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Abstract 

Completely unimodal (i.e., having a unique local minimum on every face) 
numberings of many-dimensional hypercubes are abstract versions of differ­
ent optimization problems, like linear programming, decision problems for 
games, and abstract optimization problems. In this paper we investigate and 
compare the behaviors of seven iterative improvement algorithms: 

1) the Greedy Single Switch Algorithm (GSSA), 
2) the Random Single Switch Algorithm (RSSA), 
3) the All Profitable Switches Algorithm (APSA), 
4) the Random Multiple Switches Algorithm (RMSA), 
5) Kalai-Ludwig's Randomized Algorithm (KLRA), 
6) Weighted Random Multiple Switch Algorithm (WRMSA), 
7) Weighted Greedy Multiple Switch Algorithm (WGMSA) . 
Our experiments were conducted on all completely unimodal four­

dimensional hypercubes and on randomly generated hypercubes of dimen­
sions up to sixteen, Hamiltonian (presumably corresponding to hard problem 
instances) and non-Hamiltonian. 

Local-search improvement algorithms 1 and 2 have been investigated ear­
lier, but number 3, 4, 5, 6, and 7 probably not. Algorithm 5 (first time used 
for completely unimodal hypercubes in this paper) is the only algorithm with 
the known subexponential expected worst-case running . time. However, the 
algorithms 1, 3, 4, 6, 7 demonstrate superior behaviors compared to the 
other two investigated algorithms. This suggests that furt her theoretical and 
experimental studies of these algorithms should be carried out. 

Keywords 

Pseudo-Boolean functions, optimization, completely unimodal, Iocal search, 
algorithms, complexity. 
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1 Introduction 

Pseudo-Boolean function optimization is a fundamental core of many prob­
lems arising in constraint solving and mathematical optimization. Pseudo­
Boolean functions are real-valued functions on 0-1 variables. Some specific 
classes of pseudo-Boolean functions are of particular interest in the context 
of studying combinatorial aspects of various local-search improvement al go­
rithms, investigating combinatorial structures of polytopes, deciding games, 
solving linear programs, etc. A survey of pseudo-Boolean function optimiza­
tion and applications is presented in (Hansen, Jaumard & Mathon 1993). 

Our interest in optimizing pseudo-Boolean functions is motivated by their 
relevance to solving the so-called PARITY and SIMPLE STOCHASTIC GAMES. 
As became apparent from our investigation of the interior-point approach to 
solving games, (Petersson & Vorobyov 2001b, Petersson & Vorobyov 2001a), 
different variations of local-search-type iterative improvement algorithms can 
be investigated in a uniform way, considering them as abstract optimiza­
tion methods for well-behaved pseudo-Boolean functions. Specific pseudo­
Boolean functions arising as abstract representations of such games turn out 
to possess an extremely favorable property (absence of isolated local minima) 
rendering them especially appropriate for global optimization by iterative 
improvement. It turns out that the games we are interested in are ade­
quately approximated by the so-called completely unimodal pseudo-Boolean 
functions well investigated in the literature (Hammer, Simeone, Liebling & 
De Werra 1988, Williamson Hoke 1988). Such functions possess unique local 
optima on every face of a Boolean hypercube, a behavior shared1 by Simple 
Stochastic Games in which every locally optimal stationary strategy is glob­
ally optimal. Some proper subclasses of completely unimodal functions, like 
completely absorbing, or decomposable (see below), allow for efficient ran­
domized quadratic-time optimization. However, hypercubes obtained from 
games are more general, non-saddle free, and are not known to be optimizable 
in polynomial time. Consequently, we need efficient optimization algorithms 
for general completely unimodal hypercubes. To our knowledge, no such 
polynomial time algorithms currently exist. 

In this paper we collect, test, and compare several known and new local­
search type iterative improvement algorithms on exhaustively and randomly 
generated completely unimodal hypercubes, with the purpose of obtaining 
experimental evidence and gaining new insights for the development and 
analysis of new more efficient algorithms. The main conclusion of our study 
is that our multiple switches algorithms, both greedy and random (APSA, 

lwith a minor difference that can be ignored (or eliminated) 
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RMSA, WRMSA, and WGMSA), previously not investigated in the context 
of optimization on completely unimodal hypercubes, clearly demonstrate a 
superior behavior when compared to the known single switches algorithms: 
random, and Randomized Kalai-Ludwig's (the last one being the only proven 
subexponential algorithm for the problem). The greedy single switch algo­
rithm (GSSA) performs best on Hamiltonian hypercubes. 

