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Abstract 

We define order locality to be a property of dauses relative to a term ordering. This property is 
a generalization of the subformula property for proofs where terms arising in proofs are bounded, 
under the given ordering, by terms appearing in the goal dause. We show that when a dause set 
is order local, then the complexity of its ground entailment problem is a function of its structure 
(e.g., full versus Horn dauses), and the ordering used. We prove that, in many cases, order 
locality is equivalent to a dause set being saturated under ordered resolution. This provides a 
means of using standard resolution theorem provers for testing order locality and transforming 
non-Iocal dause sets into local ones. We have used the Saturate system to automatically establish 
complexity bounds for a number of nontrivial entailment problems relative to complexity dass es 
which indude Polynomial and Exponential Time and co-NP. 
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1 Introduction 

Our researeh is motivated by the work of MeAllester and Givan [10 , 5] who gave pro­
eedures for reeognizing sets of Horn clauses whieh generate polynomial time deeidable 
entailment relations. MeAllester's proeedures tests if Horn clauses have a property, 
whieh he ealls loeality, whieh roughly eorresponds to a kind of subformula property for 
Horn clause proofs; when a clause set has this property, then there are a bounded num­
ber of terms (dependent only on the query) whieh need appear in proofs and this is used 
to solve ground queries in polynomial time. 

In this paper, we both generalize loeality and provide new teehniques for proving that 
clause sets are loeal. Speeifieally, we provide a reformulation, ealled order loeality, whieh 
is a property of clauses, parameterized by an ordering on terms. This strietly generalizes 
MeAllester's not ion, both as it is parameterized by orderings (MeAllester 's definition is 
relative to a fixed ordering, the subterm ordering) , and as it is defined for full , as opposed 
to Horn, clauses. We show that order loeality is closely related and in many eases is 
equivalent to a clause set being saturated up to redundaney under ordered resolution. 
This provides both an alternative eharaeterization of when a clause set is loeal and 
yields a usable proeedure for testing loeality; moreover, when a clause set is not loeal 
saturation may be used to transform it into a loeal presentation of the same theory. This 
proeedure has been implemented in the Saturate system [4] and has been applied to give 
maehine eheeked proofs of the eomplexity of a number of nontrivial entailment relations 
and algorithms whieh are speeified as inferenee problems. For example, we use Saturate 
to automatieally verify that eongruenee closure, the theory of tree embeddings, and the 
theory of nonstriet partial orderings are polynomial time deeidable, that propositional 
logic is in both eo-NP and Exptime, and that the first-order theory of total orderings is 
in eo-NP. 

Our paper is organized as follows. In seetion 2 we define our not ion of loeality, 
order locality, and show that it generalizes MeAllester's original definition. In seetion 3 
we review saturation based theorem proving and in seetion 4 we show that saturation 
suffiees to establish loeality of a clause set. Unfortunately, while saturation implies 
loeality the eonverse sometimes fails. In seetion 5 we show that for Horn Clauses, under 
a more restrietive semantics, the eonverse "essentially" (in a sense that will be made 
clear then) holds. In seetion 6 we show how a complexity measure may be associated 
with an ordering so that when a clause set N is loeal relative to that ordering, then we 
may associate a eorresponding eomplexity class to the entailment problem for N. In 
seetion 7 we show a form of the eonverse: when the entailment problem for N belongs 
to eertain eomplexity classes, then there are eorresponding orderings under which N is 
loeal. After, we move on to eonsider loeality in practiee. In seetion 8 we show how to 
eonstruet orders useful for saturation and in seetion 9 we provide a number of examples 
which have been earried out with the Saturate system (including those listed above). In 
seetion 10 we give an extended example, of a theoretical nature, and show loeality for 
aHorn theory of the propositional sequent ealculus and eonsequenees thereof. Finally, 
in seetion 11 we eompare the use of Saturate to the algorithm proposed by MeAllester 
and Givan, and in seetion 12 we draw eonclusions. 
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2 Preliminaries 

2.1 Entailment and Proofs 

A (Juli) clause is a formula of the form r -+ D., where rand D. are multisets of atoms; r 
represents negative literals and D. positive literals. A clause is Horn when D. is a singleton 
or empty. We will write r l , r 2 to indicate the union of multisets and usually omit 
brackets, e.g., writing r, A or A, r for the union of {A} and r or writing Al,"" Am -+ 
BI, .. . ,Bn for {Al," " Am} -+ {BI,'" Bn}. If C is a clause, by oC we denote the 
set of unit Horn clauses oL, with L a literal in C. We say that a term t occurs in an 
atom A if t is of the form p( . .. , t, ... ). t occurs in a clause if it occurs in an atom of the 
clause. 

Given a set of clauses N, the entailment problem for N is to decide if N ~ C, for 
ground clauses C, called queries. A (reJutational) prooJ of N ~ r -+ D. is a tree in 
which the root is the empty clause, the leafs are ground instances of N or unit clauses 
oL, with L a literal in r -+ D., and where each non-leaf node is the result of ~ither a 
resolution inference from its two successors or a factoring inference from its successor. 
In the Horn clause case we will also consider direct prooJs in which, for A a ground atom, 
a proof of N ~ A is an unordered tree which is labeled by ground atoms such that A is 
the root, and any node in the tree is labeled by Band has children labeled BI, ... , Bn 
if and only if BI, ... , Bn -+ B is a ground instance of N. For both notions of proof, we 
say that a term t occurs in a proof if t occurs in an atom that occurs in the proof tree. 

Let Y be a set of ground terms and C a clause r -+ D.. We say that N entails C with 
respect to set Y, and write N ~y C, if Cis already entailed by the set of those ground 
instances of N in which all terms are sllbterms of terms in Y. When Y contains precisely 
all ground terms in N and C, we write N ~ C for N ~y C. Using·> to denote the 
strict sub term ordering, N ~y C may be reforrnulated by requiring the existence of a 
proof of C from N such that for each term s in the proof there exists a term t in Y such 
that t .~ s. 

2.2 Locality 

McAllester's work is based on Horn clauses l and he defines a set of Horn clauses N to 
be local if for. every ground Horn clause C we have N ~ C if and only if N ~ C. 

Locality is a desirable property of Horn clause sets because when N is local, then 
N ~ C precisely when N' ~ C for a ground Horn set N' which is polynomial in the size 
of C. Namely, N' comprises those ground substitution instances of N where all terms 
in N' are subterms in the "bounding set" Y. The entailment problem for N' can be 
efficiently solved: 

Lemma 1 ([3]) For all sets oJ ground Horn Clauses N and ground Horn Clauses C , 
N ~ C is decidable in time linear in the sum oJ the sizes oJ N and C. 

Hence, when N is local, its ground entailment problem is tractable. 

Lemma 2 ([10]) 1J N is a local set oJ Horn clauses, then Jor all ground Horn queries 
C, N ~ C is polynomial time decidable in the size oJ C. 

lIn [5] rules are Horn c1auses and in [10] they are Horn clauses extended by a sorting discipline. Note 
that McAllester considers direct instead of refutational proofs for Horn c1auses but for consistent Horn 
theories this distinction is inessential. 
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2.3 Order Locality 

We generalize the definition of locality by allowing arbitrary term orderings, possibly 
different from the subterm ordering, and allowing full clauses for our clause sets N and 
our queries C . Let >- be a well-founded, partial ordering on terms. We say that a set N 
of clauses entails a clause C with respect to >- , and write N 1=::5 C, if and only if there 
is a proof of N 1= C from those ground instances of N in which each term is smaller 
or equal with respect to ~ than some term in C . Now we call a set of clauses N local 
with respect to the ordering >- if whenever N 1= C for a ground clause C, then N 1=::5 C. 
To distinguish this not ion of locality from McAllester's we will also refer to it as order 
locality in contrast to McAllester's definition which we will refer to as subterm locality. 

In the case of Horn clause sets and queries, when N contains no ground terms, 
subterm locality is a special case of order locality corresponding to the subterm ordering 
.>. When N contains ground terms these not ions are not quite compatible since subterm 
locality allows ground terms in N (and their subterms) to participate in a proof of a 
Horn clause r -+ A. However, for any N we can define a transformation that maps 
a query r -+ A to another query r' -+ A where N ~ r -+ A if and only if N 1=::; 
r' -+ A. Namely, when N contains the k ground terms tl , ... , tk, then we conservatively 
extend our theory with a new uninterpreted predicate symbol p of arity k and r' = 
P(tl,'" tk), r. Since the transformation of r to r' always introduces the same fixed set 
of ground terms, it does not change the complexity of determining entailment based on 
1=::;; hence order locality can establish that entailment is polynomial time decidable for 
any Horn set which is subterm local. 

3 Ordered Resolution 

We define the concept of saturation up to redundancy of a set of clauses by ordered 
resolution. Hence we have to define ordered resolution and wh at it means for a clause 
or an inference to be redundant. The definitions in this seetion are with respect to 
any well-founded, total ordering >- on ground atoms. We will call such an ordering 
compatible with a total ordering >-' on ground terms, if maxi(ti) >-' m3.Xi(sj) implies 
that p(tl ... tk) >- q(Sl ... sn), for any two predicate symbols p and q. Note that if our 
signature of predicate symbols just consists of one element which, in addition, is unary, 
then total orderings on ground terms can be identified with compatible orderings on 
ground atoms. We will later discuss generally applicable methods that can be used to 
generate compatible atom orderings. 

3.1 Clause Ordering 

Given an atom ordering >-, we will call A [strictly] maximal with respect to a multiset 
of atoms r, if for any atom B in r we have B 'I A [B t A]. If the ordering is defined 
on ground atoms, we lift it to non-ground atoms A and B by: A >- B if Aa >- Ba 
for every ground substitution a. We also need to explain how to extend >- to clauses. 
To this end we identify a positive literal A with the singleton multiset {A}, a negative 
literal -,A with the multiset {A, A}, and a clause with the multiset of its literals. Then, 
for clauses C and C', we define C >- C' if and only if C (>-ms )ms C' in the twofold 
multiset extension of >-. Clearly, if>- is total [well-founded] on atoms, so is its extension 
to clauses. Given a ground clause C and a set of clauses N, by Ne we denote the set of 

5 



ground instances D of N such that C :>- D in the clause ordering. When the ordering is 
not clear from the context, we will also use the notation Nd. Observe that when :>- is 
total on ground terms, any term that occurs in a clause in Ne must be smaller or equal 
to the maximal term in C. 

