e:

g(n) = ((fib(n - 1) + fib(n - 2)), fib(n - 1)). (6)

Note that the first tuple component is equivalent to the body of the recursive step
of the course of values definition. Note also that there is no recourse to the original
fib definition and g(n) requires only n recursive calls (stepping down to the base
case g(O)). In other words, the computational tree resulting from stepwise induction
is linear, with a branching rate of 1, and hence the resulting algorithm requires far
less computational effort in computing fib(n) than that synthesized by employing
course of values induction.

Regarding synthesizing a program to compute the stepwise procedure, the first
step is to apply stepwise induction to (6). This yields the following (instantiated)
schema:

I- 3to. g(O) = tO \fy, 3t'. g(y) = t' I- 3t". g(s(y)) = t"
I- \fx, 3t. g(x) = t

As with the course of values proof, the proof requires establishing witnesses for the
existential quantifiers. In this case we are required to find existential witnesses
for t; the tuple through which g is defined. At the base case of the induction, we
simply employ symbolic evaluation using the terminating branches, (2) and (3), of
the source definition in order to provide a witness, (1,1), for tO. A witness at the
induction step case is provided by a process of unfolding the induction conclusion
with the source definitional equations (notably (4)) until a match is found with
the induction hypothesis (i.e. the body of (6)). This enables the unification of
conclusion and hypothesis (6) there by providing a witness for t in terms of g (thus
introducing recursion into the program).

Greater detail concerning both the above proofs is provided in §5, where
we describe how such stepwise proofs are automatically constructed from source
course of values proofs.

12

3.3 Background to the Tupling Technique

The PTS operates by using information in the source course of values proof to guide
the automatic construction of the target stepwise proof. This research offers the
first instance of the tupling technique being employed within the context of proof
transformation (as opposed to the direct transformation of programs).

Existing systems that automate tupling transformations, within the context of
program transformation, depend on an analysis of such graphs so as to obtain
dependency information which guides subsequent transformation [11]. In §5.1 we
illustrate how, within the context of proof transformation, such dependency infor­
mation can be read directly from the sour ce proof thus circumventing the need for
DG construction and analysis.

Tupling, originally developed as an optimization technique in [30], is a form of
tabulation, albeit constructed in real-time, since the tuple represents arecord of
previous recursive calls. Tupling is an important means of linearizing exponential
procedures. lt works by grouping together, in a single recursive tuple function,
the separate recursive expressions in the source procedure. The main advantage of
tupling over the most general kind oftable for redundant computation, memo-tables
[29], is that we store only the subsidiary calls of a specified function, rather than
calls from the whole program. In the case of memo-tables there is a heavy storage
requirement as entries inserted du ring function execution, are not usually removed
even if they are no longer required. 9

Existing program transformation systems reported within the literature also em­
ploy the tupling technique in order to remove redundancy from recursive procedures
(e.g. [10], [15, 10], and later in[l1]). However, these systems do not operate within
the proofs as programs framework. The general strategy of program transformation
employed by these systems originates from [14] and is referred to as the unfold/fold
strategy. This strategy basically consists in defining the target program in terms
of the source, and then, by a process of re-writing recursive definitions, deriving
a recursive definition for the target program which is independent of the source
definition. This general strategy has since been incorporated, in a variety of guises
and applications, in many pro gram transformation systems. The three most prob­
lematic steps in the unfold/fold strategy, regarding search, control and automation,
are:

• the so called eureka step: obtaining the initial definition of the target in terms
of the source ((6) in our example of §3.2.2)j

• the control problems associated with when to apply the re-writing step(s)
which eliminate any reference to the source definition from the target recursive
step, andj

• the principled application of lemmas (or laws) often required to propagate the
program derivations.

We shall return to a more detailed exposition of this related work in §6 in order
to explain how proof transformation offers a promising means of overcoming these
problems. We shall compare the work described in this paper with that reported in
[11]: arecent systemization and extension of the earlier transformation strategies
discussed in [10].

9However, memo-tables do have the advantage of being more general in their range of function
applications.

13

4 Proof Transformation Strategy

The PTS is tuned to recognize the key positions within inductive proofs that have
a decisive effect on the recursive behaviour of the extract algorithm. These key
positions correspond to the application of an induction rule, the constructive type
of the objects required to witness the induction cases, the actual proof c.onstructs
introduced to witness the induction cases, and finally the definitions chosen to
complete the verification component of the proof.

Although the transformations involve using the source proof to guide the new
construction of a target proof by mapping, and then transforming, portions of the
former, the source proof, and extract, is itself preserved. This is an intentional
design factor since, for some applications, it may prove desirable to have access to
both the source and target proofs at the termination point of the transformation.

4.1 Abstracting Salient Features of the Proof

Proof trees are internally represented within OYSTER as quite complex Prolog data­
structures.10 However, these OYSTER data-structures, and the corresponding proofs,
contain large amounts of information which is irrelevant to both execution and the
tupling transformations. Hence inefficiency would result from this additional infor­
mation being subject to extensive manipulation in the course of the transformations.
To avoid computational effort being expended on attempting to access individual
semantic units the PTS processes, by abstraction, the OYSTER internal proof repre­
sentations into more accessible list structures called rule-trees. A typical rule-tree
will either explicitly contain, or contain labels which allow for the direct accessing
of, the. following information:

• Some of the assumptions (hypotheses) made during the proof.

• The branching structure of the proof.

• The rules applied along with any corresponding arguments.

• An account of the dependencies between facts in the proof:

- dependency information concerning inter-relations between (sub)goalsj
and

- dependency information concerning inter-relations between (sub)goals
and assumptions (hypotheses).

So, recalling the Curry-Howard isomorphism, §2, the rule-trees contain an ac­
count of the dependencies between facts involved in the computation of the A­
function constructed by the corresponding proof.

Each rule entry consists of a refinement rule such that a rule-tree corresponds
(schematically) to:

apply(RuleI) then [apply(Rule2) then[.,. apply(Rulen)] •••]],

and as such is akin both to a proof plan which combines a number of proof tactics
andjor rules into a large tactic such that a complete proof can be (re)produced
from the plan, and to a skeleton of a proof in which the inference rules of the proof
are recorded, but not the formulae to which they are applied. A source rule-tree
contains all the information required to reproduce faithfully the source proof from

lOWithin the pre-processed OYSTER representation there are many Prolog variables hanging on
to the various (sub)lists and it is generally hard to follow what parts of information form semantic
units.

14

which it is abstracted. Similarly, at the termination point of a transformation, the
target rule-tree contains all the information required to produce the complete target
proof (indeed, once constructed, target rule-trees are automatically applied as large
tactics to the specification goal there by producing a complete target proof).

The fact that proofs are transformed indirectly via the transformation of the
rule_tree proof tactics (or proof-plans) is not a necessary feature of the proof trans­
formations but is rat her employed for purposes relating to the efficiency of the actual
transformation process. We only mention them here to establish that the intern al
proof representations of the PTS have no effect other than to increase the efficiency
of the transformation process. In this paper we are primarily concerned with how
information in the source proof is used to construct the target proof, and not with
implementational detail. Hence, unless directly relevant, we shall in subsequent
sections describe the proof transformation process as passing directly from source
proof to target proof without the intermediate creation of the rule_tree abstractions.

4.2 Tactic Transformation: Conditionally Guided Proof
Modification

The PTS transformations are, then, akin to meta-level tactic transformations guided
in part by whether or not certain syntactic properties are true of the source proofs.
Such syntactic properties function as transformation tactic pre-conditions. We can
also predict the probable outcome of the application of a transformation tactic in
terms of syntactic properties of the target proof. A source to target transformation
will be deemed successful if the target proof satisfies the post-conditions. l1

We can give fairly high-level pre- and post-conditions for the induction schema
transformations. For example, transformations from an exponential procedure to a
linear procedure include, amongst their pre-conditions, that the dominant induction
in the proof is a course of values induction (i.e the proof must contain a cv..ind
construct). Amongst the post-conditions will be the presence of a stepwise construct
in the target proof. In §4.5 we provide further pre- and post-conditions specific to
the proof tupling transformations.

Similarly, transformations from a linear procedure to a logarithmic procedure
have as a pre-condition that the dominant induction in the source proof is a stepwise
schema. The target must then satisfy the post-condition of having a divide and
conquer induction. We do not cover logarithmic transformations in this paper.
A theoretical description of such transformations is given in [23], and we discuss
systemizing such transformations in [26].

4.3 Efficiency, Correctness and Automation

The presence of a program specification both provides a termination condition and
guarantees that all proofs tranformed by the PTS yield programs that are correct
with respect to that specification (cf. fig.1) . Traditional program transformation
systems have no such formal specification and this this means there is no immediate
means of checking that the target program meets the desired operational criteria.
By proving that the target program satisfies the original specification, we avoid
the need to establish that any re-write rules used are in themselves correctness
(equivalence) preserving. This will, as a general rule, require as much effort as
providing an explicit proof of correctness for the source to target transformations.
For example, many of the systems that employ the unfold/fold strategy re-write the
recursive step(s) of a source program through the application of various equality

11 If the source proof satisfies the pre-conditions then only in exceptional cases will a complete
target proof be produced which violates the post-conditions.

15

lemmas, each of which needs to be proved (by induction) if the source to target
transformation is to preserve equivalence [27, 33].

Furthermore, there is no guarantee that unfold/fold style derivations will ac­
tually lead to any optimization, where as proof transformations replace an induc­
tion yielding an inefficient recursion schema with one that yields a (more) optimal
schema. Thus target programs are guaranteed to compute the input-output relation
specified originally for the source, and to do so more efficiently.

Regarding automation, the proofs contain sufficient information to allow the
source to target proof transformations to proceed without any user inter action. In
other words, in forming proofs from source proofs, the PTS abstracts precisely that
information which allows for the automatic construction of the target proof.

4.4 Synthesis and Verification

The synthesis component of the transformation process is concerned with the for­
mation of the target tuple, the replacement of the source induction by a target
induction with a more efficient induction rule (e.g., applying stepwise in place
of course of values induction) and/or merging a nested induction structure in the
source into a single induction in the target, and the subsequent witnessing of the
target induction cases. The verijication component is concerned with performing
specific sequences of unfolding operations at the instantiated induction step using
both source and target equations. Symbolic evaluation and well-formedness tactics
are also usually applied at the induction cases.

We categorize the proof constructs mapped and/or transformed from the source
proof according to which component of the proof is being transformed. The syn­
thesis component will involve abstracting, and then transforming, (sub) structures
from the source in order to:

(i) construct the target tuple;

(ii) determine the nature, and number, of elimination rule applications; and per­
haps most importantly;

(iii) witness the existential quantifier at the target induction cases by mapping
across structures from the source induction cases.

The connection between (ii) and (iii) is that the elimination rules employed within
the proof, particularly those used in order to supply the source induction witnesses,
provide an account of the inter-relations between (sub)goals and hypotheses. This
dependency information is then used to supply witnesses for the target induction.

The verification component will involve abstracting, and then transforming, all
those source proof branches associated with:

• tactics for controlling unfolding;

• well-formedness goals; (such as the applications of type-checking rules); and

• the application of lemmas - lemmas used for the satisfaction of the source
induction cases are mapped across and, after some simple transformations,
used by the unfolding tactics in order to satisfy matching target sub-goals.

Both synthesis and verification involve:

(1) the fairly extensive mapping,and subsequent transformation, of constructs
from the source proof; combined with

(2) heuristic theorem proving strategies; and

16

(3) transformation techniques such as tupling.