2 Completely Unimodal Pseudo-Boolean 
Functions 

Let 1i(n) denote an n-dimensional Boolean hypercube {O, 1}", for n E N+. 
A pseudo-Boolean function is a mapping 1i(n) --+ IR associating areal 

number to every n-dimensional Boolean vector. For 0 ~ k < n, a k­
dimensional face of 1l(n), or a k-face, is a collection of Boolean vectors 
obtained by fixing n - k arbitrary coordinates and letting the k remaining 
coordinates take all possible Boolean values. Faces of dimension 0 are called 
vertices, faces of dimension 1 are called edges. Two vertices that share an 
edge are called neighbors. Each vertex v in 1i(n) has exactly n neighbors, 
forming the standard neighborhood of von 1i(n) 2. 

A pseudo-Boolean function on 1l(n) is called Hamiltonian if there exists 
a function-improving Hamiltonian traversal of 1l(n). 

Proviso. All pseudo-Boolean functions in this paper will be considered 
injective. This simplifies the analysis and is adequate for our purposes. Con­
sequently, without loss of generality we always assume throughout this paper 
that all pseudo-Boolean functions on 1l(n) take different integer values in the 
range 1, ... ,2". 

Complete U nimodality. A pseudo-Boolean function f is called com­
pletely unimodal (CUPBF for short) if one of the following equivalent condi­
tions holds (Hammer et al. 1988, Williamson Hoke 1988): 

1. f has a unique local minimum in each face, 

2. f has a unique local maximum in each face, 

3. f has a unique local minimum in each 2-face, 

20ur Random Multiple Switches Algorithm uses neighborhoods, which may be expo­
nentially large, in general. 
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4. f has a unique loeal maximum in eaeh 2-faee. 

Optimizing (minimizing) eompletely unimodal pseudo-Boolean functions 
on 1l(n) is a ehallenging open problem in eombinatorial optimization. No 
polynomial-time algorithms, deterministie, randomized, quantum, or other, 
are eurrently known for general CUPBFs. 
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3 Seven Iterative Improvement Algorithms 

A standard local-search improvement algorithm (SLSIA) starts in an arbi­
trary point Vo of the hypercube 1i(n) and iteratively improves by selecting a 
next iterate with a better value from a polynomial (standard) neighborhood 
N( Vi) of the current iterate. 

Select the initial point vO on the hypercube arbitrarily. 
Set i := 0 and vi := vO. 
While ( N(vi) contains an element v' with f(v') < f(vi) ) do 

Set i := i+l; 
Set vi : = v'; 

od. 
1* next iterate *1 

Specific instances of the SLSIA are obtained when one fixes: 

1. the neighborhood structure on 1i(n), 

2. the disciplines of selecting the initial point and the next iterate. 

Two major local-search improvement algorithms, the Greedy Single Switch 
Algorithm (GSSA) and the Random Single Switch Algorithm (RSSA) have 
previously been investigated and used for minimizing CUPBFs. They are 
described in Sections 3.1 and 3.2 respectively. 

We introduce, describe, and justify two new, previously uninvestigated 
algorithms, the All Profitable Switches Algorithm (APSA) and the Random 
Multiple Switches Algorithm (RMSA) in Sections 3.3 and 3.4. None of them 
are local-search algorithms. The first one operates with neighborhood 
structures which vary depending on the CUPBF being optimized. The sec­
ond chooses the next iterate from a non-polynomially bounded (in general) 
neighborhood of the current iterate. 

Finally, we employ and test the well-known, but probably ignored (in 
the framework of CUPBF-optimization), subexponential Kalai-Ludwig's Ran­
domized Algorithm (KLRA). This algorithm is the only provably subexpo­
nential algorithm for the problem3 . Interestingly, our experiments indicate 
that our multiple switch algorithms APSA and RMSA behave better than 
Kalai-Ludwig's (KLRA) . 

3Its expected worst case behavior is 20 ( fo) . 
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3.1 Greedy Single Switch Algorithm (GSSA) 

This is a local-search algorithm that at every iteration chooses the lowest­
valued neighbor of the current vertex as the next iterate. Recall that every 
vertex of 1l( n) has exactly n neighbors (in the standard neighborhood). This 
algorithm may take exponentially many steps to find the global minimum 
(vertex numbered 1) in the worst case; see (Williamson Hoke 1988, p. 77) . 