3.2 Ordered Resolution and Redundancy 

There are a variety of formalizations of refutation-complete calculi for ordered resolution. 
The rules we present are related to those given for first-order clauses with equality in [2J. 
In addition to an atom ordering :>- , they take a selection function for negative literals as 
an additional parameter. A selection function S assigns to each ground clause a possibly 
empty set of occurrences of negative literals. If C is a clause, the literal occurrences in 
S(C) are called selected. S(C) = 0 indicates that no literal is selected. We extend S 
to non-ground clauses D by taking S(D) to be the union of the S(C), for all ground 
instances C of D. 

An inference by ordered resolution between clauses takes the form 

f 1 -+ A , .611 B , f 2 -+ 06.2 
f 10, f 2a -+ 06.1 a, o6.2a 

where a is the mgu of A and B such that (i) Aa is strictly maximal with respect to 
f 1a, (ii) no literal is selected in the first premise, (iii) Aa either is selected in the second 
premise, or else is maximal with respect to f2a ,06.2a . 

An inference by ordered factoring takes the form 

f -+ A, B,.6-

fa -+ Aa,06.a 

if a is the mgu of A and B such that (i) Aa is strictly maximal with respect to fa, (ii) 
Aa is maximal with respect to o6.a, and (iii) no literal is selected in the premise. 

Note that inferences by ordered resolution in which the first premise contains a 
selected literal are excluded, as are inferences by ordered factoring from clauses with 
selected li terals. 

A ground clause C is called redundant in N (with respect to :>-) if it is entailed by 
the instances of N which are smaller than C, i.e., if Ne F C. 

Let f 1, f2 -+ 06.1, 06.2 be the conclusion of an inference by ordered resolution from 
ground clauses C = f 1 -+ A,.6- 1 and D = A, f2 -+ 06.2. We call the inference redundant 
in N (with respect to :>-) if (i) one of the premises is redundant in N, or else if (ii) 
ND F f 1, f2 -+ .6-1,06.2 , that is, the conclusion is entailed by instances of N smaller 
than the second premise. Note that since :>- is total on ground atoms the second premise 
of an ordered resolution inference from ground clauses is the maximal clause among the 
two premises and the conclusion. 

We call a ground inference by ordered factoring redundant in N if the conclusion 
follows from instances in N which are smaller with respect to :>- than its premise. A non­
ground inference is called redundant if all its ground instances are redundant. Finally 
we call a set of clauses saturated up to redundancy (by ordered resolution with respect 
to :>-), if any inference by ordered resolution from premises in N is redundant in N. 

As an inference is redundant whenever the conclusion is an instance of N, we can 
saturate N by systematically adding all conclusions of non-redundant inferences. 

Given a total and well-founded ordering :>- on terms, we call N saturated up to 
redundancy (by ordered resolution with respect to :>-) if N is saturated with respect to 
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(i) some total and well-founded ordering on ground atoms that is compatible with >- and 
(ii) some selection function S. If the ordering >- on terms is partial we call N saturated 
up to redundancy with respect to >- if N is saturated with respect to every extension of 
>- that is well-founded and total on ground terms. 

Saturation up to redundancy is a complete method of detecting inconsistency with 
respect to any >-: 

Theorem 1 ([1]) Let N be a set of clauses that is saturated under ordered resolution 
with respect to >- up to redundancy. Then N is inconsistent if and only if N contains 
the empty clause. 

Proofs of entailment for clauses with respect to saturated sets N of clauses can be given 
in an N -linear form. 

Theorem 2 ([2]) Let N be saturated and let C be a clause. C follows from N if and 
only if there is a proof, by ordered resolution, of the empty clause from a (finite) set of 
ground instances in N U -,C such that for each inference at least one of the premises is 
not an instance of N. 

This theorem follows from the fact that in saturated sets N any inference from premises 
both in N are redundant, and that redundancy of clauses and inferences is preserved by 
adding clauses. Redundancy is also preserved by deleting redundant clauses that may 
arise during a theorem proving process. 

4 Saturation and Locality 

4.1 Saturation implies Locality 

We start by showing that saturation implies locality for total term orderings >-, provided 
that the selection function S as admissible in the following sense: S is called admissible 
(with respect to >-) if for any ground clause C a literal is in S( C) only if it contains the 
maximal term of C. From now on we ass urne that any selection function that we use 
for saturation is admissible. 

Lemma 3 Let >- be a total and well-founded ordering on ground terms. Moreover, let 
N be saturated with respect to >- and let C be a ground clause. Then N 1= C if and only 
if N I=:s C. 

Proof. The right to left direction is immediate. In the left to right direction we may 
assurne N 1= C and that N is saturated up to redundancy with respect to an atom 
ordering >- that is compatible with the given term ordering and an admissible selection 
function. By Theorem 2 there exists an N-linear proof of the empty clause by ordered 
resolution from a (finite) set of ground instances in NU -,C. We proceed by induction 
on the height of an inference within the proof where we show that all terms involved in 
that inference are less than or equal (under ::) to terms in C. 

For the base case, consider any instance r ----* A,.6. of N that is a leaf in the proof 
and is the first premise in an inference by ordered resolution of depth 1. By N-linearity, 
the second premise must be a unit clause A ----* fra m -,C. As the inference is ordered 
and >- is total, A >- B, for any B in r or .6.. Alternatively A, r ----* .6. is an instance of 
N that is the second premise in an inference by ordered resolution of depth 1, then the 
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first premise must be a unit clause -t A from -,C. Since A is either maximal or selected, 
and then contains the maximal term, we have that maXtEA(t) ~ maxsEB(s) for any B 
in r,~. Note that we cannot have an inference by ordered factoring at depth 1 since 
all clauses in -,C are unit. Hence the conclusions of all inferences at depth 1 satisfy the 
required property. 

Now consider an ordered resolution inference of depth > 1 from premises D and D'. 
Consider the case in which both D and D' are non-Ieaf nodes in the proof. Applying the 
induction hypothesis, the terms in both D and D' are smaller or equal to some term in 
C. As the conclusion D" of the inference is smaller than the second premise, its terms 
are again bounded by the terms in C. If only one, D say, of the two premises is an inner 
node, the other, D' is an instance of N. Applying the induction hypothesis to D, the 
reasoning is essentially the same as the reasoning in the base case of the induction, 

Application of ordered factoring at depth > 1 does not create new atoms, and by 
the induction hypothesis all the old atoms are bounded by atoms in C. 0 

In practice, the requirement that )- be total may be too strong and it suffices to 
consider all total well-founded extensions of partial orders. 

Theorem 3 Let N be a set of clauses and let )- be a well-founded partial ordering on 
terms. Then N is loeal with respeet to )- if N is saturated up to redundaney with respeet 
to )-. 

Proof. Let N be saturated up to redundancy with respect to)-. Then, by definition, 
N is saturated up to redundancy with respect to each extension )-' of )- that is well­
founded and total on ground terms. We show that N is local with respect to )-. Let C 
be a ground clause such that N ~ C. We have to prove that N ~::< C. To this end, let 
)-' be an ordering that (i) extends )-, (ii) is well-founded, (iii) is total on ground terms, 
and satisfies (iv) s )-' t, for any ground term t in C and any ground term s for which 
there is no term u in C such that u ~ s. In other words, we construct )-' in a way such 
that all ground terms that are not sm aller or equal to some term in C with respect to )­
become strictly bigger with respect to )-' than any term in C. As N is saturated with 
respect to )-', we may apply Lemma 3 and infer that N ~::<' C and by (iv) we have 
N~::<C. 0 

4.2 Saturation is Weaker than Locality 

The converse of the previous theorem is not true in general; however it does hold in 
restricted cases. 

Theorem 4 Suppose that we have just one predieate symbol whieh is, in addition, 
unary. Let N be a set of Horn clauses and let )- be a well-founded partial ordering 
on terms. 1f N is loeal with respeet to )- then N is saturated up to redundaney with 
respeet )-. 

Proof. Let p be the unary predicate symbol, and let )-' be an extension of )- that is 
well-founded and total on ground terms. The ordering on ground atoms, defined by 
p( s) )-' p( t) iff s )-' t, is total, well-founded and compatible with the term ordering. 
Consider an inference by ordered resolution with respect to )-' from ground instances of 
clauses in N: 

r 1 -t A A,r2 -tB 
r 1,r2-tB 
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A is strictly greater (in >-') than any of the atoms in the clause C = r l , r; -+ B, 
w he re r; = r 2 \ {A}. Sinee C is a logical eonsequenee of N and N is loeal with respeet 
to >-, we have N F~ C, that is, Cis implied by those instanees of N in whieh all atoms 
are smaller or equal (in t) than some atom in C. These instanees of N are all smaller 
than A, and, in partieular, smaller than A, r 2 -+ B with respect to >-'. What we have 
shown is that N'A'r ~B F C. As C implies the eonclusion of the inferenee we have 

, 2~ 

shown that the inferenee is redundant . 0 

Factoring inferenees may not be redundant if N also eontains non-Horn clauses. One 
may generalize the Theorem to full clauses if faetorization is built into the resolution 
inferenees, that is, if one eonsiders clauses as sets, rather than multisets, of literals. 
However, the main restrietion in Theorem 4 eoneerns the signature. 

We have shown that saturation implies loeality in a very general setting that in­
cludes seleetion in addition to ordering restrictions. Let us briefly demonstrate why this 
eombination gives us inereased power in in verifying order loeality. Suppose N is the 
following set of clauses. 

p(f(x)) -+ q(x) 

p'(f(X) ) -+ q'(X) 

p'(X) -+ p(x) 

p(x) -+ p'(X) 

r(f(x)) -+ p(x) 

r' (f(x)) -+ p'(X) 

N is loeal with respeet to the subterm ordering, but whatever ordering we ehoose on 
atoms, N will not be saturated under ordered resolution if the selection function is 
empty. Suppose that a is a eonstant and that, for instanee, p'(f(a)) >- p(f(a)). Then 
p(f(a)) -+ q'(a) ean be obtained by ordered resolution from instanees of the seeond 
and fourth clause, but eannot be obtained by any other proof that does not involve the 
maximal atom p' (f (a)) of the inferenee. However, if we select in (the ground instanees of) 
the third and fourth clause the negative literal, the set of clauses is trivially saturated 
as no inferenee is possible: A clause that has aselected neg;:ttive literal need not be 
eonsidered as the first premise in aresolution inferenee. 