With regard to (1) , by matching target sub-goals with source sub-goals, the PTS

determines to what extent it needs to patch the corresponding source proofbranches
in order to apply them successfully to the target sub-goals.

4.5 Tuple Construction

As weIl as the more general pre- and post-conditions for optimizing recursive pro­
grams through transforming the source induction, §4.2, we also give lower-Ievel pre­
and post-conditions which are specific to the tactic based proof tupling transforma­
tions:

1. Pre-condition: There exist two or more induction terms, f'(n), ... , f'(n - i),
which share some common induction variable(s) in a function definition (where
i 2: 2).

2'. Post-condition: There must be present(constructed) a fixed sized tuple - the
eureka tuple - within which common subsidiary function calls ansing from the
unfoldings of each of f'(n), ... , f'(n - i) are merged, thus forming a recursive
function without the original redundancy.

Note that condition 1 is, in effect, a defining condition of course of values induc­
tion. This means that any proof employing one, or more, course of values induction
schemes will generally be a good candidate for optimization by tupling.

We shall refer to the tuple size, or the number of subsidiary calls tabulated
within the tuple, as <1>. In general, i will provide an accurate, and the best, value
for <1>. Regarding the induction step of the course of values schema,

"Ix , Vy. ((y < x) -t P(y)) f- P(x),

the system evaluates the best tuple size by observing the source course of values
schema and determining the number of times the induction hypothesis is invoked
for different values of the induction parameter y. In other words, from areading of
how many distinct eliminations are performed on the induction hypothesis of the
source, the system can automatically calculate the best value for <1>. The contents of
the tuple are then those recursive calls corresponding to the <I> separate invocations
ofy.

A quick and simple heuristic for constructing the explicit target tuple definition
is simply to form the target tuple structure by a direct 1-1 mapping of the function
calls in the body of the source definition recursive step. This is not, of course,
guaranteed to produce the best tuple, but it will not produce a target program
any less efficient than the source. The system will not produce an erroneous target
program by employing this heuristic, despite the fact that there are examples where
an erroneous tuple would be produced by mapping the source recursive step.12 This
is simply because the target specification, identical to that of the source, cannot be
satisfied by a proof employing an erroneous tuple function.

12 For example, we would need to use the more rigorous approach to determine the tuple definition
for a variant of Fibonacci with the following recursive step:

j iba(n) = jiba(n - 1) + jiba(n - 3)

The quick heuristic would erroneously produce a tuple of size 2, i.e. (j iba(n - 1),jiba(n -

3), whereas an analysis of a source course of values proof for j iba would reveal that 3 distinct
invocations of (eliminations on) the induction hypothesis are required. Thus the correct tuple

should be (jiba(n - 1),jiba(n - 2),jiba(n - 3).

17

Functions which are constructed using schemas other than course of values in­
duction can also satisfy condition 1 in an implicit sense. For example, a func­
tion, f+2, synthesized using (+2)s stepwise induction may well be a candidate for
proof tupling since an invocation of f+2(s(s(n))) will require two subsidiary caUs
on h2(s(n)) and h2(n). We formally display the (+2)s schema and provide an
example of proof tupling on an instance of f +2 in §5.3.

Regarding the transformation of nested inductions consider the following
schematic definition:

f(n) = h(n) + h(n - 1),

It may be the case that upon unfolding either, or each of, h and 12, two or more
induction terms, h (n), ... , h(n-i), which share some common induction variable(s)
are exhibited. This is the case with auxiliary recursive functions wherein the redun­
dancy isnot immediately obvious since it occurs amongst the auxiliary recursive
calls (viz. the computation of the function(s), in the body of the definition, whieh
are not self-recursive). Such "auxiliary redundancy" manifests itself in the source
proof in the form of a nested induction. The task of proof tupling on such nested
induction structures is to "merge" the computation associated with the innermost
induction with that of the outermost induction. Hence the explicit definition for
the target tuple is determined by calculating the value of <1>, and the recursive caBs
to be tabulated, for the outer and (each of the) nested inductions and then simply
combining the results. We shall illustrate by example the optimization of these
kinds of inductively synthesized functions in §5.2.

It is worth noting that, in practice, tuples are represented in the OYSTER proofs
by conjunctions of function caUs. That is, the program extraction process sets up a
correspondence between conjunction proof constructs and tuple program constructs.
This approach has certain advantages to which we shall return in §6.1.2.

Henceforth, we shall distinguish proof transformations which employ a tupling
technique from program tupling transformations by referring to the former as proof
tupling and the latter as program tupling.

5 Proof Transformation: Examples

The proof transformations performed by the PTS can be broadly categorized in two
ways:

1. Transformation of induction schemas: The source induction schema is
replaced by a different, but logically equivalent, target induction schemaP

2. Transformation of nested inductions, or Loop Removal: A nested ap­
plication of induction in the source is "merged" with the outermost induction
to produce a target proof with a single induction. We may also refer to such
transformations as loop rem oval (since a recursion loop is removed from the
source).

Both 1 and 2 are automatie and involve essentiaUy the same strategy: the system
cuts in an extra goal, G into the "simple" proof of the program specification, S, thus
yielding two subgoals: the first being the original goal S, with G as an additional
hypothesis, and the second being G itself. The proof of (sub)goal Gis then respon­
sible for synthesizing the more efficient computation of the input-output relation
specified in S. In both cases the need to treat the identification of G as a eureka

13 By logically equivalent induction schemas we mean that the associated induction theorems are
inter-derivable. This guarantees that any two proofs satisfying the same complete specification
but differing only in which of the two schemas are employed are functionally equi"alent.

18

step is removed by exploiting the structure of the source proof. Furthermore, the
source proof provides the information required to witness the induction step of the
target proof (and thereby build recursion into the target program).

In this section we provide detailed analyses of three examples of proof transfor­
mation which involve tupling. The first corresponds to linearization by the trans­
formation of course of values induction schemas. The second corresponds to the
transformation of nested inductions. The third example involves both the transfor­
mation of a source induction scheme and the merging of nested inductions. As well
as combining aspects of the first two examples, it also illustrates the transforma­
tion of a different induction schema, +2 succesor induction, than that in the first
example.

The reader should bear in mind throughout this section that we regard the
construction of source proofs as given (i.e. either as output from a previous trans­
formation, or from an interactive synthesis session within the OYSTER system). The
construction of target proofs, on the other hand, is automatie given the source proofs
as input. Thus although a comprehensive explanation requires us to provide a step
by step description of the target proof constructions, the process is fully automated
regarding the PTS.

5.1 Example 1: Linearization

Remaining with the Fibonacci example, we provide representative figures for syn­
thesizing Fibonacci the source course of values proof, fig.3(a), and for synthesizing
the target stepwise proof, fig.3(b). Taken as a whole, fig.3 depicts the correctness
guaranteed transformation of a course of values proof to a stepwise proof. For the
sake of clarity, we omit some of the type checking, substitution and elimination
rules (such omissions being indicated by a broken vertical arrow). We shall have
course to often refer back to fig.3 throughout the text. Thus to aid clarity we adopt
the naming convention that symbols appearing in the text in calligraphic font refer
to either the correspondingly named formulae, proof branches, or the arcs depicting
proof mappings, of fig.3. 14 For example, we use the arcs, MI to MB, that pass
from fig.3(a) to fig.3(b) to depict those (sub)structures of the source proof which
are used to develop the target proof. These "mappings" will be explained in §5.1.3.
We shall first describe the nature of the source proof (i.e. fig.3(a)). The nature
of the target proof construction,fig.3(b), will become evident when we discuss the
transformation of the source (§5.1.3).

5.1.1 The Source (Course of Values) Proof

The specification, :rIß, for a program that computes the Fibonacci numbers, is
shown below:

:FIS: T/x, 3y. fib(x) = y, (7)

fib is defined through the use of three proved, and subsequently stored, lemmas
corresponding to the three cases of the course of values definition (§3.2):

lemma 1: fib(O) = s(O);
lemma 2: fib(s(O)) = s(O);
lemma 3: T/x, 3Yb 3Y2. x::f 0 /\ x::f s(O) /\ fib(p(x)) = Yl /\ fib(p(p(x))) = Y2 -+ fib(x) = Yl + Y2,

14The same convention is adopted regarding the later examples and their corresponding proof
figures.

19

fig.3(a): INPUT: SOURCE PROOF

(COURSE OF VAI.UES INDUcnON)

:"i~-:-:;;,~;i -<.-; ..: 3~~~jib(;;) ;;;;:
: ------1:~ -:-~ -3"; -jib(; i;; ~ -------:
~-- ----- ----- --t---------------'

case-split(.r = 0)

:-~-jib(O) ;;;{oj-: M2 · ... I-~I; .. _· :'"r-jib(~(Öi)-;' -s-(öj-: 1i,: Jib(p(:r» = y,

~------l--------~
.----------_ ... _---
_1!: ~ J_i~!~(p_(:} ~)_:'_~:

,1,.1 I M4
llemma21

:"'"r-jib(;) ;;~~+~;:

._--~~::;----_.
M3

fig.3(b) : Ol'TPUT: TARGET PROOF

fSTEPWISE 1~"DUcnON)

9: seq(3u3vJib(s(.r» = u " Jib(.r) = v, tupi! : (u, v))
1',

--------- -i---}---' ___ ~:_!:'!'~e_~ !'.:~ ___ i stepwiSt iod .(:r)

:FIS: I- 3y. Jib(.r) = y: ------_.- -----._--~

; ~ ~:: i~ ~: !~~(:'!~:>J: ~:~ _~ jj~t~'j:~ :v:'!~f!~ ~ :Cu~ fI::;:
• I;::I- Jib(s(S(:'»)) = u' "Jib(s(r')) = v',tuple : u',v'
·---------------------r-------------- ----- ----

:: t. :~;:,j; (~I:~! j~l:~ i ;;loj:~ :':(~i'!;f!;::G ii i :'j~U: :
lemmas land 2

:" - -1-- -jji,(;(-;(~;i) -~ -~ -.; ~ -~ jj-b(:t;'i i ~:~ ~~pi; ~ ~:-~ -;'-u)""-: ~ __________________ ~- _~ _________ __ J

Figure 3: Schematic Representation of Source to Target Proof Mappings for Fibonacci

20

where p is the predecessor function defined by induction over the naturals such that
jib(x - 1) == jib(p(x)) and jib(x - 2) == jib(p(p(x))).IS The poperator is usefully
employed as a destructor function of a function's data-structure (as opposed to using
the canonical successor function, s, to build constructor definitions). The reason
for specifying Fibonacci indirectly, through the use of proved lemmas. is so that the
proof specification, (7), does not constrain the dominant induction of the proof to
course of values (since in the case of the target proof we will wish to construct a
stepwise proof of (7)).