3.2 Random Single Switch Algorithm (RSSA) 

This is a local-search algorithm that at every iteration chooses uniformly 
at random one of the lower-valued neighbors of the current vertex as the 
next iterate. This algorithm mayaiso take exponentially many iterations to 
find the global minimum. Although its expected running time for general 
CUPBFs is unknown, Williamson Hoke (1988) has shown, using a proof­
technique due to Kelly, that the RSSA has an expected quadratic running 
time on any decomposable hypercube. Call a facet F (an (n -l)-dimensional 
face) a last facet if no vertex on F has a lower-valued neighbor that is not 
on F. A hypercube is called decomposable iff it has dimension 1 or has a last 
facet that is decomposable. 

3.3 All Profitable Switches Algorithm (APSA) 

Let f be an arbitrary CUPBF. Associate to each vertex v of ll(n) the n­
dimensional Boolean successor vector with the i-th component defined by: 

if the successor of v in the i-th direction has a sm aller f-value , 
otherwise. 

Thus, the global minimum and maximum have the all-zeros and all-ones 
successor vectors, respectively. 

The All Profitable Switches Algorithm (APSA) at every iteration com­
putes the successor vector s of a current iterate v and inverts the bits of 
v in positions where s has ones to get the new iterate v'. (Think of it as 
v' := v XOR s .) 

This algorithm mayaiso be seen as a local-search algorithm, but the 
structure of a neighborhood is not fixed apriori (as for GSSA and RSSA), 
but rather changes for each CUPBF. 

The fact that APSA is a stepwise improvement algorithm (for CUPBFs) 
follows from the fact that the current point v is the unique global maximum 
on the face defined by fixing all coordinates corresponding to zeros in the 
successor vector s . Therefore, the next iterate v' (which belongs to the same 
face) has a smaller f-value . 
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3.4 Random Multiple Switches Algorithm (RMSA) 

Like APSA, the Random Multiple Switches Algorithm (RMSA) at every 
iteration computes the successor vector s of a current iterate v. However, to 
get the new iterate v' RMSA uniformly at random selects a non-empty set of 
nonzero components s' of sand inverts the bits of v in the nonzero positions 
of s'. (Think of it as v' := v XOR s', where s' contains randomly selected 
non-zero bits of s.) 

The fact that RMSA is a stepwise improvement algorithm (for CUPBFs) 
follows from the fact that the current point v is the unique global maximum 
on any face defined by fixing any superset of coordinates corresponding to 
zeros in the successor vector s. By the same argument as above the next 
iterate v' (which belongs to the same face) must have a smaller f-value by 
definition of CUPBFs. Note that in principle, RMSA selects at random from 
a neighborhood, which may be exponential in general. So, strictly speaking, 
this is not a local-search improvement algorithm. 

3.5 Kalai-Ludwig's Randomized Algorithm (KLRA) 

In a major breakthrough Kalai (1992) suggested the first subexponential ran­
domized simplex algorithm for linear programming. Based on Kalai's ideas, 
Ludwig (1995) suggested the first subexponential randomized algorithm for 
simple stochastic games. We observed that Ludwig's algorithm without any 
substantial modifications performs correctly and with the same expected 
worst-case complexity 20 (vn) for minimizing CUPBFs. 

Kalai-Ludwig's algorithm may informally be described as follows. 

1. Start at any vertex v of 1i( n). 

2. Choose at random a coordinate i E [Ln] (not chosen previously). 

3. Apply the algorithm recursively to find the best point v' with the same 
i-th co ordinate as Vi. 

4. If v' is not optimal (has a better neighbor), invert the i-th component 
in v', set v := v' and repeat. 

The correctness and termination of the algorithm are based on the fact 
that every switch (bit inversion) it makes is profitable, i.e., improves the 
target CUPBF. The recursion 

1 d 

t(d+ 1) S; t(d) + d' Lt(i), 
i=l 
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with t(1) ~ 1, for its expected running time allows for a subexponential 
solution t(n) = 20 (vn). This is currently the only provably subexponential 
algorithm for the CUPBFs optimization. It should be noted, however, that in 
our experiments the multiple switches algorithms, APSA and RMSA showed 
better behavior; see Sections 5, 6. 