We observe that requiring atoms to be ordered may be too restrietive when they 
eontain the same maximal term. Moreover, clauses that eontain the maximal term both 
in the anteeedent and in the sueeedent may require one to eonsider non-Ioeal proofs of 
potentially unbounded depth in which a path of the form A, Al, ... ,An, B (a plateau) 
exists such that the Ai, but neither A nor B, eontain the maximal term. Selection 
improves the situation in some, but not in all eases. For instanee, if we add the clauses 

s(x) -+ p(g(x)) 

s'(X) -+ p'(g(X)) 

to the above clause set, loeality is maintained, but saturation is not. In general, to 
eliminate "Plateaus" of unbounded width requires a stronger form of redundaney that 
we will diseuss in the following seetion. 
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5 The Horn Clause Case 

For full dauses we have shown that saturation implies loeality; however, only for a quite 
restrieted dass of signatures and orderings we have been able to prove the eonverse too 
(cf. Theorem 4). The purpose of this seetion is to show that saturation up to redundancy 
and order loeality are in faet equivalent eoneepts in the ease of Horn clauses provided 
the notion of redundaney is appropriately extended. Throughout this section we assume 
that alt clauses are Horn. 

5.1 Monotonicity 

In order to simpIify the teehnieal treatment, we will be working with a weaker form of 
loeality, which we eall monotonicity. A set of Horn clauses N is ealled monotone with 
respeet to a well-founded (partial) ordering >- on terms if for any ground atom A we 
have N FA if and only if N F:::< A. Clearly, monotonicity, whieh is based on entailment 
of atoms, is a special ease of order loeality based on dauses. However, for a monotone 
theory, every provable ground atom has a direet proof in whieh any term that oeeurs in 
some atom in the proof is smaller or equal to so me term in its parent atom in the proof. 

We will show that monotonicity is equivalent to saturation up to redundaney. AI­
though monotonicity may seem weaker than loeality we show that there is no signifieant 
difference as aHorn query may be transformed to an equivalent atomic query over an 
extended signature. We justify this with the following eonstruetion. 

Let N be aHorn theory over a signature ~ and >- a partial, well-founded ordering 
on ground terms over ~. We eonstruct a presentation N' over an extended signature ~' 
that will be "equivalent" to N: N' will be monotone with respeet to a "closely related" 
ordering >-' if and only if N is Ioeal with respeet to >-. Sinee loeality says something 
about entailment of Horn clauses f -+ A from N whereas monotonicity just refers to 
atomie eonsequenees A, we pass fasan additional parameter to predicates in N'. The 
function symbols in ~' are, therefore, the function symbols of ~, the predieate symbols 
of ~, together with an additional binary (right-associative) function symbol ",". For 
eaeh n-ary predicate p, ~' eontains an n + 1-ary predicate p'. The extra argument in p' 
serves to pass the anteeedent f. In addition, ~' eontains a binary predicate member to 
denote membership in lists eonstructed from ",". 

Let A [Tl denote the set of ground atoms [terms] over~. In ~' the atoms in A 
are terms. To distinguish ~-atoms from ~-terms when eonsidered as terms over ~I, 

in ~' we assurne a three-sorted type diseipline where A and T are two of the sorts, 
and where S is an additional sort, denoting A-sequenees. The predieates p' have typing 
p' ~ S*T* ... *T, and member ~ A*S. "," is of type A*S -+ Sand the predieates p and 
functions f in ~, respectively, as functions symbols in ~' have the type p : T* .. . *T -+ A 
and f : T * ... * T -+ T. 

The dauses of N' are the following: 

'( -) I -) PI S, tl , ... ,Pn(s, tn 

member(p(XI, ... ,xn), s) 

member(a, s) 

I - ) -+ Po(s, to , 
for pt{tt} , ... ,Pn(4t) -+ Po(fo) in N 
-+ P'(S,XI' ... ' Xn), 
for any n-ary predieate symbol p in N 
-+ member(a, (a, s)) 
-+ member(a, (b, s)) 
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On ~' we consider the smallest ordering ,;-' containing ';- and satisfying (a, t) ,;-' a, 
(a, t) ,;-' t, and p(h, ... , tk) ,;-' tj, for all P : T * .. . * T -4 A in ~'. 

The following properties are immediate by construction: 

Lemma 4 (i) Let C = pl(td, ... ,Pn(~) -4 PO(~) be a ground clause over~. Then 
N F C if and only if N' F p~((Pl(t;), ... ,Pn(~)), ~). 

(ii) N' is monotone with respeet to ,;-' if and only if N is loeal with respeet to ';­
(iii) If ~-terms of size n have at most f(n) smaller terms under ';-, then ~'-terms 

of size n have at most O(max(n , n * f(n))) smaller terms under ,;-' . 

The significance of the lemma lies in the fact that from now on it will suffice to 
characterize monotonicity in terms of saturation by otdered resolution. For Horn clauses, 
monotonicity and locality are essentially equivalent concepts. 

5.2 Monotonicity implies Saturation 

The definition of redundancy that we have given in seetion 3.2 was based on the notion 
of entailment . Entailment then referred to all models of a set of clauses. In the context 
of Horn clauses astronger form of entailment, based on the minimal model semantics 
[9], is equally important and useful. Throughout this section, entailment F will now 
only refer to the minimal model. That is, aHorn clause C is entailed by a set of Horn 
clauses N either if N is inconsistent or else if C is true in the minimal model of N. 
Under this new definition of entailment, a ground clause C is redundant in N if and 
only if either Ne is inconsistent, or else C is true in the minimal model of Ne. By 
basing redundancy on a particular model, rather than on all models, more inferences 
and clauses become redundant. This will be the key for showing that monotonicity and 
saturation are equivalent. 

Theorem 5 Let N be a set of clauses and let ';- be a well-founded partial ordering 
on terms. Then N is monotone with respeet to ';- if and only if N is saturated up to 
redundaney with respeet to ';-. 

Proof. The "if" direction of the theorem is proved similar to the proof of Theorem 3. 
Let us now consider the reverse direction and assurne that N is monotone with respect to 
';-. Moreover, we may assurne that N does not contain the empty clause since otherwise 
N would be trivially saturated. Let ,;-' be any well-founded, total extension of ';- on 
ground terms. We have to choose an atom ordering compatible with ,;-' (again denoted 
by ,;-') and a selection function 8 for which we will be able to prove that N is saturated 
with respect to ,;-' and 8. For 8 we define 8(C) = 0, for any clause C, i.e., we do not 
select any negative literal in any clause. The definition of ,;-' proceeds in parallel to 
the inductive definition of a Herbrand interpretation J, which we later shall see is the 
minimal model of N. 

Formally we apply induction over ,;-' (on terms) to define Herbrand interpretations 
Js and JS for all ground terms s as follows: Js is the set US).-'t J t . For the construction 
of JS let N S be the set of ground instances of N in which s occurs and is the maximal 
term with respect to ,;-'. By ps we denote the subset of N S in which s occurs positively. 
Moreover let T denote the standard "Tp" -operator used to define the semantics of Horn 
programs [9]. Then we define: 

p = U Tßs(Js) , 
n2:0 
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In parallel we define ,;;-' on ground atoms inductively such that it is compatible with the 
term ordering ,;;-' and refiects the logical dependencies between true atoms as given by 
the Tp-operator. Formally, let A and B be in JS with s the maximal term in both A and 
B. Then there exist (minimal) indices n, m 2:: 1 such that A is in T~s (Js ) \ Tp; 1 (Js ) and 
B is in Tp.. (Js) \ T;"-l(Js). Now, A ,;;-' B if and only if n > m. When n = m or when 
the ground atoms A and B do not share a maximal term, then orient them arbitrarily 
under ,;;-' as compatible with the term ordering ,;;-'. 

Now that we have extended ,;;-' to atoms, we can construct a second, essentially 
equivalent family of partial interpretations 1e , for all ground instances C of N, by 
induction over the extension of ,;;-' to clauses. Formally we define, for each such C, sets 
of ground atoms 1e and Ee such that 1e is Ue~D ED. Furthermore, if C is a clause 
r -t A, where A is strictly maximal with respect to r, such that C is false in 1e then 
Ee = {A}. In that case, we also say that Cis productive and that it produces A. In all 
other cases, Ee = 0. Finally, let I be Ue Ee. 

In what follows we shall also use the notation 1e for 1eUEe. Hence 1e is the partial 
interpretation defined by clauses smaller than C, whereas 1e additionally includes the 
effect of C in this construction. Moreover, for any ground term s, let 1S [1sJ denote the 
union of the Ee for all clauses C with a maximal term t such that s >::.' t [s ,;;-' tJ. 

For all ground terms sand ground instances C of N with maximal term s we have: 
(i) JS = JS 
(ii) 1e is the minimal model of Ne. 
(iii) if C is a clause in N S of the form r -t A such that A ,;;-' r then C is true in 1e 

(iv) if Cis a clause in N S of the form A, r -t ß such that A is maximal with respect 
to r,ß (in ,;;-'), then C is true in 1e. 

We prove these facts by induction over ,;;-' on terms s with an inner induction over 
,;;-' on clauses with maximal term s. 

Ad (i): In the construction of I only clauses C in which the head A is strictly 
maximal may contribute to I. Then C is in ps. C is productive if, in addition, any of 
its body atoms is true already in 1e . On the other hand, if a dause contributes to J 
via the Tp-operator then its head A appears later in the iteration than any of its body 
atoms B. But then ,;;-' has been fixed such that A ,;;-' B. 

Ad (ii): We may use the induction hypothesis for (iii) and (iv) to infer that any 
ground instance D of N with D -<.' C is true in 1e. Hence 1e is a model of Ne. Its 
minimality is obvious from the construction. 

Ad (iii): Suppose C is false in 1e . Then r is true, but A is false in 1e . But then C 
would have to be productive, which is a contradiction. 