Lemmas 1 and 2 define the base cases of the Fibonacci definition. Lemma 3
defines the recursive case and is naturally a course of values definition: values are
given for inputs 0 and s(O), and jib(x) requires appealing to a pair of output values
obtained when the input is less than x, specifically, jib(p(x)) and jib(p(p(x))). A
ramification of the induction-recursion duality is that the behaviour of the induc­
tion variable should mirror that of the recursive terms in the function definitions
[8). Hence (7), or :FIB, is most naturally proved by course of values induction. The
proof requires an initial application of the "fI - intro refinement. This has the ef­
fect of removing the universal quantifier .16 This is followed by applying course of
values induction on x (denoted, in fig.3(a) by CV induction(x)). The cases of the
induction schema are then satisfied by setting up a nested case analysis structure by
performing two case-split refinements, where the second case-split is nested within
the first. The outermost case split corresponds to x = 0 V x # 0, and the innermost
case to split to x = s(O) V x =I- s(O). By having the case splits nested in this way,
we cover all the conditions specified in the course of values definition. By using
the 3 - intro(w) rule, a suitable witness, w, is introduced at each case, and then
verification is performed by appealing to (unfolding with) the relevant lemma (with
various well-formedness goals being satisfied along the way). Within the dashed­
boxes (fig.3) we have included key hypotheses and (sub)goals (condusions): the
application of course of values induction yields the induction hypothesis, I1{.,

I1{.: "fix'. x' < x -+ 3y' jib(x') = y',

and the induction conclusion, Ic,

Ic: f- 3y. jib(x) = y.

At the two base cases, BI and B2, we provide in both cases, a witness of s(O).
The goal at the induction step case, S, is to reduce the induction conclusion,

'Le, to terms which can be unified with those in the induction hypothesis, there
by providing a witness for the existential variable - y in the case of Ic - which
introduces recursion into the step branch of the function. This is achieved by:

• eliminating on the induction hypothesis, I1{., twice: first with a value for
x' of p(x), and subsequently with a value of p(p(x))Y In fig.3(a) this is
depicted by the term "Ind-Elims on I1{.". The constructs resulting from the
eliminations appear as two new hypotheses, 11. 1 and 11. 2 , which provide outputs
for jib(p(x)) and jib(p(p(x))), named Y1 and Y2 respectively; and,

• recursion is then built into the function being constructed by using 11. 1 and 11. 2

as unifiers, or jertilizers, to provide a witness for the step case jib(x), namely

15Depending on context, we shall subsequently use the postfix notation. e.g. (x - 1). inter­
changeably with the prefix notation, e.g. p(x) (similarly for, e.g., x + 1 and s{x)).

16 Recall, §2.1.1, that a feature of the goal-directed proofs is that introduction (i"1tro) rules have
the quantijier stripping effect usually associated with elimination rules in forward, proof systems.
Conversely, elimination (e/im) rules have the effect of introducing an existential instantiation in
the hypotheses of sequents.

17Following these eliminations, the proof also requires us to establish that both p(x) < x and
p(p(x)) < x are true.

21

Yl + Yl· This completes the recursive branch synthesis (since Yl + Yl
fib(p(z)) + fib(p(p(z)))).

Thus, to witness a value for the induction step we appeal, twice, to the induction
hypothesis I1/.. These eliminations on the induction hypotheses, and the fact that
they are explicitly recorded in the sequent hypothesis lists, will be seen to be crucial
for the automatie construction of the target induction (§5.1.3).

Upon completion of the synthesis component of the target proof, verification is
performed by appealing to the stored lemmas: lemmas 1 and 2 for the base cases,
and lemma 3 for the step case.

The unification of the induction conclusion with the hypothesis is called fertil­
ization. Formulae are "unpacked" - or unfolded - by replacing terms by suitably
instantiated definitions. Fertilization is facilitated by the fact that the induction
conclusion is structurally very similar to the induction hypothesis except for those
function symbols which surround the induction variable in the conclusion. An im­
plemented rewriting technique known as rippling exploits this property of inductive
proof by proliferating the process of unfolding such that recursive terms are grad­
ually removed from the recursive branches until a match - fertilization - can be
found with the induction hypothesis [6]. In §6.3 we say a little more concerning the
general inductive proof strategy and how this has positive ramifications regarding
the completeness of the proof transformation system.

5.1.2 The Source (Course of Values) Extract Program.

The complete extract program results from the combination of all the separate
proof branch constructions appearing at the proof branch leaves of the first base
case, second base case, and step case respectively. We indicate, in fig.4, the in­
put/output associated with each case computation in the >.-calculus representation
of the complete extract program (cf. §2.2.3 for an explanation of the cv_ind proof
construct). The program construction associated with a case analysis is of the form
eq(z, y, P, Q), which specifies the required decision procedure: if z = Y then P,
otherwise Q.

,.
complete e%tract

.....
2"d ba"e l· t baae jtep ca"e
..---.. ~I' ,. ,

Ax.cv...ind(x, [x', I1t,~x' , 0, 8(0) '~$)x', 8(0), 8(0), I1t(P(x')) + I1t(P(p(x')))))])

l· t ccue-"plit 2,,41 Gcue-apht

Figure 4: The course of values extract for FIB

The >.-calculus functional program extracted from the course of values inductive
proof will compute the Fibonacci numbers according to the course of values defini­
tion (corresponding to the three lemmas). The proof reflects the same inefficiency
generated by the extract program. This could not be otherwise since the procedu­
ral commitments and/or decisions made during the synthesis determine the nature
of the recursive process generated by the synthesized (extract) program. The ex­
tract program dictates that in order to compute the step branch of the recursion
the induction hypothesis, I1/., is evoked twice. This means that the recursive pro­
cess generated by the extract pro gram will be exponential (Le. the tree recursive
represented by the dependency graph of fig. 2(a), §3.2).

It is clear, therefore, that there is a one-to-one correspondence between terms in
the extract and terms in the proof from which it was extracted. However, it should
also now be clear that the correspondence is not bi-directional: the course of values
proof contained many steps which are not refiected in the extract program. Notably,

22

due to the absence of anything resembling a hypothesis list, the extract program
does not contain arecord of the dependencies between facts involved the computa­
tion. Nor does it contain a complete representation of the verification component(s)
ofthe proof (required for establishing the correctness ofthe computation). This pro­
vides a graphie illustration of how proofs contain information which is extraneous
to that required for simple execution, but valuable for understanding the program
design.

5.1.3 The Target Proof Construction: Exploiting Source Dependency
Information

Regarding fig.3(a), if one looks at the source proof branch corresponding to the
step case of the course of values induction then we can represent the proof nodes
constituting the synthesis part of this branch as in fig.5 below.

induction hypotheses:
refinement:
resultant hypotheses:

induction conclusion:

I1{: Tlx' . x' < X ~ 3y' .fib(x') = y'
Ind-Elims on I1{
11. 1 : p(x) < x -+ 3Yl. fib(x - 1) = Yl
11.2: p(p(x)) < x ~ 3Y2. fib(p(p(x))) Y2
Ic: f- 3y. fib(x) = y

witnessing refinement: !3-intro(Yl + Y2) !

fertilized conclusion: f- fib(x) = Yl + Y2

Figure 5: Elimination and Witnessing Steps of Source (Course of Values) Proof

Fig.5 represents the elimination and subsequent witnessing step required for the
fertilization of the induction conclusion with the hypothesis. From this information,
the PTS can extablish that the source proof satisfies the pre-condition for proof
tupling (§4.5): that there are two or more induction terms whieh share the common
variable, x, at the induction step of the proof construction.

In order to identify the (eureka) tuple, the PTS records the maximum difference
between the induction term in the induction conclusion and the smallest of the sub­
sidiary calls used to witness a value for y. 18 Since p(p(x)) < p(x), and the induction
term x is greater than p(p(x)) by 2 then the required tu pie size, ~, is 2. So in or­
der to calculate fib(x), for any x, the PTS must "store", or tabulate, 2 subsidiary
calls: fib(p(x)) and fib(p(p(x))). Thus, in order to determine the size and contents
of a target (tupie) definition, the PTS observes: how many times the hypothesis,
I1{, is evoked in order to provide a witness at the induction conclusion Ic, andj
the greatest number of applications, 2 in the case of Fibonacci, of the induction
constructor/destructor function the proof employs when eliminating on the induc­
ti on hypothesis in order to synthesize constructs for the induction witnesses. This
procedure completely identifies an explicit definition, g, for the auxiliary recursive
procedure through wh ich Fibonacci can be defined:

g: seq(3u, 3v. fib(s(x)) = u 1\ fib(x) = v, tuple: (u, v))

Hence, by having access to the OYSTER internal proof representations of the source
elimination and witnessing steps, the PTS has all the information needed for the
automatie generation of the target tuple definition (depieted by M5 of fig.3). Fol­
lowing the mapping across of the initial portions of the source proof - the specifi­
cation and the TI-intro applications - giscut into the target proof as a new fact.

18By smallest we mean that subsidiary call which has the greatest (least) number of applications
of the induction destructor (constructor) function applied to the induction variable.

23

In effect, g is a nested specification goal that states the existence of a tuple of two
components (Le., ~ = 2). Such new facts are cut into proofs, as a new sul>-goal, by
a generalized version of the sequence, or seq, rule. The generalized seq rule allows
one to cut in, or sequence, a new fact into a proof by introducing a new node in
the proof tree with two subgoals where: the first subgoal represents the original
proof tree with the new fact as an additional hypothesis (which in constructive
terms amounts to an additional hypothesis that there is a proof of the new fact),
and; the second subgoal is responsible for constructing a proof of the new fact.
So, sequencing g into the developing target proof produces the corresponding two
sub-goals:

• the first (sub)goal, at proof branch PI in fig.3(b), will be the original nBgoal,
with the universal quantifier removed, and with g as an additional hypotheses,
and

• the second (sub)goal, branch Pz, will require proving g itself.

Stepwise induction is applied at the second subgoal in order to prove the se­
quenced in goal g (this is denoted, in fig.3(b), by "stepwise ind.(x') to g": Le.
stepwise induction on x' is applied to g). At the base case an ,,- intro rule is
applied which has the effect of decomposing the goal into the separate tuple com­
ponents. Such decomposition of the tuple will always be controlled by the tuple
size, ~. The PTS then maps across the base case witnesses, 0 and s(O), from the
source proof in order to witness a base case value for each of the tuple constituents
u and v (MI and M2, fig.3). The base case is then verified by mapping across and
applying the source base case lemmas and well-formedness tactics.

At the induction step we have the following goal to prove (of the form hypothesis
I- conclusion):

3u,3v.fib(s{x')) = u "fib(x') = v I- 3u',3v'. fib(s(s(x'))) = u' "fib(s(x')) = v',

i.e., regarding figs.3(b) and 5, the PTS must establish that I1lI- Ic. The PTS must
then provide witnesses for u' and v' in the conclusion. Furthermore, it must do so
in terms of u and v in the hypothesis. This will both introduce recursion into the
target function and eliminate aB reference to the source fib function from the target
definition. An application of "-intro splits the induction conclusion, into separate
conjuncts producing two new sul>-goals (the number of applications of intro being
determined by ~):

I- 3u'. fib(s(s(x'))) = u'

I- 3v'.fib(s(x')) = v'
(8)
(9)

A witness for u', in (8), is required wh ich is equal to fib(s(s(x'))): since, in this
example, ~ = 2, then a value for u' is obtained by appealing to those two subsidiary
calls wh ich take recursive arguments that differ from s(s(x)) by, respectively, 1 and
2 applications of the successor function s, i.e. fib(s(x)) and fib(s(s(x))) .19 These
subsidiary calls are precisely those labelIed u and v in the induction hypothesis.
However, to avoid all charges of eurekas, the PTS must automatically determine
what function to apply to u and v in order to construct the witness for u'. This is
done by observing the witnessing step ofthe source proof: a call to the main function
requires adding the ~ subsidiary calls (cf. the witnessing refinement slot of fig.