The fragment of Java code below gives an impression how the algorithm is 
implemented. Notice that the implement at ion bears little resemblance with 
the explanation given above. 

public BitSet KalaiLudwig (Cube cube) { 

} 

BitSet dir, pos = new BitSet(dim); // Starts in (0, ... ,0) 
int steps = 0, i, j, t; 
double value; 
Random rr = new Random(); 
int [] ord = new int [dim = cube.getDimension()]; 

for (i=O; i<dim; i++) ord[i]=i; 
for (i=dim-l; i>O; i--) { // Random permutation of directions 

t = ord[j = rr.next1nt(i)]; ord[j] .= ord[i]; ord[i] = t; 
}; 

while (true){ 

} 

value = cube.getValue(pos); 
dir = cube.get1mproving(pos); 
if(dir.length()==O) break; // optimum found 
for (i=O; i<dim; i++) 

if (dir.get(j = ord[i])){ // Is improving? Switch! 
if(pos.get(j)) pos.clear(j); else pos.set(j); 
steps++; 
break; // Proceed to the next iteration 

} 

return pos; 

3.6 Weighted Random Multiple Switch Algorithm 
(WRMSA) 

This algorithm is a variant of the RMSA described in Section 3.4. The major 
difference is that: 

• unlike the RMSA, which at every iteration randomly selects a nonempty 
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subset of improving directions for a (multiple) switch to obtain the next 
iterate, 

• the WRMSA selects directions to switch (among improving ones) based 
on the following randomized weighted heuristic. 

An improving direction d is included into the set of switches iff 

F( () . i max < id , 

where i max is the maximum guaranteed improvement provided by any 
single switch at the current iteration, id is an improvement guaranteed 
by a single switch in direction d, ( is a random variable uniformly 
distributed on [0,1], and F : [0,1] -+ [0,1] is a function 'transforming' 
a uniform distribution. 

The WRMSA is in fact a generic algorithm, parameterized by a choice of the 
uniform distribution transformation F. Dur experiments revealed that with 
F = F(x) = x2 the algorithm demonstrates a good behavior on all randomly 
generated CUPBFs (see Section 5). The intuitive explanation is that the 
WRMSA combines (by randomization) the best features of the GSSA and the 
APSA. Experimental and comparison data for WRMSA and other algorithms 
is contained in Section 5. 

3.7 Weighted Greedy Multiple Switch Algorithm 
(WGMSA) 

This algorithm is a variant of the APSA described in Section 3.3. The main 
difference is that: 

• unlike the APSA, which at every iteration selects all improving direc­
tions to make a simultaneous multiple switch to obtain the next iterate, 

• the WGMSA selects among most profitable directions, some fraction 
of the most promising, to make a multiple switch. 

More explicitly, suppose d1 , ... ,dp are all the improving directions or­
dered in the decreasing values of their guaranteed improvement profits 
i1 ~ ... ~ ip , with E~=1 i j = M. To make a multiple switch, the 
WGMSA selects the first q ::; p directions with the smallest q satisfy­
ing E)=1 i j ~ p. M for some ° ::; p ::; 1. 
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Obviously, for p = 1 we get the APSA. For p = 0 the WGMSA becomes 
the GSSA. When pis randomized, the WGMSA is intuitively a randomized 
algorithm between the GSSA and the APSA. It shows good performance for 
presumably hard Hamiltonian CUPBFs. See Section 5 for experimental and 
comparison data between WGMSA and other algorithms. 

10 



4 Generation of Completely Unimodal Hy­
percubes 

To test the algorithms described in the previous seetion we need to generate 
completely unimodal hypercubes. In all the generated examples the vertices 
are given unique integer values between 1 and 2" (where n is the number of 
dimensions). Two hypercubes are considered different if one or more vertices 
have different values (symmetrical hypercubes are considered different). The 
two major problems when generating such hypercubes are: 

• There are 2" vertices in any n-dimensional hypercube, so generating 
such a cube takes at least exponential time (in n) . 

• The total number of different n-dimensional hypercubes is 2"!, so gen er­
ating them all and checking for complete unimodality is not an option. 
There seems to be no straight forward way to efficiently generate only 
the completely unimodal hypercubes. 

Nevertheless, it is possible to generate test data when looking at a reasonable 
amount of dimensions, and our two main approaches are briefly described 
below. 