Ad (iv): First, suppose that s occurs in ß. Then C, as a clause of ps, is true in 
JS. Suppose C is false in 1e. Then A, r is true in 1e, hence ß is an atom B which 
is true in JS. Since JS = JS, B must be contained in JS, and hence in 1e which is a 
contradiction. (In fact, the extension of ,;;-' to clauses is such that clauses D ~' C cannot 
produce atoms B -::5.' A into I.) 

Otherwise, assume that s occurs negatively, but not positively in C, and that C is 
false in 1e, hence A, r is true in 1e. By induction hypothesis for (iii) 1e is the minimal 
model of Ne. Therefore N 1= 4· If ß is empty and N is local, N contains the empty 
clause, which is a contradiction. Otherwise, ß = B, and if t is the maximal term in B, 
then t -<.' s, hence t ~ s. As N is local, B follows from ground instances of N in which 
the maximal terms (with respect to ,;;-) are smaller or equal (with respect to ,;;-) than t. 
These clauses are all in Ne. Hence B is true in 1e , which is a contradiction. We may 
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infer that C is true in I c. 
Now it is easy to see that N is saturated with respect to >-'. By (iv) above, all 

ground instances of N that may possibly occur as the second premise in an ordered 
resolution inference are redundant, hence so is the inference. 0 

The preceding result is with respect to the not ion of redundancy based on the min­
imal model semantics of Horn clauses. It is easy to see that if a set of Horn clauses is 
saturated up to redundancy with respect to the loose (all models) semantics then it is 
in particular also saturated with respect to the minimal model semantics. 

6 Complexity Bounds for Entailment Problems 

Using order locality we obtain new methods for establishing complexity bounds for 
entailment of ground clauses. We first present our main results which provide complexity 
upper bounds for entailment dependent on the orderings, or class of orderings, used and 
whether the problem is for Horn or full clauses. Afterwards, we consider how ordered 
resolution itself can serve as adecision procedure. 

For the remainder of the paper we will ass urne that clause sets Nunder consideration 
are finite. 

6.1 Order-dependent Complexity Bounds 

If a clause set is saturated und er an ordering that has the property that ground atoms 
have only finitely many smaller atoms that may be enumerated in finite time, then 
decidability of the ground entailment problem is obtained by enumerating an appropriate 
finite set of ground instances of the clauses. More precisely, let the size of a clause be 
the sum of the sizes (the number of nodes in its tree representation) of the terms in the 
clause. We may now express the complexity of ground entailment as a function of the 
size of the query. We begin with the Horn case. 

Theorem 6 Let N be a set of Horn clauses that is saturated up to redundancy with 
respect to >-. Then for ground Horn clauses C, the entailment problem for N 1= C is 
decidable in time O(J (m)k + g( m)) where m is the size of C and each term of size n has 
O(J(n)) smaller terms (under >-) which may be enumerated in time g(n). Furthermore, 
the constant k depends only on N. 

Proof. As N is saturated with respect to any total extensions of >-, then by Theorem 3, 
N is local with respect to >-. Hence N 1= C iff N I=j C. The set of ground instances NC 
of N in which terms are smaller than or equal to some term in C may be generated first 
by enumerating all terms bounded by terms in C and after using these to instantiate 
clauses in N to form the ground clauses in N C . The enumeration step requires O(g( m)) 
time and instantiation step requires time at most O(J(m)k) where k is a constant that 
depends on N only; in particular, an upper bound for k is the maximum number of 
variables in any clause in N. A tighter bound can be found using analysis similar to 
McAllester's "refined tractability theorem" in [10]. By lemma 1, we can decide NC 1= C 
in time linear in the sizes of N C and C. 0 

For full clauses we obtain a similar result by reduction to the satisfiability problem for 
O(J(m)C) ground clauses of bounded size: 
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Theorem 7 Let N be a set oJ (Juli) dauses that is saturated up to redundancy with 
respect to >-. Then the disentailment problem N ~ C is non-deterministically decidable 
in time O(J(m)k + g(m)), where, as beJore, m is size of C, fand g the number of 
smaller terms and their enumeration time, and k a constant depending on N only. 

We will later provide examples of this. Note that McAllester 's tractability result 
is a special case of ours for the Horn clause case and the subterm ordering: any term 
has only linearly many subterms which can be directly enumerated and hence locality 
implies that that the ground Horn entailment problem is polynomial-time decidable. 

6.2 General Decidability Results 

We consider here how saturation can be used to obtain general decidability results. 
Afterwards we specialize this to yield particular complexity bounds. 

For Horn clause sets, the satisfiability and entailment problems are undecidable. 
This remains the case even when sets are saturated up to redundancy with respect to 
an arbitrary ordering >-. To see this2, suppose N is an arbitrary set of Horn clauses 
and let N' consist of the set of clauses q, r -+ D. such that r -+ D. is in N, with q a 
new propositional variable not occurring in N. Choose an ordering such that q is the 
maximal atom. Then N' is trivially saturated as no ordered inferences are possible from 
N'. It is undecidable if N' F -'q, since this is equivalent to the inconsistency of N. 

To obtain decidability, one must either constrain the ordering or the syntactic for­
mat of the clauses. The subsequent theorem shows that restrictions on occurrences of 
variables can lead to decidability for fuH, and hence also Horn, clauses. 

Theorem 8 Let N be saturated up to redundancy with respect to >-. Assume, for each 
dause in N, that whenever one of its literals is maximal, then it contains all the variables 
of the dause. Then the entailment problem for N is decidable. 

Proof. As before we make use of the fact that N F C if and only if NU -,C is inconsistent 
if and only if (N-linear) saturation of N U -,C up to redundancy produces the empy 
clause. We show that with the required variable restriction, NU -,C can be finitely 
saturated. This is based on three facts. First, N-linear inferences that satisfy the 
ordering constraints can only produce ground clausesj since the maximal atoms of clauses 
in N contain all variables, these are all instantiated by ground terms upon any ordered 
inference in which at most one premise is in N, and hence, the other premise is a 
ground clause. Second, we may simplify newly generated ground clause by factoring, 
i.e., by deleting multiple occurrences of atoms in the antecedent or consequent. Such 
a simplification renders the original clause redundant, hence may be applied eagerly, 
without afIecting refutational completeness. Third, with each ground clause D which is 
either in -,C or is produced by an N -linear inference (possibly followed by a factoring) 
we can associate a chain of ground atoms Al >- ... >- An = A' such that Al is an 
atom in the query C, A' is the maximal atom in D, and n is the depth of the proof of 
D. We show this fact by induction over n. For the base case, n = 1, D is a literal in 
-,C, and the case is trivial. If n > 0 then D is produced from either aresolution or a 
factoring inference. Suppose that D is the conclusion of an ordered resolution inference 
from premises r -+ A, A and A , r ' -+ A'. Suppose that the second premise A, r ' -+ A' 
is a ground clause to which the induction hypothesis may be applied, and for which the 

2The following simple proof is due to Uwe Waldmann. 
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proof depth is n - 1. Therefore we have a chain Al >.- ... >.- An - l of ground atoms 
leading from so me query atom to the maximal atom An - l = A of this premise of D. 
As the premises of the inference may be assumed as fully factored, A n- l >.- An , if An is 
the maximal atom in D, and thus we have extended the chain to one of length n. If the 
first premise is a ground clause which is not an instance of N and which has proof depth 
n - 1 then the reasoning is essentially the same. Factoring inferences are redundant 
since we factor computed clauses eagerly. 

Now, ifthis strategy of N-linear saturation for NU-.C were to produce an unbounded 
number of (ground) clauses, the maximal proof depth of this set of clauses would be 
unbounded. But that would imply the existence of an unbounded decreasing chain of 
ground atoms starting out from some atom in the query C. This is a contradiction to 
the well-foundednessof >.-. D 

6.3 Decidability / Complexity (Mixed Case) 

It should be possible to refine the previous theorem to give an upper bound on the 
complexity of entailment problems as a function of the maximallength 1 (n) of decreasing 
chains of atoms that start from any given atom of size n. Instead, we show how 
this result can be combined with the previous to provide upper bounds for entailment 
problems. 

Suppose that N is saturated with respect to an ordering >.-. Moreover, assurne that 
>.- is an extension of a possibly smaller ordering >.-' such that for each clause C in N 
there is an atom A in C that contains all variables of C and such that A >.-' B, for 
all other atoms B in the clause (in an atom ordering >.-' that is compatible wit,h the 
term ordering >.-'). Finally, let ground terms of size n have O(J(n)) smaller terms with 
respect to >.-' , which may be enumerated in O(g(n)) time. 

Theorem 9 Under the assumptions listed above, entailment zs decidable in time 
O(J(m)k + g(m)), iJ N is aHorn clause set. Disentailment is d~cidable non­
deterministically in time O(J(m)k + g(m)) iJ N is a Jull clause set. In both cases 
m reJers to the size oJ the query. 

Proof When N entails C then Theorem 8 provides the existence of a ground proof in 
which all atoms are sm aller under >.- then those in C. Under the additional assumptions, 
they are also smaller under >.-' and so N is local with respect to >.-'. Hence, Theorems 
6 and 7 apply. D 

6.4 Special Cases: Polynomial and Exponential Orderings 

We obtain polynomial bounds for entailment or disentailment if orderings are employed 
for which terms have only polynomially many smaller ones, and which can be enumerated 
in polynomial time. A simple example of such a polynomial ordering is the subterm 
ordering .>. A refinement, based on a precedence 1r on function symbols, is the following: 
S ·>n t iff (i) s .> t, or else (ii) s = J( ... ), t = g(tl, ... , tn), S .> ti, for 1 ~ i ~ n, and 
J >n g. In this ordering each term can have at most O(ltln ) sm aller terms, where n is 
the maximal arity of function symbols. We will refer to this ordering as the 1r-modified 
sub term ordering. 