19In the general case, if ~ = n then a tuple of size n is constructed, and the value of n subsidiary
calls would be required to construct a witness for the 1st component, n - 1 for the second, and so
forth.

24

5). Thus the identity of the first tuple component is provided by substituting the
subsidiary calls in the target induction hypothesis for those in the source induction
conclusion (depieted by M4, fig.3), there by witnessing a value for u' of u + v.
A similar analysis of the source proof could be performed to identify the second
component of the target tuple corresponding to (9). However, a witness, v, for v'
is provided by one of the target hypotheses andcan hence be directly appealed
to in order to witness a value for the remaining component. Once the witnessing
steps have been completeted, the instantiated, or fertilized, conclusion is verified by
appealing to the same tactics for unfolding and the same lemma, lemma 3, as used
to verify the source induction step (M3, fig.3). This completes the construction of
the target proof, fig.3(b), which is then passed on to the OYSTER automatie program
extraction process (§2.1.2).

So, by utilizing the eliminations and witnesses in the source proof induction, the
PTS is able to automate the difficult tuple construction process which, within exist­
ing program transformation, systems has constituted a eureka step. We elaborate
on this performance advantage in §6.

5.1.4 PTS Lemma Translation

Regarding the use of lemmas, the PTS is equipped with a simple translation proce­
dure that turns a destructor type lemma of the form:

h(~) h(Jd~-a),fd~-b)), whereb?a,

into a constructor version of the following form:

h(~ + b) h(h(~ + (b - a)), h(~)).

Hence there is no problem in using source proof lemmas that define a function
f(~) in terms of predecessors of ~, since, if necessary, we can translate it into the
equivalentlemma that defines f(~) in terms of Stlccessors of x.

5.1.5 The Target (stepwise) Extract Program

The lambda calculus extract program, shown in fig.6, for the target stepwise proof
is somewhat more esoteric than the more standard representation of the stepwise
recursive Fibonacci that we gave in §3.2. The basic explanation of the p..ind proof
construct was provided in §2.2.2. The unfamiliar construct is the spread function.
The spread function takes a pair (first argument) and a list (second argument)
specifying two variables and a term which may include them; on execution the
function returns this term with the variables substituted by the elements of the
pair.

complete eztrcct ..
ba..se cc.se .step ca"e
~, .. ,

~x.((~tuple.8pread((u, v), [""', y, y]))(p..ind(x, (8(0),8(0»), [x' , I?(, 8pread(I?(, [U/, v', (u ' + v') 1\ u/D])))

Figure 6: The stepwise extract for :FIT3

So, regarding fig.6, the innermost spread term (that constructed through the PI
branch of fig.3(b)) specifies that the two components, tl and v, of the pair (tupie),
I 1t , whose existence is assumed through the induction hypothesis, are substituted,
respectively, for u and v in the term (u + v) A tl. The outermost spread term
(that constructed through the P2 branch of fig.3(b)) specifies that the output for

25

Fibonacci is obtained by substituting the second element of the tuple, synthesized
through 'Pb for y in the root node specification. Note that the stepwise extract, as
in the stepwise proof, contains only a single evocation of the induction hypothesis,
I ll . The recursive process generated by the stepwise extract is hence linear.

It is the use of tupling which allows us to construct such a linear process: the so­
lution for Fibonacci corresponds to v in the above extract (i.e., the second argument
of the first tuple component). Parameter u acts as an accumulator since its value
in successive invocations accumulates the value(s) of the function. So, the process
generated is linear recursive since, with u and v initialized to 1 and 0 respectively,
the procedure applies the simultaneous "transformations" shown on the I.h.s. of
the following informal equivalence (where A I----t B means P "transforms" to B),

{ ~ I----t

I----t
~+v }=={(u,v)l----t(u+v,u)} whereu=Jib(i) and

v = Jib(i - 1), (Jor some i).

This represents a single recursive call where to obtain (u + v, u) we require a single
evocation of the induction hypothesis construction, corresponding to (u, v).

So after applying this "transformation" n times then u and v will be equal to
Jib(s(n)) and Jib(n) respectively, i.e., (schematically),

{ ~ t---+ u + V } x n == (Jib(s(n)) + Jib(n), Jib(s(n))).
t---+ u

5.1.6 Scope of Induction Schema Transformations

In this section we provide an indication of the performance of the PTS as currently
implemented. Although the PTS should currently be regarded as in an embryonic
form, it is capable of linearizing, through the transformation of source proof in­
duction schemas, a large dass of program characterized by what Cohen describes
as the common generator redundancy, CGR, dass of programs [12]. This dass is
represented by the below schematic definition for a function J, with n self-recursive
caUs, and where dl, d2, ... , dn, are descent Junctions. Descent functions are those
functions which are applied to the main recursive arguments used in subsidiary
calls.20

J(x) <= if b(x)then c(x)

else h(x, J(d1 (x)), ... , J(dn(x))).

The CGR dass of programs are those programs where there exists a common descent
Junction, 0, in terms of which each of d1, d2, ... , dn can be defined. This means
each descent function is related to each other through 0 in that each is cashed out
in terms of applying 0 a certain number of times, i.e., d1 = Oi and d2 = oj, where
on is to be interpreted as the application of 0 n time:;;.

The general schematic function, shown above, for the CGR dass of programs can
hence be re-represented by 51 below:21

(51) J(x) <= if b(x) then c(x)
else h(x, J(Oi(x)), ... , J(oi(x)))

20S0 , for example, there are two subsidiary recursive calls entered in the Fibonacci source
course of values proof in order to satisfy the induction step, p(x) and p(p(x»). The corresponding
two descent functions for the two subsidiary calls are in both cases the predecessor function p.

21 The CGR dass also covers the dass of programs, referred to by Cohen as the erplicit redundancy
dass, where d1 = d2 .

26

Fig.7(a): INPUT: SOURCE PROOF

(NESTI;D INDUcnON)

: ----I~-I-:-"3i ~Ii;t .-j ;tii;'j -;, -1- - - --:
~ 1

: ZCI : ~ 31' : Ii~t. fetl(.(r')) = I' :
'"................................. _1

a ___________ ... _______ • ______ •

: Z1(l: 3z . fet(r") = z : l ___________________________ ~

: ZC2: ~ 3z'. fet(.(.(r"))) = z' : l .. ____________ _________ • ___ J

4

-------- ------------
: f- fetl(.(r'» = z :: I : ~ _______ ~ __________ --'

~l I lemma 4 I
: --~ -i~;i;(~(;;'i))-~; ;[.(;7,) i -x-; ---: .1.-13

~ ----------; ~el~~ ------------~ /--....;-:.---------='-'''----,

Fi&.7(b): OUTPUT: TARGET PROOF

(SINGW' INDUcnON)

Y2: seq(Vr,3u . 3v . fet(.(r)) = uAfetl(r) = v,tuple : (u,v))

-------- -----r--y·
9}~ .. : -... 0;' .. t:,l'!: ~ _'-tl ... , ~ 1_ j

~ 31 . fetl(r) = I : ________ __________ J
stepwi~ ind .(r) on Y~

MS

Figure 7: Schematic Representation of Source to Target Proof Mappings for Factlist

27

Fo.r the sake o.f brevity, we illustrated the transfo.rmatio.n pro.eess using a fairly
simple bi-linear instanee o.f SI, namely Fibo.nnacci. Ho.wever, the PTS will o.ptimize
any instanee o.f S1.22 Fo.r furt her examples the reader is referred to. [23].

5.2 Example 2: Optimization By Transforming Nested In­
ductions

With the Fibo.nacci example o.f §5.1 the o.ptimizatio.n was achieved thro.ugh trans­
fo.rming the so.uree inductio.n schema into. a different schema with a mo.re eflicient
eo.mputatio.nal rule. We no.w illustrate, by example, ho.w the PTS is eapable o.f trans­
fo.rming a so.uree pro.o.f that invo.lves a nested applieatio.n o.f inductio.n to. a target
pro.o.f with a single inductio.n.

Our seco.nd example eo.neerns the o.ptimizatio.n o.f a pro.gram that eo.mputes the
fact/ist functio.n, fetl, with the fo.llo.wing definitio.n:

fetl(O) = []j
fetl(n) = faet(n):: fetl(n - 1),

where the auxiliary functio.n faet is defined as fo.llo.ws:

faet(O)

faet(n)
= 1;

= n x faet(n - 1).

(10)

(11)

(12)

(13)

Here redundaney do.es no.t o.eeur direetly due to. any self-reeursive eall but rat her
amo.ng the auxiliary reeursive fact ealls. This redundaney is exhibited by the sym­
bo.lie dependeney graph fo.r fetl, the initial po.rtio.n o.f which is sho.wn in o.f fig.8.
Recall fro.m §3.2 that a symbolic DG is based o.n the ealling structure o.f subsidiary
symbo.lie functio.n calls (and is therefo.re po.tentially infinite in size). The multiple
evo.catio.ns o.f subsidiary ealls, the redundaney pattern, is exhibited by mo.re than
o.ne arrow directed at any partieular no.de.

Figure 8: The symbo.lic DG fo.r fetl(n)

A pro.gram fo.r eo.mputing this ineflicient pro.eedure is synthesized fro.m the fo.l­
lo.wing specifieatio.n, :F C, fo.r the factlist functio.n:

Fe: "'Ix, 3/:/ist. fetl(x) = I.

As with the Fibo.nacei example, fetl is defined thro.ugh the use o.f lemmas, fo.ur in
this case, whieh eo.rrespo.nd to. the terminating ((10) and (12)) and reeursive ((11)

22In fact Si is a slight simplification since h may differ depending on which subsidiary call
to which it is appled. thus the M'PTS will also, for example, transform a source proofs of the
following function 1'(n) = 1'(n - 1) X (1'(n - 3) + 1'(n - 4)).

28

and (13)) branches of the above definitions. However, unlike the source synthesis
proof for the Fibonacci function, fctl is defined by a stepwise recursion schema -
since fctl function does not invoke itself more than once at each recursive call -
and so is therefore most naturally synthesized using stepwise induction.

In fig.7 we provide a diagram that, as with fig.3, depicts the source and target
proofs, and the (sub)structure mappings between them. 23 The redundancy mani­
fests itselfin the source proof, fig.7(a), in the form ofthe nested stepwise induction,
NI, required to synthesize an extract term for the auxiliary fact call. The nested
induction requires a prior sequencing step, at the induction step of the outer induc­
tion, to cut in the specification goal g1 for the fact sub-routine:

g1: seq('v'x' , 3z.fct(s(x')) = z).

The nested schema means that for each recursive pass corresponding to the out­
ermost induction, OI, the source program must fully recurse on the innermost
schema. This is also refiected by the dual nested recursion schema construct of the
source proof extract program, a simplified representation of which is shown in fig.9:
the p_ind function defines stepwise recursion and is evoked by the application of the
corresponding induction. The nested p_ind structure mirrors the nested induction
structure of the source proof. Thus if the induction variable, x' is 0 then the output
is nil, otherwise the output is z :: I, where z is provided by the induction hypothesis
I1/.2, of the nested induction on x", and I is provided by the induction hypothesis,
I1/.b ofthe outer induction on x'. SO the nested inductive proof provides an output,
z, for fact(s(x ')), which is then used in the computation, z :: I, for fctl(s(x)) (i.e.
z :: I serves as a witness for the outer induction conclusion Ic2)'

complete estract

~------------------~~~------------------~
fctl ba.e fctl .tep fact ba.e fact .tep
~ ~ ~ ~

AX. p_ind(x, [] ,[x', l, (AZ.Z :: l (p..ind(x', 8(0) ,[x", Z, 8(S(X")) X z]))))])

Figure 9: The Source Extract for fctl

So the task of the PTS transformation is to remove this nested induction, and
thereby the redundancy caused by the nested recursion, by effectively specifying
the auxiliary call at the level of the outermost induction.