4.1 Exhaustive in Four Dimensions 

By avoiding trivially symmetrical assignments of the highest values (16, 15, 
14, 13) to vertices, one can decrease the number of possible hypercubes in four 
dimensions to a level where an algorithm based on exhaustive search with 
dead-end pruning is feasible. The dead-end pruning consists in on-the-fly 
checking of all thus far completed 2-dimensional faces for non-unimodality. 
The only problem is that two of the eight different assignments of the highest 
values have fewer symmetrical cases than the rest, so our average results 
based on the hypercubes generated by this algorithm are slightly biased. 
This could be avoided by furt her experiments, but partial results show that 
the bias is insignificant. 

4.2 Randomized in Arbitrary Many Dimensions 

Even when many symmetrical assignments are avoided, as described above, 
more than 2 * 107 different completely unimodal 4-dimensional hypercubes 
are generated. This number grows very rapidly when the number of dimen­
sions increases (for three dimensions the corresponding number is 88) so an 

11 



exhaustive search for completely unimodal 5+-dimensional hypercubes is not 
feasible. More dimensions are however needed to test the effectiveness of the 
different algorithms, so the problem is shifted to generating hypercubes uni­
formly at random. We do this by assigning the values to random vertices 
in decreasing order, while doing extensive checking at each assignment to 
allowall completely unimodal hypercubes while at the same time avoiding 
backtracking. When trying to assign a value to any vertex v, the following 
check is done to avoid local maxima: 

1. Let F be the set of all faces of dimension 2: 2 such that v belongs to 
the face. 

2. Select some face f E Fand remove f from F. 

3. If some other vertex on f has been assigned a value previously and no 
vertex adjacent to v on f has been assigned a value then return false. 
(If we proceeded we would end up with two local maxima on 1). 

4. Return true if F is empty, and repeat Steps 2-3 otherwise. 

The actual implementation is very different (and a lot more efficient) but the 
idea behind it is the same. It should finally be mentioned that the highest 
value (2n ) always is placed in the same vertex in order to allow the algorithms 
to start from it as explained in Section 5. 

4.3 Randomized with Hamiltonian Path or Similar 
Properties 

The randomized generation described above is sound and efficient, but we 
were also interested in producing 'difficult' hypercubes. Hypercubes with 
relatively long simple paths (Hamiltonian paths in the extreme case) are 
generally considered more 'difficult', so we added the following restriction to 
the generator: 

• 1f a vertex is assigned some value m then it must have a neighbor with 
value between m and m + p, where p is a parameter of the generator. 

1f the parameter p is 1 then the hypercube gets a Hamiltonian path, and if 
p 2: 2n the generator is identical to the one in the previous section. The 
down-side is that (for small p) generation of many-dimensional hypercubes 
is currently intractable . 
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5 Experimental Data 

The programs for generating cubes and running the algorithms on them 
were written in Java (JDK 1.3). They were run on a Linux workstation, 
but since no times, only the numbers of iterations, were measured, the per­
formance of the computer has no bearing on the results. (Generating and 
testing 100.000 ten-dimensional completely unimodal hypercubes takes ap­
proximately an hour). 

All the algorithms were started at the vertex with the highest value. This 
approach was chosen because of the connection between CUPBFs and games, 
in which the worst strategy is easily computable. 

5.1 Exhaustive Tests on Four-Dimensional Hypercubes 

All the algorithms presented in Section 3 were run on all four-dimensional 
completely unimodal hypercubes, generated as described in Section 4. 

The fuH computer outputs are shown below. They are summarized in 
Table 1. Observe that the worst case behaviors given for the randomized 
algorithms (RSSA, RMSA , KLRA, and WRMSA) are not the expected be­
haviors in the worst case, but the worst number of iterations they showed on 
any instance in the experiment. 

*** Kalai-Ludwig's (dim=4) 
Iter Instances Fraction 
1 : 498038, 0.024865774 
2: 2529329, 0.12628299 
3: 5120367, 0.25564694 
4: 5567316, 0.27796197 
5: 3727023, 0.18608081 
6: 1744069, 0.08707695 
7: 633818, 0.031644925 
8: 168083, 0.008391958 
9: 34639, 0.0017294375 
10: 5674, 2. 8328845E-4 
11: 641, 3.2003507E-5 
12: 56, 2.7959381E-6 
13: 2, 9.985493E-8 
14: 1, 4. 9927465E-8 