These orderings remain polynomial if we extend them by arbitrarily many additional 
ground facts s .> t in a well-founded and query-independent way. 
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We obtain exponential bounds for entailment or disentailment if orderings are em­
ployed for whieh terms have only exponentially many smaller ones, and which ean be 
enumerated in exponential time. An example of sueh an exponential ordering is the 
Knuth-Bendix ordering (KBO) [8]. An instanee of the KBO is specified by a weight 
funetion and a preeedenee on the function symbols. Ground terms are eompared by 
first eonsidering their weights. If the weights are equal, the topmost funetion symbols 
are eompared with respect to their preeedenee. If these are the same, their arguments 
are eompared lexieographieally. It has been shown in [6] that under eertain restrictions 
deereasing ehains tl ~ t2 ~ ... of ground terms ean be of at most exponential length if 
~ is a KBO. The statement holds, for instanee, if all function symbols have an arity less 
than or equal to 1. It is true for an arbitrary signature if unary function symbols (and 
eonstants) have a weight greater than O. Function symbols of arity greater than 1 ean 
have an arbitrary non-negative weight (including 0). Sinee KBOs are total orderings 
(for total preeedenees) this implies that there are at most exponentially many smaller 
terms for any given grQund term. 

Double exponential orderings ean be obtained by polynomial interpretations. In [6] 
it was also shown that deereasing ehains of ground terms with respect to polynomial 
interpretations have a double exponential length bound. Henee if one allows arbitrary 
polynomial interpretations in a KBO (rather than just linear, weight-defined term inter­
pretations) one obtains orderings where terms have at most double exponentially many 
smaller terms. 

7 Characterizing Complexity Classes 

In this seetion we will restriet ourselves again to Horn clauses. We have previously 
seen that order loeality ean be used to identify the eomplexity of entailment problems 
for clause sets. Here we eonsider the eonverse problem: we show that when a ground 
entailment problem is deeidable in polynomial (exponential, ... ) time, then there is 
aHorn clause set defining that entailment relation which is loeal under a polynomial 
(exponential, ... ) ordering. This result is in the spirit of results in deseriptive eomplexity 
theory, for example that datalog programs precisely eapture the set of queries on a 
finite ground database decidable in finite time [7, 14]. In our setting, in the problem 
R 1= r -t A, the atoms in r play the role of the finite ground database and A and R 
determine the ground query.3 Our proof is general and applies to eomplexity classes 
associated with other orderings (e.g., exponential orderings) as weIl. 

We proeeed by showing how Turing maehines ean be eneoded as Horn theories that 
are trivially saturated under orderings which reflect the sueeessor relation between eon­
figurations in eomputation histories. Note that our proof is quite direct and eoneeptually 
simpler then similar results for polynomial time queries proven in [5] ; moreover, the en­
eoding we use are not possible in MeAllester's setting as it requires problem speeifie 
orderings. 

3Note that in Datalog, A need not be ground, but since the data uni verse is assumed to be finite this 
is equivalent to testing polynomially many (n k

, where n is the size of the data-universe and k the arity 
of A) ground queries. 
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7.1 Encoding 

A Turing machine is a four-tuple M = (Q, ß, ö, F) where Q is a finite set of states, with 
starting state qo E Q, ß is a finite tape alphabet, which contains an empty tape square 
symbol q, Ö : Q x ß --7 Q x ß x {L, R} is the transition function and, F ~ Q is the final 
set of states. 

We associate machine configurations with strings in ß*(Q x ß)ß*: ifw(q,a)v is a 
configuration then wav is the tape conte nt and the Turing machine head points to a 
and is in state q. Let C = w(q, a)v and C' = w'(q', a')v' be configurations, then C' is 
a successor (the unique successor, when M is deterministic) of C, which we write as 
C"-,, C' if 

1. (q',b,L) E Ö(q,a), w = w'a', and v' = bv, or 

2. (q',b,R) E Ö(q,a), w' = wb, and v = a'v', or 

3. (q',b,R) E ö(q,a), w' = wb, 1.1 = 1.1' = E, and a' = Q. 

A configuration w(q, a)v is a halting configuration if ö(q, a) = 0, accepting if q E F, 
and initial with respect to the string x = al ... an if q = qo, w = E, a = al, and 
v = a2 ... an. A computation history (of length k + 1) on input x is a sequence Co, ... , 
Ck of configurations where Ci"-" CHI, and Co is initial with respect to x. The history 
is accepting (halting) if Ck is accepting (halting). 

Given a machine M we construct a signature and a rule set RM that represents 
M's computation. In the signature, each q E Q corresponds to a constant (given the 
same name) and each Ö E ß corresponds to a unary function, which we will apply by 
juxtaposition, e.g. , at instead of a(t). In addition we have a new constant E, a function 
symbol c of arity 4 for representing configurations, and a unary predicate symbol tm. 
We represent a configuration 

by the ground term 

We previously listed three kinds of Turing machine transitions. Associated with each 
kind is a set of rules correspond to each possible transition. Rules for the first kind are 
of the form 

tm(c(W',q',a',bV)) --7 tm(c(a'W',q,a, V)), (1) 

which formalizes the relationship between the successor configuration (on the left) and 
the predecessor (on the right). Note that lower case letters range over states and con­
stants determined by M's transition function Ö and upper case variables are universally 
quantified in the rule. Rules for the second and third kind of transition are given by 

tm(c(bW,q',a', V')) --7 tm(c(W,q,a,a'V')) (2) 

and 
tm (c( b W, q' , q, E)) --7 tm (c( W, q, a , E)) . (3) 

Finally, there is an additional set of rules, for each J E F, which reflects accepting 
computations. 

--7 tm(c(W, J, A, V)) (4) 
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Let M be a Turing maehine and let RM be the set of aU rules derived from M. Given 
astring x, let r x 1 denote the representation of the initial configuration with respeet to 
x. By eonstruetion, for every x E ..6.*, 

xE L(M) +-+ RM F tmUxl)· 

Let us say that any RM with this property recognizes the language L(M). 

7.2 Saturation and Characterization of Complexity Classes 

Let a Turing maehine M and its corresponding theory be given as above. CaU M 
uniJormly terminating when aU eomputations from any initial configuration terminate. 
For such an M, it is simple to find an ordering >- M with respeet to whieh RM is 
order loeal: take the transitive closure of the transition relation 'Vt + , that is, define 
( ) ( '" ')·ff ( ) + '(' ') , c v, q, a, w >-Me v, q , a ,W 1 V q, a W'Vt v q, a W. 

Lemma 5 Let M be uniJormly terminating. Then RM is local with respect to >- M. 

ProoE. As M is uniformly terminating, >- M defines a weU-founded partial order. Let 
>-' denote any total well-founded extension of >-M. We extend >-' to atoms by 
tm(c(v,q,a,w)) >-' tm(c(v',q',a',w')) if and only if c(v,q , a, w) >-' c(v',q',a',w'). Now, 
observe that the right-hand side of eaeh rule (the positive atom) is always greater than 
the left-hand side (the negative atom). As a result, there ean be no ordered resolution 
steps, beeause we eannot satisfy the ordering requirement for the seeond premise when 
the resolved atom oeeurs negatively. Henee RM is saturated up to redundaney with 
respeet to every total well-founded extension >-' of >- M . So RM is loeal with respeet to 
>-M. 0 

Eaeh rule in R direetly simulates a Turing machine transition exeept for the final rule 
whieh simulates aeeeptanee. Henee when M is deterministie, the length of the unique 
eomputation history starting from the initial configuration of astring x is preeisely the 
number of terms smaller than x under >. Combining this with the previous lemma gives 
us the following: 

Lemma 6 Let M be a deterministic Turing machine whose running time Jor all input 
strings x is bounded by J(lxl). Then there is an ordering >-, in which each ground term 
has at most J(lxl) >--smaller terms and a >--local theory R which recognizes L(M). 

This is not too surpnsmg. Our Horn proofs trees are simply unbranehing linear se­
quenees of atoms that direetly refleet a eomputation histories for M. Note that if M 
were nondeterministie, then terms would have O(kf(lx l)) >--smaller terms where k is 
determined by J and is the maximum number of transitions for any pair of q E Q and 
a E ..6.. 

Finally, we relate this result to polynomial time rule sets R . 

Theorem 10 Let R be aHorn theory over a finite signature Jor which ground entailment 
is polynomial time decidable. Then there is aHorn theory S over an extended signature 
that (1) is order local under a polynomial ordering and (2) Jor alt Horn clauses Cover 
the signature oJ R , R F C +-+ S F C. 
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Proof If the entailment problem für R is polynomial time decidable then there is 
some deterministic Turing machine M that operates on strings (polynomially) encoding 
ground Horn clauses and accepts exactly those ent.ailed by R. Further, the time required 
for any computation is bounded by a polynomial. Using Lemma 6 it foBows that that 
there is aHorn clause theory S that is local under a polynomial ordering and recognizes 
L(M). 

To finish the proof requires extending the signature and some metaprogramming (a 
bit in the spirit of the construction in seetion 5). We augment the signature of S with 
declarations for R; we assurne that the names of representatives in S are distinct from 
the functions and predicates in R which they represent . The resulting theory, however, 
doesn't prove the same Horn clauses C as R but instead C encoded, using the tm 
predicate, as the appropriate initial Turing machine configuration. If S is to accept. C 
itselfwe must add rules for a metaprogram such that for each C, S F tm( ... ) -+ C where 
tm( ... ) is the corresponding initial configuration for C in the theory S. This requires 
adding rules for aHorn metaprogram which translate clauses C to configurations tm( ... ). 

We omit details here but this can be done in linear time with a simple metaprogram 
that can be added to S preserving locality under a polynomial ordering. 0 

For concreteness we have proven the theorem for polynomial time. But we can 
uniformly replace the word "polynomial" by exponential or any other large complexity 
class and the proofremains valid. Hence polynomial (exponential, etc.) time entailment 
corresponds precisely to locality under the correspönding orderings. 

8 Order Locality in Practice 

8.1 Finite Saturation of Clause Sets 

When a set of clauses is not saturated we may try to saturate it by adding aB con­
sequences that can be obtained from non-redundant resolution inferences. Saturation­
based theorem provers such as our Saturate system [4] may be employed for that purpose 
provided that they support appropriate classes of orderings and that they provide strong 
enough techniques for simplification and for the detection of redundancy. The meth­
ods for proving redundancy that we have implemented in the Saturate system have 
proved sufficiently powerful for saturating a number of non-trivial examples, including 
congruence closure, tree embeddings, various fragments of propositionallogic, and total 
orderings. Most of the methods that we currently apply for detecting redundancy are 
described in [13]. 