5.2.1 Exploiting Dependency Information for the Target Construction

As with the source to target transformation ofself-recursive functions, the opti­
mization of the source auxiliary recursive fctl function involves proof tupling and
the exploitation of dependency information contained in the source proof. The step
case existential witnesses of the inner and outer inductions of the fctl source proof
are expressed in terms of the source induction hypotheses (necessarily since the
)"-function constructed is recursive). These witnesses are directly exploited in order
to satisfy the single step case of the target proof.

In fig.10 we have represented the witnessing steps of both the source proof
inductions (i.e. the outer and inner inductions of fig.7(a)). Fig.10(a) corresponds
to the witnessing of the existential variable at the step case of the nested induction,
and fig.10(b) to that of the outermost induction.

23The same conventions apply to fig.7 as did to fig.3: symbols in the text in calligraphic font
refer to the corresponding symbols in fig.7; terms such as "step(x = s(x'))" denote that the
induction variable. x. in the hypothesis is instantiated to 8(X') in the conclusion, and; terms such
as "stepwise ind.(x') to (in mean stepwise induction on x' is applied to y. We also. due to space
constraints. abbreviate some formulaes with ... • and omit some of the V-intro applications.

29

ref: I stepwise index') I ref: I stepwise ind(x) I then I seq (3z·f ct(s(x')) = z

hyps: 3z. fct(s(x")) = z hyps: 3z . fct(s(x')) = z and 31' :list. fctl(x') = 1
conc: f- 3z'. fct(s(s(x"))) = z'

~: f- 31' :list. fctl(s(x')) = I'
------------------ - --------------------~---

next ref: !3-intro(s(s(xll
)) x z)! next ref: 13-intro(z :: 1) I

next conc: f- fct(s(s(x"))) = s(s(x")) X z next conc: f- fctl(s(x')) = z :: t

9(a) Step witness for fact (at NI). 9(b) Step witness for fctt (at OI).

Figure 10: The witnessing steps of the source fetl proof

The PTS is able to determine from the above witnessing steps of the source proof,
and from the subsequent unfoldings with the lemmas, that the recursive definition
of the target tuple requires tabulating two function calls (Le. ~ = 2): there is
one elimination performed on the respective induction hypothesis at each of the
two inductions in order to provide a witness at the respective step cases (thus
introducing recursion in the main and auxiliary functions being constructed). The
actual witnesses tell us that the first is an occurrence of the auxiliary faet function
which takes the same argument, n, as in the head of the definition. The other
tabulation is a subsidiary fetl call which takes the predecessor, n-1, of the argument
n in the head of the definition. The two arcs corresponding to M5 of fig.7. depict
the mapping of information from the source proof in order to identify the requisite
tuple. The target definition is given the hypothesis label tuple and, as in the
Fibonacci example, is expressed as a conjunction and sequenced into the target
proof as a new fact 92:

92:seq(('v'X, 3u, 3v. fet(s(x)) = u 1\ fetl(x) = v), tuple : (u, v}).

Stepwise induction is then performed on the sequenced in goal (where the induction
variable, x, is the same as that for the outermost application of induction in the
source proof).

At the induction step of the target proof, s(x) in the hypo thesis, I1t3, is instan­
tiated to s(s(x)) in the conclusion, IC3, yielding:

(3u',3v'. fet(s(s(x))) = u' 1\ fetl(s(x)) = v'), tuple: (u', v'}. (14)

Both the tuple components (conjuncts) u' and v', of (14), unfold to terms that are
provided by mappings from the source proof:

• fact(s(s(x))) is equivalent to s(s(x)) x faet(s(x)) where fact(s(x)) matches
the hypothesis u = faet(s(x)). Hence we require a witness value for the
first tuple component of s(s(x)) x u. This is obtained by mapping across the
witness for the sour ce nested induction and substituting u' for z. In fig.7 this
corresponds to M3 .

• fctl(s(x)) is equivalent to fact(s(x)) :: fetl(x) where fact(s(x)) matches
the hypothesis u = faet(s(x)), and where fetl(x) matches the hypothesis
v = fetl(x). Hence we witness a value for the second tuple component of u :: v.
The PTS obtains this witness simply by substituting the target hypothesis
labels, u' and v', for the labels, z and 1', in the step case witness of the
outermost sour ce induction (depicted by M4 of fig.7)

30

As with the previous examples, the base case witnesses are mapped across, one
on one, from the source, as are the lemma applications required for verifying both
the base and step case witnesses (MI and M2 of fig.7).

The completed target proof constructed by the PTS, corresponding to fig.7(b),
is then passed on to the OYSTER extraction process.

5.2.2 The Target (stepwise) Extract Program

The target program construction is shown below in fig.lI.

c:omple'c cz-trocC ...
I "

ba.e .te,. ----- ...
AX. ((Atuple . • pread((u, v), [-, 11, 11])) (p..ind(x , (.(0) ,0), [x', g2 : (u , v), ~pread(g2' [u ' , Vi, (.(.(x /)) X u /) 1\ (u ' :: v/)l~)))

Figure 11: The target extract for fctl

Note that just as the source proof - fig.7(a) - contained two stepwise inductions,
with the nested induction being applied at the step case of the outermost induc­
tion, and the target proof - fig .7(b) - contains only a single induction (on a tuple
structure), so the source extract pro gram - fig.9 - contains a dual nested recursion
schema, with the nested recursion being applied at the step case of the outermost
recursion, and the target extract program - fig.11 - contains only a single dual
recursion (on a tuple structure).

5.2.3 Scope of Loop Removal Transformations

The situation for proof tupling auxiliary recursive functions is different from that of
functions which contain only self-recursive cal1s in the body of the definition. CGR

functions which are auxiliary recursive fit the following schematic definition 52:

52 f(z) {:: if b(z) then k(z)
else h(z, h(6i (z», ... , fnW (z)))

where there is at least one auxiliary function call in the body of 52. So for abi-linear
instances of 52, such as the factlist function, the following holds: (f = h V f =
12) A h f= h· The PTS is, however, capable ofperforming tupling transformations
on any instances of 52.

As we illustrated in §5.3, the PTS will also transform functions where, regarding
52, one or more of the functions, h, ... , fn, in the body of 52 is an instance of 5I.
This increases the performance of the PTS since the scope of transformable functions
is not soley those that pertain to 51 or 52, but in addition those that pertain to
some combination of 51 and 52. A thorough account of example transformations
can be found in [23].

5.3 Example 3: Loop Removal By Transformation of (+1)8
to (+2)8 Induction

Consider the following variant of factlist:

factlist(s(n» = fact2(s(n» :: factlist(n),

where the auxiliary function fact2 is a (+2)s recursive function thus:

fact 2 (0)

fact 2 (s(O»

f act2(s(s(n»)

= s(O);
s(O);

= s(s(n» x fact2(n),

31

(15)

and where the PTS constructs a target tuple of length 3, where one component is
the subsidiary factli8t call and the remaining two components are the 2subsidiary
calls for the fact computation.

(+2)8 induction is best suited to construct the auxiliary fact2 function since
fact2 is naturally a (+2)8 definition. The schema for (+2)8 induction is as follows:

f- P(O) f- P(8(O)) "Iv: pnat. P(v) f- P(8(8(V)))
f- "Ix: pnat. P(x)

So in order to synthesize a program which computes the fact list varient (15), we
must construct a proof where in a (+2)8 induction is nested within (at the step case
of) an outer (+1)8 induction. The nested (+2)8 inductive proofis almost identical
to the nested (+1)8 proof of example 2 (cf. fig. 9(a)). The only difference is that
the recursive argument in the goal conclusion is two, rather than one, applications
of the successor function out of step with the recursion argument in the induction
hypothesis. In fig.12 below we show the corresponding (+2)8 induction node:

refinement:

induction hypothesis:
induction conclusion:

I (+2)s induction(x') I
3z. fact2(x") = z
f- 3z' . fach(s(s(x"))) = z'

witnessing refinement: 13-intro(s(s(x")) x z) I
fertilized conclusion: f- fact2(S(S(X"))) = s(s(x")) x z

Figure 12: Source nested (+2)8 induction (for fact2 construction).

To perform the proof tupling transformations on such a nested induction, the
PTS needs to tabulate 2 fact2 function calls, along with the factli8t call. That
the target tuple includes 2 fact2 function calls is determined by precisely the same
reasoning that is used to form a target tuple for the Fibonacci example: the body
of the step case definition for fact2 contains a self recursive call to fact2 that is
2 applications of the common generator function, in this case 8, out of step with
the head of the definition. This is clearly illustrated by replacing z in the next
conclusion slot, of fig.12, by the hypothesis that it labels thus:

f- fact2(8(S(X"))) = 8(8(X")) x fact 2 (x).

Hence, the optimization of the fact2 function requires a tuple of two components
(i.e., ~ = 2), where the tabulations would correspond to fact2(8(n)) and fact2(n).
Since fact2 appears as the auxiliary function call of factli8t, then the required
target tuple contains three components (i.e., ~ = 3), and the PTS sequences the
following goal into the target proof:

((3u, 3v, 3w. fact2(8(X)) = u 1\ fact2(X) = v 1\ fctl(x) = w) , tuple: (u,v,w)) .

Note that, in effect, in performing the above source to target transformation we
have both:

• transformed a source proof with a nested induction to a target proof with a
single induction (employed on a tuple); and

• in doing so, transformed the (nested) (+2)8 induction into a standard (+1)8
stepwise induction.

Hence proof tupling on source proofs that contain a nested induction structure,
where either of the inductions is in itself susceptible to optimization through tu­
pling, is tantamount to combining the transformation of induction schemas with
the merging of nested inductions.

32

6 Merits and Applications of Proof Tupling and
Comparisons with Program Tupling Transfor­
mations

In §3.3 we mentioned that one of the most influential strategies for program trans­
formation is the unfold/fold technique [15] . This technique is employed within
Darlington 's interactive NLP program transfQrmation system, and used by Chin to
perform automatic tupling transformations [11].

In §3.3 we identified three key steps for transformation using the unfold/fold
strategy. These steps correspond to the most difficult aspects as far as automation
is concerned, and in NLP, and similar systems, require some form of user guidance:

• Lemma generation: the introduction of an appropriate function definition
in terms of the source definition. The provision of such explicit definitions,
where the target is defined in terms of the source, generally constitute the weIl
known eureka step in unfold/fold transformations, and are notoriously difficult
to automate [10]. The unfold/fold strategy is motivated by the observation
that significant optimization of a (declarative) program generally implies the
use of a new recursion schema. This process usually depends on the user
providing the requisite explicit target definition. The strategy then proceeds
to evaluate the recursive branches of the target definition, primarily through
unfolding with the source definitions, until a fold (match) can be found with
the explicit definition.

• Folding: when to fold the eureka definition with the source definition. This
requires using matching as a means of testing for the successful folding of the
target function definition with the source definition.

• Application of laws: for example, when to apply associativity.

In subsequent sections we discuss the differences, and advantages, that the PTS

approach to optimization has over unfold/fold style program development.