Average: 3.9165218 
Sum: 20029056 
*** Single Random (dim=4) 
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Iter Instances Fraction 
1 : 333363, 0.01664397 
2: 1911516, 0.09543715 
3: 4472552, 0.22330318 
4: 5643815, 0.28178138 
5: 4363543, 0.21786064 
6: 2234683, 0.11157206 
7: 799283, 0.039906174 
8: 217008, 0.010834659 
9: 44859, 0.0022396962 
10: 7419, 3.7041187E-4 
11: 925, 4.6182904E-5 
12: 87, 4. 3436894E-6 
13: 3, 1.497824E-7 

Average: 4.153733 
Sum: 20029056 
*** Single Greedy (dim=4) 
Iter Instances Fraction 
1 : 1470684, 0.07342753 
2: 5349166, 0.2670703 
3: 7246843, 0.3618165 
4: 4546023, 0.2269714 
5: 1296144, 0.06471319 
6: 119339, 0.0059582936 
7: 857, 4. 2787837E-5 

Average: 2.9605186 
Sum: 20029056 
*** Multiple Random (dim=4) 
. Iter Instances Fraction 
1: 1390864, 0.06944232 
2: 4773066, 0.23830709 
3: 6487359, 0.3238974 
4: 4639893, 0.2316581 
5: 2006668, 0.100187846 
6: 584986, 0.029206868 
7: 123910, 0.0061865123 
8: 19792, 9.881645E-4 
9: 2303, 1. 14982955E-4 
10: 200, 9. 985493E-6 
11: 14, 6. 9898454E-7 
12: 1, 4. 9927465E-8 
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Average: 3.1729155 
Sum: 20029056 
*** All Profitable 
Iter Instances 
1 : 3641062, 
2: 8539092, 
3: 6278469, 
4: 1473253, 
5: 94995, 
6: 2183, 
7: 2, 

Average: 2.2934556 
Sum: 20029056 

Switches (dim=4) 
Fraction 
0.181789 
0.42633522 
0.31346804 
0.07355579 
0 .0047428594 
1.08991655E-4 
9.985493E-8 

*** Weighted Random Multiple Switch (dim=4) 
Iter Instances Fraction 
1 : 3269387, 0.1632322 
2: 8492789, 0.42402342 
3: 6484466, 0.32375294 
4: 1644243, 0.08209289 
5: 134012, 0.0066908794 
6: 4147, 2.070492E-4 
7: 12, 5 .991296E-7 

Average: 2.3456104 
Sum: 20029056 
*** Weighted Greedy Multiple Switch (dim=4) 
Iter Instances Fraction 
1: 2951175, 0.1473447 
2: 8801402, 0.4394317 
3: 6653571, 0.33219594 
4: 1523096, 0.07604432 
5: 98593, 0.0049224985 
6: 1219, 6.086158E-5 

Average: 2.351951 
Sum: 20029056 
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5.2 Tests on Random Instances of Higher-Dimensional 
Cubes 

All the algorithms described in Section 3 were run on randomly generated 
completely unimodal cubes of higher dimensions, generated by the random 
generator described in Section 4. Since generating cubes of high dimensions 
is costly, the numbers of cubes tested were decreased with increasing num­
bers of dimensions. For four-, five- and six-dimensional cubes, 1.000.000 
instances of each were generated. Of seven-, eight- and nine-dimensional 
cubes the number was 100.000 and for ten-, eleven- and twelve-dimensional 
cubes 10.000. For thirteen and fourteen dimensions 1.000 cubes each were 
generated, and for fifteen and sixteen dimensions 200 cubes. In the exper­
iments, all algorithms were run on the same generated set of instances for 
each dimension. The results are summarized in Table 2. The first figure 
in each entry is the average number of iterations over the set of generated 
instances. The second figure is the largest number of iterations performed 
on any instance. Note again that for the randomized algorithms, these max­
ima are not the expected behaviors in the worst case, but rather the worst 
behaviors demonstrated in the experiments. The average and worst numbers 
of iterations are also shown graphically in Figure 1 and Figure 2 respectively. 
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5.3 Hamiltonian Data 

As descri bed in Section 4 the parameterized generator can generate Hamil­
tonian cubes and cubes with long simple paths. Since seven is the largest 
number of dimensions for which the generator can produce large numbers 
of Hamiltonian cubes within reasonable time, all algorithms were tested on 
cubes of seven dimensions generated with the parameter set to 1, 2, 4, 8, 
16, 32, 64, and 128. When the parameter is one, Hamiltonian cubes are 
generated, and for seven dimensions the parameter 128 corresponds to run­
ning the non-parameterized-generator, since seven-dimensional cubes have 
128 vertices. The exponential increase of the parameter was chosen because 
the most dramatic changes take place at the beginning of the scale. For each 
choice of the parameter 10.000 cubes were generated. All algorithms were 
run on the same sets of cubes. Table 3 contains the results. The average 
numbers of iterations are also depicted in Figure 3. 