In order to apply the Theorem 3 we need to simultaneously saturate with respect 
to aB total extensions ,;-' of a given term ordering ';-. This in particular includes the 
choice of a method for extending the ,;-' to atoms. The foBowing method has turned out 
to be useful in this context. Let ,;-' be a weB-founded, total ordering on ground terms, 
and let >11" denote a weB-founded, total ordering (a precedence) on predicates. By the 
lexicographic extension ';-~ of ,;-' to ground atoms (with respect to >11") we mean the 
ordering defined as foBows: P(tl,'" , tm) ';-~ q(Sl,' " , sn) if and only if: 

(i) p >11" q, and for aB j there exists an i such that ti t' Sj, or 
(ii) p = q and there exists a k such that Si = ti, for 1 :S i < k, and tk ,;-' Sk, and for 

aB k < j :S n there exists an i such that ti t' S j, or 
(iii) there exists an i such that ti ,;-' Sj, for aB j. 
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Note that the disjunction (ii) or (iii) is not exclusive and that (iii) implies (i) if p >7r q. 
(iii) implies compatibility with the term ordering. 

The relation >-~ coincides with the lexicographic path ordering if ground terms are 
considered as constants (their structure is forgotten), and where the precedence is given 
by the term ordering >-', by the precedence >7r on the predicates, and by assuming that 
each predicate is smaller than any term. >-~ is a total and well-founded ordering on 
ground atoms. An alternative method might be based on the multiset extension of >-' 
applied to the sets or multisets, respectively, of arguments of the atoms. 

Given >7r' to saturate a set of clauses with respect to all the >-~ requires solving 
certain ordering constraints. An ordering constraint is a propositional formula , over 
inequations A > Band A ~ B , where A and Bare (possibly nonground) atoms. ,is 
called solvable if there is (i) an extension of the given signature of function symbols, 
(ii) a total and well-founded ordering >-' on ground terms over the extended signature 
extending >- , and (iii) a ground substitution (1 for the variables in " such that ,(1 is 
satisfied when interpreting > and ~ as the strict and the non-strict version >-~ and 
~~, respectively, of the lexicographic extension of >-' with respect to >7r' A procedure 
that checks for satisfiability of such constraints can be incomplete in that unsolvable 
constraints may be classified as "possibly solvable", but not vice-versa. Saturation 
may now employ this constraint solver to discard any inference for which the ordering 
constraint is shown to be unsolvable. Moreover, when proving the redundancy of an 
inference only clauses smaller than the maximal premise may be employed. Sufficient 
criteria for this problem may be formulated as constraints for which the classification 
"unsolvable" indicates that the clause in quest ion is indeed sufficiently small. Theories 
that are treated according to this use of ordering constraints will, upon termination of 
the saturation process, be saturated with respect to all the >-~. Polynomial complexity 
bounds for entailment follow if the ordering >- is polynomial. 

We have mentioned that lexicographic atom orderings are special cases of lexico­
graphic path orderings if one forgets the structure of terms and considers them as 
constants. Based on that observation we have implemented a constraint solver as a 
special instance of the constraint sol ver for the lexicographic path ordering that we had 
available in our system as an implementation of the algorithm in [12]. 

8.2 Saturation Modulo an Equivalence 

The theory of ordered resolution and its applications as outlined above can be straight­
forwardly extended to resolution modulo an equivalence '" on terms and atoms. The 
extension requires that the respective orderings be compatible with '" in the sense that 
if s >- t and s '" s' and t '" t' then s' >- t' . Moreover, unification modulo '" should 
be computable and finitary. Finally, for obtaining complexity results in the spirit of 
section 6.1, the equivalence between ground terms should be decidable in linear time 
or at most polynomial time. Note that the complexity results are then independent of 
the cardinality of equivalence classes. The proof of Theorems 6 and 7 can be refined 
by describing the details of aresolution procedure that employs "'-matching on ground 
atoms rat her than enumerating all equivalent "'-variants of the required ground clauses. 

As an example, suppose that '" is just the symmetry of a binary relation symbol R, 
that is, R(s, t) '" R(t, s), for any two terms sand t. Then the multiset extension of a 
given term ordering (applied to the arguments of R-atoms) yields a compatible atom 
ordering. 
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9 Examples Checked by Saturate 

The following examples report about cases in which we were able to successfully saturate 
a theory with the Saturate system. When we speak of "the" saturation we refer to the 
particular strategy of saturation as it is implemented in the Saturate system. Different 
strategies might lead to different results. While Knuth-Bendix completion for unit equa­
tions produces a uniquely determined (possibly infinite) canonical system (depending 
on the ordering) , no related result is known for dauses and saturation under ordered 
resolution. 

9.1 Congruence Closure 

-+ x =x 

x=y -+ y=x 

x = y, y = z -+ x= z 

x=y -+ j(x, z) = j(y , z ) 

x=y -+ j(z, x) = j(z, y) 

This presentation of the axioms for congruences over a binary function symbol is not 
subterm local. For instance, 

a = b, C = d -+ j(a,c) = j(b,d) 

cannot be derived without employing an intermediate term j(a, d) or j(b, c), neither 
of which is a subterm of the query. The given presentation can be saturated with 
respect to the subterm ordering, which proves that the congruence dosure problem has 
a polynomial time upper bound. The saturated system we obtain with Saturate is the 
following: 

-+ x=x 

x=y -+ y=x 

x = y, y = z -+ x=z 

x=y -+ j(x , z) = j(y, z) 

x=y -+ j(z , x) = j(z, y) 

x = y, j(y , z) = u -+ j(x,z) = u 

x = y, j( z , y) = u -+ j(z,x) = u 

x = y, u = v -+ J(x, u) = j(y, v) 

x = y, u = v, j(y, v) = z -+ j(x,u) = z 

If Saturate did a more sophisticated backward checking of redundancy, the dauses 4-7 
could have been deleted after the last two clauses are generated. We obtain O(n3 ) as 
an upper bound which obviously is not a very tight one. 

9.2 Embedding of Trees 

The following defines the strict embedding relation> on terms over one binary function 
symbol j as a transitive, irreflexive relation that indudes the subterm relation and is 
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compatible with contexts. 

x> y, Y > z ~ x>z 

x>x ~ 

~ j(x, y) > x 

~ j(x, y) > y 

x>y ~ j(x, z) > j(y, z) 

x>y ~ j(z, x) > j(z, y) 

The given presentation is not subterm-local. Saturation with respect to the subterm 
ordering gives: 

x> y, y> z ~ x>z 

x>x ~ 

~ j(x, y) > x 

~ j(x, y) > y 

x>y ~ j(x,z) > j(y,z) 

x>y ~ j(z, x) > j(z, y) 

x>y ~ j(x,z) > y 

x> j(y,z) ~ x>y 

x>y ~ j(z,x) > y 

x> j(y,z) ~ x>z 

x> y, j(y, z) > u ~ j(x,z) > u 

x> y, z > j(x, u) ~ z > j(y,u) 

x> y, j(z, y) > u ~ j(z,x) > u 

x> y, u > j(z,x) ~ u > j(z,y) 

x> y, z> u ~ j(z,x) > j(u,y) 

x> y, u> z, j(z, y) > v ~ j(u,x) > v 

x> y, z > u, v > j(z, x) ~ v> j(u,y) 

We obtain O(n3 ) as an upper bound for its Horn theory. 

9.3 Propositional Calculus 

The following example, formalizing a fragment of propositional logic as Horn Clauses, 
is a slight modification of [10]. 

true(p) ~ true(or(p, q)) 

true(p) ~ true(or(q, p)) 

true( or(p, q)), true(not(p)) ~ true(q) 

true(or(p, q)), true(not(q)) ~ true(p) 

true( not(p)), true( not( q)) ~ true(not( or(p, q))) 

true(not(or(p, q))) ~ true( not(p)) 
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true( not( or(p, q))) ~ true( not( q)) 

true(not(p)), true(p) ~ true(ff) 

true(ff) ~ true(p) 

true(not(not(p))) f-7 true(p) 

This is a theory presentation that is not subterm loeal. In fact, to derive 
true(or(not(p) , q)), true(p) ~ true(q) requires true(not(not(p)) as an intermediate 
atom. It is, however, saturated with to the modified subterm ordering over the preee­
denee or >- not >- ff, giving us O(n2 ) as an upper bound for its Horn theory. In this 
ordering or(not(p) , q) is greater than not(not(p)). 

As another simple example, eonsider the following presentation of full propositional 
logie. 

true(A) ~ true( or(A, B)) 

true(A) ~ true(or(B, A)) 

jalse(A), jalse(B) ~ jalse(or(A, B)) 

~ true(A), jalse(A) 

j alse( not(A)) ~ true(A) 

true(A) ~ j alse(not(A)) 

The presentation is trivially saturated under the subterm ordering, henee we obtain 
CoNP as an upper bound for the entailment (tautology) problem. 

9.4 Orderings 

The following defines the Horn theory of nonstriet partial orderings. 

~ x=x 

x=y ~ y=x 

x = y, y = z ~ x=z 

x=y ~ x5c.Y 

x :S y, y 5c. z ~ x:Sz 

x 5c. y, y 5c. x ~ x=y 

Saturation with respect to the subterm ordering (and the preeedenee 5c. >- =) yields 

~ x=x 

x=y ~ y=x 

x = y, y = z ~ x=z 

x=y ~ x5c.y 

x 5c. y, y 5c. z ~ x5c.z 

x 5c. y, y 5c. x ~ x=y 

x = y, y 5c. z ~ x:Sz 

x 5c. y, y = z ~ x5c.z 

from whieh we obtain a cubic upper bound for the entailment problem. This is an 
automatie proof ofTheorem 3.4 in [11]. (The latter paper also shows that this theory is in 
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fact the in some sense largest fragment of Allen's intervallogic which is computationally 
tractable. ) 

In a similar way one obtains a saturated version of the first-order theory of a total 
ordering, giving CoNP an an upper bound for its universal fragment. 