6.1 The Reduced Workload Regarding Dependency Analyses

To understand how the proof tupling approach circumvents the need to produce
and analyze dependency graphs we shall briefly describe an existing program trans­
formation system that employs the tupling technique.

Recently, Chin, a student of Darlington's, has described several methods for
automatie program transformation within the HOPE+ system [11] . By an analysis
of symbolic dependency graphs, based on [30], Chin is able to describe an automatie
procedure for finding a pair of matching tuples by the unfolding of selected calls to
the source program, and then using matching as a means of testing for successful
folding. This is a significant achievement and represents the first successfull attempt
to automate the notoriously difficult unfold/fold eureka steps. Chin's automatie
tupling method is best described by example (we shall remain with the Fibonacci
function).

The initial portion of the symbolic DG for Fibonacci is shown below in fig.13.
As with the symbolic DG for the factlist function, fig.9, redundancy is exhibited by
more than one arrow directed at any partieular node.

33

Figure 13: The symbolic DG for fib(n)

The main idea taken from [30] is that:

An appropriate eureka tuple can be found if and only if there exists a
progressive sequence of cuts that match one another, in the function 's
dependency graph.

A cut is defined as a subset of nodes across a dependency graph that when removed
will divide the graph into two disconnected halfs. A progressive sequence of cuts is
a sequence of cuts ordered according to size (i.e., according to the number of nodes
in the subset). A pair of cuts match if a consistent substitution can be obtained
when each function call of the first cut is matched with the corresponding function
call of the second cut.24

The finding of an appropriate eureka tuple depends on the notion of a continuous
sequence of cuts. This is defined in [11] as folIows:

"A continuous sequence of cuts, cutl, cut2, ... , cutN , is a successive series
of cuts which starts with the root node as its first cut. This sequence
successively obtains the next cut by giving up a subset of nodes ... from
the topmost set of the current cut in order to acquire the children for
the next cut."

The topmost set of a cut is defined as a set of nodes whose ancestors are not present
in the cut itself.

Returning to the example and starting with the main function call, Chin's analy­
sis replaces fib(n), the first cut, with its two subsidiary calls, (Jib(n-1), fib(n-2)).
This gives us the second cut. The analysis then proceeds by unfolding only that call
in a cut which is not a subsidiary call of the other call, i.e., the topmost item. So,
since the functioD call fib(n - 2) is a subsidiary call of fib(n -1), only fib(n -1) is
unfolded. This gives the third cut, (Jib(n - 2), fib(n - 3)). The third cut matches
the second cut, thus providing the analysis with a matching tuple.

Chin's process is essentially the same as that described for Darlington's un­
foldlfold tupling technique: the unfold/fold steps required for the tupling trans­
formation are achieved by locating a pair of matching tuples by the unfolding of
appropriately selected calls and then using matching as a means of testing for suc­
cessful folding.

The main difference between Chin's and Darlington's systems is that the use
of such selection ordering allows for a considerable degree of automation, since
once this analysis succeeds the main task of the tupling transformation - finding a
successful fold - will have been achieved.

24These tenns are fonnally defined in [11).

34

6.1.1 Comparison with Proof Tupling

Chin's DG analysis tells us two things:

1. firstly, the number, ~, of subsidiary calls of the main function calls required
to form the tuple (i.e., the determination of the tuple size)j and

2. secondly, which subsidiary calls are to be tabulated.

An advantage of proof tupling is that both of these things, required for the tuple
formation, are contained in the source proof. This means that they can readily be
abstracted from the proof and exploited for the construction of the target tuple with­
out any additional dependency graph construction and analysis procedures. This
will always be the case for tupling transformations since the eliminations performed
on the induction hypothesis in the source will always provide an accurate measure of
what recursive calls are (a) required to compute the source course of values proce­
dure, and (b) require tabulation in order to compute the target stepwise procedure.
Returning to the Fibonacci example, the required information is read directly from
the witness,

3-intro(Yl + Y2),

of the source induction step. In OYSTER notation this witness is specified in terms
of the eliminations on the induction hypothesis I1I,:

(intro(I1I, of p(x) +I1I, of p(p(x)))),

This tells us precisely the number of, 2, and the identity of, p(x) and p(p(x)) the
eliminations on I1I, performed in the soutee induction in order to introduce recursion
in the source function. In the general case, the dominant function of the first tuple
component will always be that employed at the induction step of the source (where
the number of tuple elements corresponds to the number of source proof eliminations
on the ind uction hypothesis).

Note also that no extensive search is involved in the analysis of the source
proof in order to determine ~ and to witness a value for the tuple components.
The portions of the source proof that are accessed for the analysis correspond to
specific semantic units: the specification, the application of induction, the induction
base and step cases, the unfolding step, and the witnessing rule. These are clearly
represented as distinct sub-lists within the rule-tree abstractions (§4.1) and the PTS

knows precisely where to look in order to access any of the aforementioned units.
For example, the induction step will always correspond to that rule applied at the
deepest node of the decision tree employed to separate the various cases. So, within
the rule-tree, the induction step occurs as the last case of a nested case analysis.

So, unlike program tupling, the PTS proof tupling optimizations do not require
the construction of a (potentially infinite) dependency graph, nor does it require any
procedures for searching the dependency graph in order to find a matching tuple.

6.1.2 Tuples As Conjunctions

Within the object-Ievel OYSTER proofs the tuples are represented simply as conjunc­
tions (hence a tuple (A, B, C) is represented as A 1\ B 1\ C). Hence, we bypass the
need to invent new data-types for tuples solely for the purposes of transformation.
This means we avoid the charge that (program) tupling techniques rely heavily on
the somewhat ad hoc requirement to introduce tupies, memo tables or similar ob­
jects, and that we do not require arbitrarily complex tabulating constructs. For
example, program transformations within Darlington's FPE environment automate,
to some extent, the construction of the eureka tu pie by incorporating a large table
and managing system [16]. However, this causes considerable inefficiency since it

35

has the effect of carrying round potentially huge open-ended tuple structures whose
length is tailored to the functions needs.

6.2 Further Advantages Regarding Search, Control and Cor-
rectness

The fact that the PTS transformation tactics are (partiaIly) specified at the meta­
level, in terms of syntactic pre- and post-conditions, reduces the amount of search
that would be involved if the target proof were constructed at the object-Ievel.
In other words, since we can regard the rule-trees, together with pre- and post­
conditions, as proof plans then a general advantage of performing tactic transfor­
mations - Le., meta-level transformations on the object-Ievel tactics - is that the
transformation space is equivalent to a planning search space which is far smaller
than the object-Ievel search space.

As weIl as the way that dependencies are sought during tupling transformations,
further factors which playa beneficial role regarding search and control include the
means by which the target recursive step is completed, and the form of equation
development used all have a significant effect on the amount of search involved
during the transformation.

We shall consider in turn how the PTS reduces the search involved with each of
these factors in comparison with previous program tupling systems (notably [15, 11]

6.2.1 Derivational Form: Folding Vs. Fertilization

Darlington 's NLP, and Chin 's HOPE+, tu pie analysis is motivated by the desire to
find a matching tuple which can be used for folding. This can involve extensive
search. To illustrate this property, we display, in fig.14, the unfold/fold derivation
of the efficient Fibonacci procedure:

• Equational def. of fib:

(1) fib(O)
(2) fib(l)
(3) fib(x + 2)

1
1

= fib(x + 1) + fib(x)

• Derivation of auxilliary tuple function g:

(4) g(x) = (fib(x + 1), fib(x»
(5) g(O) = (fib(I), fib(O»
(6) = (1,1)
(7) g(x + 1) = (fib(x + 2), fib(x + 1»
(8) = (fib(x + 1) + fib(x), fib(x + 1)
(9) = (u + v, u) where (u, v) == (fib(x + 1), fib(x)
(10) = (u + v, u) where (u, v) == g(x)

• Derivation of fib in terms of g:

(11) fib(x + 2)
(12)

= u + v where (u, v) == (fib(x + 1), fib(x»
= u + v where (u, v) == g(x)

Figure 14: Unfold/Fold development of efficient Fibonacci

Given
Given
Given

Eureka - Definition
Instantiation
Unfolding with 1 and 2
Instantiate 4
Unfold with 3
Abstract
Fold with 4

Abstract 3
Fold with 4

The development of the target terminating branch is straightforward. Regarding
the recursive branch, unfolding must be performed in order to obtain the explicit
definition, (8), from the eureka definition (4). A fold step is nowrequired so as to

36

introduce a recursion into (8). The search for a fold involves observing that aB the
components necessary to match the above equation are present within the initial
definition, (4), for the auxiliary function g. Hence (8) is re-written using unfolding
and where abstraction, to (10) which easily folds with the eureka definition (4)
yielding the desired optimized recursive definition (10).25

The derivation of fig.14 illustrates how, within unfold/fold style systems, the
head of the developing equations remains constant, and it is only the body that is
modified, i.e., re-write rules are only applied to the left hand side of equations. This
form of equation development, together with the formal definition of folding [10]:

If E = E' and F = F' are equations and there is some occurrence in
F' of an instance of E', replace it by the corresponding instance of E
obtaining F"j then add the equation F = F",

means that, throughout the equation development, the same equation head is re­
tained. Hence folding with the source equations is a necessary requirement at some
point in order to introduce a recursion into the tail of the developing equations.
There is not, however, any procedure for knowing when to halt unfolding and in­
troduce a fold (nor when to perform a forced fold). Thus the folding requirement
presents control problems, and is one primary reason why user guidance is usually
required in such systems in order to avoid flawed attempts at folding. The other
reason being the provision of the eureka step corresponding to the generation of the
auxiliary tuple. Note that, regarding fig.14, the control problem is, in fact, doubled
since following the first fold, (10), further (forced) folding is required, at steps (11)
and (12), to express fib in terms of g.

An advantage of the PTS transformations is that they inherit the properties
of theorem proving: inductive proofs are driven by the heuristic requirement to
find a fertilization: the proof construction is developed in a bi-directional manner
since both sides of the induction conclusion can be re-written in the search for
matching (unifiable) terms. The simplest way to illustrate this is by fig.15 where
we employmeta-variables (in upper-case) for those "unknown" portions ofthe proof
(corresponding to the initial eureka step and the witnessing steps). We also adopt
the standard conventional notation for tupies, rather than use OYSTER'S conjunctive
representation, and use a where construct to refer to the induction hypothesis.
These changes do not alter the bi-directional form of the proof development, but
rather makes it easier to see and compare with the unfold/fold style derivation of
fig.14.

g(s(n)) = (Mt(u, v), M2(u, v)), where (u, v) = g(n);

unfold 9 unfold g;

(Jib(s(s(n))),fib(s(n))) = (M I (u,v),M2(u,v)), where (u,v) = (fib(s(n)),fib(n));

unfold fib

((fib(s(n)) + fib(n)) , fib(s(n))) = (MI (u, v), M2 (u, v)), where (u, v) = (Jib(s(n)), fib(n));

fertilize (ul fib(s(n)), vi fib(n))

(u+v,u) = (M I (u,v),M2(U,V));

instantiation MI = AU,V.U + v and M2 = AU,V. u.

Figure 15: Parallel development of induction conc1usion

23 Abstraction consists of replacing parts of an expression, in the body of an equation, by vari­
ables, and then defining these variables in a where c1ause. The combination of unfolding and
abstraction is sometimes referred to as forced folding.