10 Locality of Propositional Sequent Calculus 

The previous examples were checked with the Saturate system. The following example 
is of a more theoretical nature and was not run on the Saturate system for reasons that 
will become clear below. 

10.1 The Definition of LK 

We shall assurne that propositions are built from two logical symbols, conjunction and 
negation, from which other standard connectives can be defined. Then LK consists of the 
inference rules given in figure 1, in which C> is used to separate antecedent and succedent 
in sequents. Antecedent and succedent are possibly empty multisets of formulas built 
from propositional variables, conjunction and negation. 

Ac>A (axiom) 

rC>ß ( weakening) r,AC>3,II 

r, Ajl C> ß (contraction left) I' C>3 , 

r C> .6.
A 

A
iI 

A 
r C> , (contraction right) 

r , A,B C> ß (conjunction left) I'A!\Ec>3 , 

r C> ß l A r C> ß l B 
r C> 3, A!\ B (conjunction right) 

r C> ß l A 
r, ,A C> 3 (negation left) 

rlAC>ß 
r C> 3 , ,A (negation right) 

r C> ß l A Al A C> TI 
r,Ac>3,rr (cut) 

Figure 1: The Horn Theory LK 

The Horn theory of LK can be seen as a theory of derivable inference rules. Despite 
the fact that cut-elimination holds for sequents, the cut rule is not redundant when 
one considers the Horn theory. For example, derived rules corresponding to natural 
deduction elimination, e.g., 
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re> ß , A /\ B 
re> ß,A 

are logical consequences of the logical rules and cut. In the presence of cut and weak­
ening, the contraction rules and the logical rules of LK are in fact equivalences which 
may be used to eliminate the logical symbols from sequents and to remove multiple 
occurrences of propositional variables. 

10.2 An Encoding of LK as aHorn Theory 

In our encoding LK of LK the ground atoms are built from a family e>k,n of (k + n)­
ary predicate symbols taking (representations of propositional) formulas as argu-
ments. A ground atom e>k,n(AI, ... ,Ak,BI, ... ,Bn}, with propositional formulas Ai 
and Bi, represents the sequent Al, ... , Ak e> BI, . .. , B n. We admit only such atoms 
e>k,n(AI , ... ,Ak,BI , ... ,Bn) in which the Ai and Bi subsequences are ordered with re­
spect to the formula orderings that will be defined later, and in which none of the Ai and 
Bi, respectively, occurs more than once in their respective subsequences. Alternatively 
we might say that we identify any two ground atoms whenever their sets of positive and 
negative formulas are the same, that is, their antecedents and succedents, respectively, 
are equivalent modulo ACIL 

The reason why we introduce the multisets on the meta-level is that the only dass of 
orderings for which we will be able to show that LK is saturated is the dass of orderings 
that are multi-set extensions of certain orderings on formulas. If multisets were on 
the object level we would have to consider any extension of orderings on formnlas to 
multisets of formulas. 

On the non-ground level, atoms are written as expressions of the form e>(H, G), where 
Hand Gare expressions denoting sets of formulas. These set expressions are built from 
"+", denoting union of formula sets, from propositional formulas, from metavariables 
A, B , C for formulas , and meta-variables ß, r, A and II for sets of formulas. Then 
e>(H, G) represents all ground atoms of the form e>k ,n(A I , . .. , Ak, BI, . .. ,Bn) for which 
{Al, ... ,Ad and {BI, ... , Bn}, respectively, are sets of propositional formulas denoted 
by the set expressions Hand G. Note that "+" is not in the language of LK ground 
dauses. It is used for a finite "non-ground" representation of certain infinite sets of 
LK ground atoms and dauses. The ground terms of LK are simply the propositional 
formulas. Since we are working modulo idempotence, there is no need anymore for any 
explicit representation of the contraction rules. 

It follows the list of the axioms of LK, finitely presented by using the concept of 
non-ground atoms as described before. 

--t e>(A,A) (5) 

e>(r , ß) --t e> (r + A, ß + II) (6) 

e>(r + A + B, ß) +-+ e>(r + (A /\ B), ß) (7) 

e>(r, ß + A), e>(r, ß + B) --t e>(r, ß + (A /\ B)) (8) 

e>(r, ß + (A /\ B)) --t e>(r,ß + A) (9) 

e>(r, ß + (A /\ B)) --t e>(r, ß + B) (10) 

e>(r + -,A, ß) +-+ e>(r, ß + A) (11) 

e>(r, ß + -,A) +-+ e>(r + A, ß) (12) 
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c>(r, ß + A), c>(A + A, lI) -+ c>(r + A, ß + lI) (13) 

Theorem 11 IX is saturated up to redundancy by ordered resolution with respect to 
any total and well-founded extension of the subterm ordering on propositional formulas. 

Proof Let >- be a total and well-founded extension of the subterm ordering on propo­
sitional formulas. We have to provide a compatible extension of >- to CK ground 
atoms and to show the redundancy of all ordered resolution inferences between CK­
clauses. Let >- be an ordering on atoms for which C>k,n(AI , ... , A k, BI, .. ·, B n) >­
C>kl,nl(A~, ... ,A~"B~, ... ,B~,) whenever the set {AI, ... ,Ak,BI, ... ,Bn} is greater 
than the set {A~, ... , A~" B~, ... ,B~I} in the multiset extension of >-. With this or­
dering we can now analyze possible inferences. 

The only nontrivial inferences are those involving weakening and/or cut. First we 
observe that instances 

c>(r, ß + A), C> (A + A, lI) -+ c>(r + A, ß + lI) 

of the encoding (13) of the cut rule are redundant if the cut formula A is in any of the 
sets r, ß, A or II. These instances are subsumed by weakening (6) and hence need not 
be considered further. Moreover, for c>(r, ß + A) to be the strictly maximal atom of an 
instance of cut it is not possible that A \ r or II \ ß contains a propositional formula 
which is greater than A with respect to >-. Otherwise c>(r + A, ß + lI) would be a 
bigger atom. A dual property holds when one assumes the maximality of c>(A + A, lI). 
If c>(r + A, ß + lI) is assumed to be maximal, then A cannot be maximal in either r + A 
or ß + II. We now consider some representative cases of inferences involving cut. 

Consider the clause 

c>(r, A + ß), c>(A' + A, lI') -+ c>(r + A + A', ß + II + lI') 

obtained by resolution from the premises 

c>(r, A + ß) -+ c>(r + A, A + ß + lI) 

(an instance of (6)) and 

c>(r + A, A + ß + lI), c>(A' + A, lI') -+ c>(r + A + A', ß + II + lI') 

(an instance of (13)). This is another proof of the same clause: 

C>(r, A + ß) c>(A' + A, lI') 

c>(r + A', ß + lI') (13) 
-------- (6) 
C> (r + A + A', ß + II + lI') 

All c>-atoms in that new proof are smaller than the (strictly) maximal atom c>(r + 
A, A + ß + lI) of the resolution inference. In particular, c>(r + A + A', ß + II + lI') is 
smaller as A is bigger than any formula which is not in r, ß or II. 

As another example consider: the clause 

c>(A + A + B, lI), C>(r, (A 1\ B) + ß) -+ c>(r + A, ß + lI) 

obtained from 
c>(A + A + B, lI) -+ c>(A + (A 1\ B), II) 
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and 
c>(f, (A 1\ B) + ß), c>(1\ + (A 1\ B), II), -+ c>(f + 1\, ß + II), 

where c>(1\ + (A 1\ B), II) is the strictly maximal atom in either clause. This is another 
proof of the same clause: 

c>(f, (A 1\ B) + ß) 
-----(9) 

c>(1\ + A + B, II) c>(f, A + ß) c>(f, (A 1\ B) + ß) 
---------- (13) ----- (10) 

c>(1\ + f + B, II + ß) c>(f,B + ß) 
---------------- (13) 

c>(f + 1\, ß + II) 

We again utilize that A 1\ B is bigger than any formula in f \ 1\ and ß \ II. A and Bare 
both smaller than AI\B. Hence all atoms of the proof are smaller than c>(1\+ (AI\B), II), 
and the inference is redundant. 

The other cases of inferences between cut and logical rules follow the same pattern 
and are left to the reader. 0 

eK without cut can be shown saturated with SATURATE by ordered resolution mod­
ulo AC1 for "+" with a linear polynomial interpretation such that exponential-time 
decidability folIows. 

10.3 Consequences of the Locality of .cK 

Theorem 12 The Horn theory of eK, and hence the theory of derivable inference rules 
for LK, is decidable in exponential time. 

Proof Since eK is saturated under all extensions of the subterm ordering on formulas, 
it follows that any ground consequence Q of eK follows from eK ground clauses in which 
all terms (i.e., propositional formulas) are subformulas of formulas in Q. Depending on 
the size of Q there are exponentially many eK ground atoms with that property, hence 
exponentially many ground clauses of eK are needed for proving Q, and any of these 
clauses can be generated in linear time. 0 

Note that the term ordering (terms are the propositional formulas) in the proof of locality 
is the subterm ordering. We nevertheless do not get a polynomial bound as our notion 
of non-ground clauses is not the usual one. 

Theorem 13 (Cut Elimination) If asequent S is derivable in LK then there exists 
a derivation of S without application of cut. 

Proof Let S be the sequent Al, ... , Ak C> BI, ... , B n over the formulas Ai and 
B j . We prove the theorem by showing that if S is derivable in LK then 
C>k,n(AI, ... ,Ak,BI, ... ,Bn) follows from eK \ {(13)}. Suppose S is derivable in LK. 
Then S = C> k,n (Al, ... , Ak, BI, ... , B n) is a consequence from eK. We may restrict our-
selves to the case where the Ai and Bj are propositional variables. This follows since we 
may employ the logical equivalences in eK to eliminate any logical symbol that might 
have been present in S. The result of that elimination is a set of sequents without logical 
symbols such that the original sequent S is derivable if and only if each of the sequents 
in the set is derivable. 
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Let. >- be a total ordering of the propositional variables. By Theorem 12 there exists 
a linear proof of S in LK by ordered resolution with respect to >-. Such a proof may be 
viewed as a tree with S as root and each interior node an instance of a clause is LK. By 
locality, each node in the proof tree is an LK-atom in which all terms are propositional 
variables in S. Moreover, any node is smaller in the atom ordering than its ancestor. 
The only LK-clauses that can participate in aresolution step are axioms (5), weakening 
(6) and (13). We show, by induction over >-, that inferences with (13) are redundant. 
Let 

t>(r,.6. + A), t>(A + A, II) -t t>(r + A,.6. + II) 
be an instance of (13) in any given proof of S. Then S' = t>(r,.6. + A) and S" = 
t>(A + A, II) are both smaller than t>(r + A,.6. + II), and A is a propositional variable 
in S. By the induction hypothesis, the proofs of S' and S" only employ axioms and 
weakening. But then t>(r + A,.6. + II) is also the weakening of an axiom. 0 

11 Comparison between Subterm Locality and Order Lo­
cality 

A full description of the algorithm given by [5J for testing sub term locality is beyond 
the scope of this paper. However, here we compare the main ideas behind McAllester's 
locality procedure and our saturation based procedure, especially how both construc­
tively correspond to proof-normalization arguments. For concreteness, we compare both 
methods on a simple example: the theory of transitive closure where N consist of the 
transitivity clause for some predicate p, i.e., 

N = {p(x, y), p(y, z) -t p(x, zn. 
11.1 Subterm Locality via Backward Chaining 

Given a set of terms Y, let 8t(Y) be the set of subterms in Y. As indicated in Section 2, 
a set of Horn clauses N is subterm local if for every ground Horn clause C, we have 
N F C if and only if N ~ C; this means that there is a set Y consisting of the ground 
terms in N and C where every term occurring in the proof of C from N contains only 
terms in 8t(Y). Subterm locality can be tested by looking for a feedback-event with 
respect to N, wh ich is a set of terms <I> and term a, where (i) 8t(Y) ~ 8t(<I», (ii) the 
proper subterms of a are contained in 8t(<I», (iii) N ~~ C, and (iv) N F~u{a} C. The 
intuition is that a feedback event identifies a set of terms <I> which is "just too small" 
to bound the terms needed to derive C: the additional feedback witness a is needed for 
some derivation. It is easy to show that N is local iff there is no feedback event with 
respect to N. 

It [5J it is shown that sub term locality, in general, is undecidable; however, a proce­
dure is given that identifies a non-trivial subclass of local clause sets. This procedure is 
based on backchaining, which is Horn clause resolution, augmented with book-keeping 
information. The additional information supports termination analysis, Le. , identifying 
feedback events or the impossibility of such events. In particular, for ~, r sets of atoms, 
and A an atom, a template, 

~,r r-Yu{a} A 

represents the Horn clause 
~,r -t A 
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where (i) Y is subterm closed and contains all proper subterms of Q, but not Q itself, 
(ii) st(~ U {A}) <;;; Y, and (iii) st(f) <;;; Y U {Q} and every atom in f contains Q. 
This additional book-keeping information is used for termination: when f is empty, 
the resulting template represents a potential feedback event, with feedback witness Q. 

Moreover, in some cases it is possible to terminate with success and indicate that the 
rule set is local. 

In our example, we start with 

{}, {p(x, y) ,p(y, z )} f-ru{y} p(x , z ), 

which is the only possible template (in general there may be many) corresponding to the 
single clause in N. The variable Y represents all possible sets meeting the above three 
conditions contain at least x and z. Now, according to [5] we may backchain through 
this template by resolving some atom in f, say p(x, y), with any clause in N (here, there 
is only one) and partition the resulting atoms into f, when they contain Q and otherwise 
into ~. 

In our example, backchaining through p(x, y) yields two new templates: 

{p(x, w)}, {p(w, y),p(y, z)} f-ru{y} p(x, z) 

and 
{}, {p(x, y),p(y, y),p(y, z)} .f-ru{y} p(x , z ). 

These both are instances of the clause 

p(x , w),p(w, y),p(y, z) -+ p(x, z) 

but two templates are needed to represent the cases where w is distinct from the feedback 
witness y, or identical. 

Backchaining may terminate with success (indicating locality) when all new tem­
plates can be justified from previously generated templates. Justification is complex 
and we omit details here (the technical details are considerable, see [5]); however, the 
idea is roughly that new templates are justified when previously generated templates 
(considered as rules) entail atoms Al, . . . Ak under Fru{Q} and these Ai entail (from the 
original set of rules) the desired goal using Fr. In our example, the se co nd template 
generated is justified as, if we drop the se co nd hypothesis p(y, y), then it is an instance 
of the starting template. The first template is justified since an instance of the starting 
template is 

{}, {p(w , y),p(y , z)} f-ru{y} p(w, z) 

and from p(x , w) and p(w, z) we can prove p(x, z) without recourse to atoms mentioning 
the feedback witness y. 

Justification, and its proof of correctness, can be interpreted constructively as a kind 
of proof normalization procedure: given a direct proof, of say p(a, b) from N, the proof 
that the rule set N is justified, constructively explains how to transform any proof men­
tioning a feedback witness Q to one without Q. Reasoning about backchaining amounts 
to reasoning about transforming the composition of inference steps. In our example, 
justifying the two rules generated by backchaining, gives rise to two transformations for 
"pushing" Q (in our case y) upwards towards the leaves of a proof. For example, the 
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argument that justifies the first derived template can be interpreted constructively as 
explaining how to transforming a proof tree like that on the left to that on the right. 

PI P2 P2 P3 

P3 PI 
R(a, w) R(w, y) ==::} R(w, y) R(y, b) 

R(a, y) R(y, b) R(a, w) R(w, b) 

R(a, b) R(a, b) 

Similarly the justification for the second template corresponds to the following proof 
transformation: 

PI P2 

P3 
PI P3 

R(a, y) R(y, y) ==::} R(a, y) R(y, b) 
R(a,y) R(y, b) 

R(a, b) 
R(a, b) 

The first transformation, which is under the assumption that y i= w, moves the po­
tential feedback witness y closer to the leaves. The second transformation, when y = w 
is even simpler. Application of such transformations must terminate (and the termina­
tion ordering corresponds to the well-founded ordering implicit in the induction used 
in [5]) and each application makes progress moving y upwards. Moreover, a feedback 
witness may not occur in any leaves, since these correspond to assumptions and, by 
definition, feedback witnesses must be strict superterms of any term appearing in the 
Horn clause to be proven. Hence, for every proof with feedback, there is a corresponding 
proof without feedback, so the rule set is subterm local. 4 

11.2 Order Locality via Saturation 

Saturation may be directly applied to show that the transitivity example is order local. 
Indeed, this example is so simple, that one can easily show by hand that it is saturated 
with respect to any term ordering. 

We now consider the same example, using order locality. Let ~ be any vocabulary 
of function symbols and let >- be any total ordering on the ground terms over ~. N is 
saturated, and hence local, with respect to the lexicographic extension of >- to atoms. 
In fact, consider an inference by ordered resolution of the form 

p(x, u), p(u, y) -+ p(x, y) p(x, y), p(y, z) -+ p(x, z) 

p(x, u), p( u, y), p(y, z) -+ p(x, z) 

For the inference to be ordered we must have x >- y >- z and x >- y >- u. But then 

p(u, y), p(y, z) -+ p(u, z) p(x, u), p(u, z) -+ p(x, z) 

p(x, u), p(u, y), p(y, z) -+ p(x, z) 

4In the above we only considered resolution with the left atom in the initial rule, which corresponded 
to a transformation on the left-hand branch. There are similar cases for resolution with the right atom 
giving rise to similar transformations on the right side. Interestingly, McAllester's proof of correctness 
for justifications allows one to consider only backchaining (resolution) at one position and his explanation 
for this corresponds, constructively, to a kind of commutation condition on resolution proofs. 
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gives us a proof of p(x, u), p(u, y), p(y, z) -t p(x, z) in which the two premises are 
smaller thanp(x,y), p(y,z) -t p(x,z). 

By Theorem 6 we obtain the fact that the entailment problem for transitivity is 
polynomial. This result is also based on proof transformations. Any proof in a saturated 
theory N has an N -linear form (Theorem 2) and this form is used as the basis of showing 
the invariant that term size is bounded by the initial clause C at each step. Proof 
transformation lies behind the proof of the normal form theorem. Namely, to show that 
this linear-form exists, it suffices to consider a non-linear resolution step (the argument 
for factoring is similar) between two clauses in N: 

Since N is saturated, the step is redundant, and can be replaced by one involving sm aller 
instances of clauses in N. 

There are several other relationships between our approach and McAIIester's worth 
noting. First, redundancy testing in our setting plays a role analogous to backchaining 
in McAIIester's: McAIIester generates new clauses to test sub term locality whereas when 
a clause set is order local, saturation will not generate any new clauses. Instead, testing 
order locality consists of checking if each possible ordered resolution step is redundant. 
In general, this is undecidable, but then so is locality as a property of (Horn or fuII) 
clause sets. Second, and related to the first point, is that when we generate new clauses, 
they playa different role then clauses generated by McAllester's procedure. Namely, 
when he begins with a clause set N and terminates successfully with a set N', he can 
conclude that N itself was local; the new clauses were generated just to test that fact. 
On the other hand, when we terminate with a larger set N' we conclude that the larger 
set is local, but not necessarily the smaller set. This has advantages in the sense that 
it allows us, not merely to test locality, but (analogous to completion procedures) find 
a local rule set N' deductively equivalent to a non-Iocal one N. 

12 Conclusion 

In this paper we have generalized subterm locality to locality with respect to arbitrary 
well-founded term orderings. This provides a characterization of the complexity of 
entailment problems with respect to any deterministic time complexity class above and 
including P. Order locality is conceptually more general than subterm locality, also in 
that it applies to full clauses, and, hence also captures certain non~deterministic time 
complexity classes. 

As an operational tool for testing order locality we have proposed the concept of 
ordered resolution (with selection) up to redundancy. In fact, we have been able to 
show that order locality is in most cases equivalent to being saturated up to redundancy 
by ordered resolution. This links automated complexity analysis to standard techniques 
from resolution theorem proving. It also allows one to bring in standard improvements, 
e.g., AC unification and the like, into the framework. Saturation is a compiler which, 
when it terminates, has transformed a theory presentation that was not local into one 
that iso We have demonstrated the usefulness of our Saturate theorem prover in this 
regard. 
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