37

A characterizing feature of tupling proofs is that the recursive definition will consist
of some, as of yet unknown, function(s) applied to the tuple components of the
induction hypothesis [25] . Hence we shall use the meta-variables to represent such
functions in our comparative illustration, fig.15, of the target Fibonacci proof (we
show only the induction step case of the auxiliary proof, corresponding to steps (4)
to (14) of fig.14).

The important feature to note is the "parallel" development of both head and
body towards a unifiable pattern, such that induction terms may be eliminated from
the condusion. This means that since we can modify both sides of the equation
we can avoid the decision(s) as to when, and with what, to fold. That is, we can
limit the process to the iterative application ofunfolding with equational definitions.
This significantly reduces the search space, and on the available evidence is much
easier to control (it is precisely what is formally captured by the rippling technique,
§6.3 and §6.4.4).

6.2.2 Law Application

A notorious problem with unfold/fold is that there is no principled means of ap­
plying semantic laws. That many unfold/fold transformations may require the nu­
merous and somewhat arbitrary application of laws, for which any overall strategy
is difficult to characterize, means that user-interaction is usually required. Thus
an advantage of operating within a proof theoretic framework is the capability to
automatically form and apply rewrites from semantic laws. By semantic laws we
usually mean lemmas such as the associativity 0/ append, rather than the lemmas
used for the purposes of verification in our examples. Several examples of such
principled law application can be found in [25].

6.2.3 Correctness

More recent incarnatiQns of the unfold/fold strategy have been shown to be correct­
ness guaranteed for specified dasses offunctions (cf [32] and [11]). However, each
extension to the dass of functions requires a corresponding extension to the cor­
rectness procedures, and this leads to a considerable work overhead (proportional
to the range of transformations .:... or generality - of the system).

This is not a problem regarding the PTS, and any future extensions thereof:
synthesis proofs must contain a verification proof that the extract term computes
the task described by the specification. Thus, extract programs are correct with
respect to the complete specifications of the synthesis proofs from which they are
extracted. Hence the correctness of all transformations is ensured without having
to additionally provide, or extend, any correctness criteria, or proof, each time we
extend the range of programs to which the transformations are applicable.

Stricktly speaking, we have only addressed partial correctness. Total correctness
involves providing termination conditions in addition to ensuring that the output
program computes the desired function. As stated in the previous section, a prob­
lem with controlling unfold/fold transformations is knowing when to stop unfolding
and introduce the crucial fold step into the derivation. This can lead to an infinite
regression of unfolding and lemma applications. In the case of proof transforma­
tion, termination simply corresponds to the completion of the target proof: when
the rewriting of the induction condusion has been successfully driven toward fertil­
ization with the hypothesis. Unlike folding, fertilization is well-founded.

38

6.3 Generality: Exploiting Proof Plans

In §6.2.1 we remarked that since the majority inductive proofs pertain to the same
(formal) pattern that the PTS design need not be altered for disparate inductive
proof transformations (thus the majority of proofs employing course of values in­
duction can be transformed into an equivalent, but more efficient, stepwise inductive
proof). That there is a high degree of similarity in the overall shape of the inductive
proof trees (and in the strategy employed in inductive proofs) requires some expla­
nation if our claims concerning the generality of the PTS design are to be justified.
This will also be relevant to the subsequent section on future research.

Inductive proofs, including the source and target Fibonacci proofs, invariably
involve a process whereby formulae are unfolded by replacing terms by suitably
instantiated definitions. The proliferation of this process such that recursive terms
are gradually removed from the recursive branches - by the repeated unpacking of
induction terms - is part of the (heuristic) process known as rippling. A simple
examples of this would be the application of the recursive branch of the append
definition:

append(e::ll,l2) => e::append(lt,l2)

The terms append(ll, l2) would unify (fertilize) with the respective induction hy­
pothesis. Thus the goal of rippling is precisely that of the induction step: to reduce
the induction step case to terms which can be fertilized with those in the induction
hypothesis, or those in subsequent derivations of the induction hypothesis.

"t:r: input 3y output spec(input,output

<= Ipecijic to Iynthelü

additional C4lel (iJ an additional C4lel (iJ any)

<= .pecijic to .ynthe.i.

; 'nested'}-induciiön-:
.L _____ e------.

; (iie"Ste<f'- inCiucÜöii: ._------Q§ --------

Figure 16: Proof plan for induction strategy

This common pattern to inductive theorem proving allows for the construction of a
general induction proof plan, specified at the meta-level, which can then be used for
guiding a whole gamut of object-Ievel proofs. In fig.16 we have represented the key
decisions and choice commitments made during a typical inductive proof. These will
involve applying one of the numerous OYSTER induction rules and then witnessing
the existential quantifier, using 3 - intro, at each of the induction cases (where,
as indicated in fig.16, the application of the intro rules are specific to inductive
synthesis proofs). We have indicated, within dashed boxes, that, following the

39

witnessing steps of the (outermost) induction, there may oeeur a further nested
induetion. These will take the same format as the outermost induetion. Finally,
we must verify that the instantiated schema will yield a reeursive schema that will
compute the input-output relation specified in the main eonjecture.

The fact that inductive proofs invariably pertain to this common form increases
our expeetations that there will be no need to build into the PTS ad hoc and diverse
mechanisms for dealing with substantially different patterns of proof.

In §6.4.4 we briefly discuss directly exploiting proof plans for the purposes of
proof transformation.

6.4 Applications and Future Research

In this section we consider the applications (potential and real), and future avenues
of research, regarding proof transformations.

6.4.1 Optimizing Recursion

The vast majority of eommercial software involves the eomputation of recursive
functions, and to prove theorems about such functions it is neeessary to use mathe­
matical induction. To manipulate such proofs, wh ether or not the aim is to optimize
associated program constructs, requires the maehinery for correct and well-founded
induction transformations. This research, albeit embryonic, makes a first inroad
into this requirement: the more that theorem proving, and in particular inductive
theorem proving, forms the basis of automatie programming then the more that
proof transformation becomes a viable means for providing automatie, correctness
guaranteed optimization.

Anticipated future applications of this research include the optimization of elee­
tronic circuit design and the optimization of computer configurations. This is be­
cause both these design problems ean be f9rmally cast as processes of inferenee
[1, 19]. Thus, we can apply the same automated theorem proving teehniques that
we use for high quality software production.

6.4.2 Software Quality: Efficiency and Reliability

As stated at the outset, §1.1, the research deseribed herein addresses both the
reliability and efficieney, as well as the automat ability, criteria of developing high
quality software using formal methods. Formal methods allows us to employ the
better understood techniques of theorem proving to guarantee these criteria.

In this paper we used simple examples of linearization and the removal of nested
reeursion to illustrate the methodology. However, more complex optimizations are
possible by using different (non-primitive) inductions to eonstruct the target proof:
in [26] we explain how linear procedures can be optimized to logarithmic proeedures
through proof transformation by using the method of matrix multiplication and
replacing the stepwise induction employed in the souree proof by a target divide
and conquer induction.

Future anticipated extensions include the systemization of more esoteric indue­
tion transformations involving schemas such as induction based on the construction
of numbers as products of primes [26].

6.4.3 An Aid for Synthesis

On empirical evidence alone, there appears to be an inverse relation between, on the
one hand, the efficieney ofthe recursive process generated by an extract, and on the

40

other; the complexity of the prooffrom whieh it was extracted.26 This evidence has
been gleaned from a study of synthesizing several sorting algorithms in the NUPRL

system where the extracts corresponding to various synthesized sorting algorithms
are compared with the syntactic density of the associated proofs [20]. Further ev­
idence is provided from research regarding pruning inductive proof trees in order
to adapt the associated extract program [22, 23]. So, for example, transformations
which increase the syntactic complexity of a source course of values proof, by per­
forming proof transformations that cut in (or sequence) an additional sub-proof, will
decrease the complexity of the recursive behaviour of the extract programs (from
exponential to linear). One practical contribution of a proof transformation system
is, therefore, that it enables the synthesizer (human or mechanical) to construct
short, elegant proofs, without douding the design process with efficiency issues,
and then to transform them into opaque proofs that yield efficient programs.

The inverse complexity relation is something which merits further attention
but for which, as of yet, there is only empirical justification and a quasi-theoretical
foundation [34]. Intuitively speaking, however, the extra complexity associated with
a target proof can be thought of as additional information required to compute the
specified input/output relation efficientlyas opposed to simply ensuring that the
specified input/output relation is computed.

6.4.4 Exploiting Proof Planning

The automatie CLAM proof-planning system jormally encapsulates, in a meta-Iogic,
the common shape of inductive proofs discussed in §6.3. The system automati­
cally constructs meta-level prooj plan representations from proof specifications [7].
These proof plans can then be used to guide the object level synthesis/verification,
with the advantage that the planning search space is considerably smaller than the
object-Ievel OYSTER search space. The proof plans can then be used, as a general
strategy, to guide the refinement of specific specifications [7, 9]. Of particular signif­
icance is the systemization of the rippling re-writing process: definitional equations
are converted into appropriate re-write rules through a special annotation process.
The annotations mark the differences between the two sides of the equation. The
annotated rewrite rule so formed can then be matched against proof (sub)goals and
the (sub)goal rewritten accordingly.27

Anticipated future research includes extending the PTS to be fully compatible
with the CL AM system. This means that any source to target proof transforma­
tions can exploit the proof planning facilities thus leading to greater generality and
automatability of the dass of optimizations amenable to the system. At present
the PTS must constantly access the source proof in order to complete the target
proof. The adapted version will need only to access the source to obtain informa­
tion such as tuple identification and induction witnesses. The target proof can then
be completed using the automatie reasoning systemized in the CLAM proof-planning
system.

7 Summary

We described the fundamentals of a working synthesis proof transformation sys­
tem. The novel aspect of this research is that program optimization is achieved
through the transformation of synthesis proofs. In particular, recursive programs

26This is despite the faet that human theorem provers are usually trained to find short, elegant
proofs rather than long opaque ones.

27This very brief outline is only barely representative of the eurrent state of rippling, and of its
use in automatie proof plan formation. For fuH details the reader should eonsult [6].

41

are optimized by transforming inductive synthesis proofs. Techniques from the field
of program transformation may be used to transform the computational content
of a proof. An important technique for transforming exponential behaviour into
linear behaviour is tupling. The PTS, unlike other existing transformation systems,
performs this technique on (synthesis) proofs. The system satisfies the desirable
properties for a transformation system of correctness, generality, automatability
and the means to guide search through the transformation space.

The benefits of the proof transformation approach include the fact that extra
information contained in the proofs, but not programs, can be exploited to auto­
matically guide the transformations. In particular: proofs contain a verification
component, and; dependency information abstracted from the source proof guides
the transformations without the need for any extensive dependency graph analysis.

The source and target programs of traditional program transformation systems
do not have a formal specification present, nor, as mentioned above, a verification
component. This means there is no immediate means of checking that the target
program meets the desired operational criteria. Regarding proof transformation,
all transformed programs are correct with respect to their specifications, and we
ensure that the target computes the same specified input/output relation as the
source (only more efficiently).

With the more traditional program development systems which employ the un­
fold/fold technique, it is the automation of the lemma generating procedures and,
in particular, the subsequent folding with the lemmas, that have proved, to date,
difficult to automate. We described how, within the context of proof transforma­
tion, target tuple definitions can be automatically generated by analysing source
definitions. The problem of folding has been circumvented within the proof trans­
formations since, due to the sequent calculus notation and the manner in which
proofs are refined, we need use only unfolding: recursive terms, corresponding to
source proof induction terms, are eliminated from the target recursive branches, cor­
responding to the target proof induction branches, by unfolding until fertilization
applies.

The source and target programs of traditional program transformation systems
do not have a formal specification present. This means there is no immediate
means of checking that the target program meets the desired operational criteria.
Regarding proof transformation, all transformed programs are correct with respect
to their specifications, and we ensure that the target computes the same specified
input/output relation as the source (only more efficiently).

An important commitment regarding the recursive behaviour of an extract pro­
gram is the choice of induction schemata (and how the cases are satisfied). By
exploiting the common structure of OYSTER inductive synthesis proofs we can trans­
form the induction schema employed in a proof yielding an inefficient program into a
schema such that the new target proof yields a more efficient program. Transforma­
tion is achieved through the application of proof transformation tactics to internal
representations of the OYSTER proofs. Since we can provide a general proof plan
for inductive (synthesis) proofs, then we can build general transformation tactics
for optimizing the recursive programs that they synthesize.

References
(1) David A. Basin . Extracting circuits from constructive proofs. Research Paper 533, Dept.

of Artificial Intelligence, Edinburgh, 1991. Also appeared in Proceedings of the IFIP-IEEE
International Workshop on Formal Methods in VLSI Design, Miami USA, 1991.

[2] B. Bjerner. Time Complezity 01 Program6 in Type Theory. PhD thesis, University of
Göteborg, 1989.

(3) R.S. Boyer and J .S . Moore. A Computational Logic. Academic Press, 1979. ACM monograph
series.

42

[4] R.S. Boyer and J.S. Moore. A Computational Logie Handbook. Academic Press, 1988. Per­
spectives in Computing, Vol 23.

[5] A. Bundy, D. Sannella, F. Giunchiglia, F. Van Harmelen, J. Hesketh, P . Madden, A. Smaill,
A. Stevens, and L. Wallen. Proving properties of logic programs: A progress report. In 1988
Altley Conferenee, pages 131-133, 1988.

[6] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic
for guiding inductive proofs. Artifieial Intelligence , 62:185-253, 1993. Also available from
Edinburgh as DAI Research Paper No. 567.

[7] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof plans for
induction. Journal of Automated Rea60ning, 7:303-324, 1991. Earlier version available from
Edinburgh as DAI Research Paper No 413.

[8) A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and A. Stevens. A rational reconstruction
and extension of recursion analysis. In N.S. Sridharan, editor, Proceeding6 of the Eletlenth
International Joint Conferenee on Artifieial Intelligence, pages 359-365. Morgan Kaufmann,
1989. Also available from Edinburgh as DAI Research Paper 419.

[9] A. Bundy, F . van Harmelen, C . Horn, and A. Smaill. The Oyster-Clam system. In M.E .
Stickel, editor, 10th International Conferenee on Automated Deduetion, pages 647-e48.
Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449. Also available from
Edinburgh as DAI Research Paper 507.

(10) R .M. Burstall and J. Darlington. A transformation system for developing recursive programs.
Journal of the Auoeiation for Computing Maehinery, 24(1):44-e7, 1977.

[11) W.N. Chin . Automatie Method6 for Program Tran6formation. PhD thesis, Imperial College,
1990.

[12) N. H. Cohen. Eliminatingredundantrecursivecalls. ACM Tran6aetion6 on Databa6e SY6tem6,
5 No. 3:265-299, 1983.

[13] H.B . Curry and R. Feys. Combinatory Logie. North-Holland, 1958.

[14] J. DarIington. A Semantie Approach to Automatie Program Improtlement. PhD thesis, Dept .
of Artificial Intelligence, Edinburgh, 1972.

[15] J . Darlington. An experimental program transformation and synthesis system. Artifieial
Intelligenee, 16(3):1-46, August 1981.

[16] J. Darlington. A functional programming environment supporting execution, partial evalua­
tion and transformation. In PARLE 1989, pages 286-305, Eindhoven, Netherlands, 1989.

[17] C.A Goad. Proofs as descriptions of computation. In W . Bibel and R . Kowalski, editors,
Proe. of the Fifth International Conferenee on Automated Deduetion, pages 39-52, Les Ares,
France , July 1980. Springer Verlag. Lecture Notes in Computer Science No. 87.

[18) W.A. Howard. The formulae-as-types notion of construction. In J .P. Seldin and J .R. Hindley,
editors, To H.B. Curry; Euay6 on Combinatory Logie, Lambda Caleulu6 and Formali6m,
pages 479-490. Academic Press, 1980.

[19] Helen Lowe. The Use of Theorem Proving Techniques in Expert Systems for Configuration. In
J .-C. Rault, editor, Proeeeding6 of the Eleventh International Work6hop on Ezpert Sy6fem6
and their Applieation6, Atlignon. EC2, May 1991. Also available from Edinburgh as DAI
Research Paper 536.

[20] P. Madden. A NuPRL synthesis of several sorting a1gorithms: Towards an automatie program
transformation system. Research Paper 356, Dept . of Artificial Intelligence, Edinburgh, 1987.

[21] P. Madden. Automatie program optimization via the transformation ofNuprl synthesis proofs.
In L. Clarke, editor, Proceeding6 of the 1988 Alvey Teehnieal Conferenee. The Alvey Direc­
torate, 1988. Also available from Edinburgh as DAI Research Paper 392.

[22] P. Madden. The specialization and transformation of constructive existence proofs. In N.S.
Sridharan, editor, Proeeedings of the Eleventh International Joint Conferenee on Artifieial
Intelligence. Morgan Kaufmann, 1989. Also available as DAI Research Paper No. 416, Dept.
of Artificial Intelligence, Edinburgh.

[23] P . Madden. Automated Program Tran6formation Through Proof Tran6formation. PhD thesis,
University of Edinburgh, 1991-

[24] P . Madden. Automatie program optimization through proof transformation. In D. Kapur,
editor, 11th Conferenee on Automated Deduetion, pages 446-460, Saratoga Springs, NY,
USA, June 1992. Published as Springer Lecture Notes in Artificial Intelligence, No 607 .

[25) P . Madden. Formal methods for automated program improvement . In Proeeeding6 of 18th
German Annual Conferenee on Artifieail Intelligence, Saarbrueken, Germany, September
1994. To Appear. A longer version is available from the oMax-Planck-Institut as MPI-I-94-
38.

43

(26) P . Madden. Linear to logarithmic optimization via proof transformation. Research paper
MPI-I-94-240, Max-Planck-Institute für Informatik, 1994.

[27) Z. Manna and R. Waldinger. A deductive approach to program synthesis. A GM Tran6action"
on Programming Language" and SY6tem", 2(1):90-121, 1980.

[28) Per Martin-Löf. Constructive mathematics and computer programming. In 6th International
Gongre .. for Logic, Methodology and Philo$Ophy of Science, pages 153-175, Hanover, August
1979. Published by North Holland, Amsterdam. 1982.

(29) D. Michie. Memo functions and machine learning. Nature, 218:19-22,1968.

[30] A. Pettorossi. A powerfull strategy for deriving programs by transformation. In A GM Li"p
and Functional Programming Gonference, pages 405-426, 1984.

(31) A. Stevens. A rational reconstruction of Boyer and Moore's technique for constructing induc­
tion formulas. In Y. Kodratoff, editor, The Proceeding" of EGAI-SS, pages 565-570. European
Conference on Artificial Intelligence, 1988. Also available from Edinburgh as DAI Research
Paper No. 360.

[32) H. Tamaki and T. Sato. A transformation system for logic programs that preserves equiva­
lence. Technical Report TR-018, ICOT, 1984.

[33] H. Tamaki and T.Sato. A transformation system for logic programs which preserves equiva­
lence. Technical Report ICOT Research Center Technical Report, ICOT, 1983.

(34) S. S. Wainer. Logical and recursive complexity. Technical Report 31/90 (Preprint Series),
Center for Theoretical Computer Science, University of Leeds, 1990.

o

mPD
____________ I N F 0 R M A T I K ___________ _

Below you find a list of the most recent technical reports of the research group Logic 01 Programming
at the Max-Planck-Institut für Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pubjpapersjreports. If you have any questions concerning ftp
access, please contact reportsOmpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

MPI-I-94-241

MPI-I-94-239

MPI-I-94-238

MPI-I-94-235

MPI-I-94-234

MPI-I-94-233

MPI-I-94-232

MPI-I-94-230

MPI-I-94-229

MPI-I-94-228

MPI-I-94-226

MPI-I-94-225

MPI-I-94-224

MPI-I-94-223

MPI-I-94-218

MPI-I-94-216

MPI-I-94-209

MPI-I-94-208

MPI-I-94-207

MPI-I-94-201

Max-Planck-Institut für Informatik
Library
attn. Regina Kraemer
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: kraemerOmpi-sb.mpg.de

J . Hopf

P. Madden, I. Green

P. Madden

D. A. Plaisted

S. Matthews, A. K. Simpson

D. A. Plaisted

D. A. Plaisted

H. J. Ohlbach

Y. Dimopoulos

H. J. Ohlbach

H. J. Ohlbach, D. Gabbay, D. Plaisted

H. J. Ohlbach

H. Ai·t-Kaci, M. Hanus, J. J . M. Navarro

D. M. Gabbay

D. A. Basin

P. Barth

D. A. Basin, T. Walsh

M. Jaeger

A. Bockmayr

M. Hanus

Genetic Algorithms within the Framework of
Evolutionary Computation: Proceedings of the
KI-94 Workshop

A General Technique for Automatically Optimizing
Programs Through the Use of Proof Plans

Formal Methods for Automated. Program
Improvement

Ordered Semantic Hyper-Linking

Reflection using the derivability conditions

The Search Efficiency of Theorem Proving
Strategies: An Analytical Comparison

An Abstract Program Generation Logic

Temporal Logic: Proceedings of the ICTL Workshop

Classical Methods in Nonmonotonic Reasoning

Computer Support for the Development and
Investigation of Logics

Killer Transformations

Synthesizing Semantics for Extensions of
Propositional Logic

Integration of Declarative Paradigms: Proceedings
of the ICLP'94 Post-Conference Workshop Santa
Margherita Ligure, Italy

LDS - LabelIed Deductive Systems: Volume 1 -
Foundations

Logic Frameworks for Logic Programs

Linear 0-1 Inequalities and Extended Clauses

Termination Orderings for Rippling

A probabilistic extension of terminological logics

Cutting planes in constraint logic programming

The Integration of Functions into Logic
Programming: A Survey

	94-2400001
	94-2400002
	94-2400003
	94-2400004
	94-2400005
	94-2400006
	94-2400007
	94-2400008
	94-2400009
	94-2400010
	94-2400011
	94-2400012
	94-2400013
	94-2400014
	94-2400015
	94-2400016
	94-2400017
	94-2400018
	94-2400019
	94-2400020
	94-2400021
	94-2400022
	94-2400023
	94-2400024
	94-2400025
	94-2400026
	94-2400027
	94-2400028
	94-2400029
	94-2400030
	94-2400031
	94-2400032
	94-2400033
	94-2400034
	94-2400035
	94-2400036
	94-2400037
	94-2400038
	94-2400039
	94-2400040
	94-2400041
	94-2400042
	94-2400043
	94-2400044
	94-2400045
	94-2400046
	94-2400047
	94-2400048
	cover-hinten_2099-2897-300dpi