The WRMSA was run with F(x) = x2
, and the WGMSA with p = 2/3. 

It should be noted that the GSSA performs best on Hamiltonian cubes 
and the APSA, as expected, at the other end of the scale. What is interesting 
with the results is that the WGMSA and the WRMSA work reasonably weIl 
at both ends of the scale. The explanation for this is that they mimic the 
GSSA where it performs best, but resemble the APSA more on the types of 
cubes where it is superior. 
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6 Conclusions 

6.1 Discussion of the Experimental Results 

The experimental results presented in Section 5 are encouraging. Several 
extra remarks are in order, partly to put them into perspective and partly 
to emphasize the really good aspects of them. 

1. The behavior of the multiple switch algorithms strongly indicates that 
most completely unimodal hypercubes are easily optimized using such 
algorithms. 

2. Despite the fact that we tried to generate our random instances of com­
pletely unimodal hypercubes as fairly as possible, the results obtained 
may raise doubts that considering symmetrical hypercubes as different 
leads to the generation of an unproportional number of 'easy' cases. We 
will try to precisely account for all possible symmetries in later studies. 

3. Even though the test data quite possibly is unrealistically 'easy', it 
seems that the multiple switch algorithms perform much better asymp­
totically than Kalai-Ludwig's algorithm, known to have an expected 
subexponential complexity. This is perhaps the most interesting, promis­
ing, and encouraging fact that was obtained from our experiments. 

4. As stated earlier, the results for the randomized algorithms are not the 
expected numbers of iterations, but the numbers of iterations done in 
a single test run on each generated hypercube. The average expected 
number of iterations should be close to the average obtained, whereas 
the expected worst case behavior should be better then the experimen­
tal worst case results. 

The obvious conclusion from the experimental results is that despite the 
questionable quality of the test data the superiority of the multiple switch 
algorithms compared to the weH investigated single switch algorithms seems 
both interesting and very promising. (With the exception of the GSSA, best 
on Hamiltonian cubes.) 

6.2 Directions for Future Research 

In this paper we have considered and optimized, by using seven local-search­
type algorithms, completely unimodal hypercubes with up to sixteen dimen­
sions, and obtained promising results and conclusions. The analysis of these 
hypercubes and the related games is an ongoing project, and there are many 
interesting ways to proceed, including the foHowing: 
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1. To impose some furt her restrictions on the hypercubes such as non­
decomposable, in order to generate 'harder ' random instances of com­
pletely unimodal hypercubes. 

2. To generate random games (for instance Parity Games or Simple Stochas­
tic Games) and look at the complexity of the hypercubes representing 
strategies in those games. Besides the fact that solving such games is an 
important problem in its own right, this might provide insights into the 
relative difficulty of distributions of completely unimodal hypercubes 
arising from real problems. 

3. An entirely different direction would be to try to find theoretic complex­
ity bounds on the number of iterations needed in the average case as 
well as the worst case for the multiple switch algorithms APSA, RMSA, 
WRMSA, and WGMSA. Although difficult to find, such results would 
be a considerable achievement in optimization and complexity theory. 

Efficient algorithms for optimization of completely unimodal hypercubes 
would be useful for solving numerous practical problems, and this makes 
the quest for such algorithms interesting as well as important. We continue 
research in all the directions mentioned above and will present our progress 
in further reports. 

References 

Hammer, P . L., Simeone, B., Liebling, T . M. & De Werra, D. (1988), 'From 
linear separability to unimodality: a hierarchy of pseudo-boolean func­
tions', SIAM J. Disc. Math. 1(2), 174-184. 

Hansen, P., Jaumard, B. & Mathon, V. (1993), 'Constrained nonlinear 0-
1 programming (state-of-the-art survey)', ORSA Jornal on Computing 
5(2), 97-119. 

Kalai, G. (1992), A subexponential randomized simplex algorithm, in '24th 
ACM STOC', pp. 475- 482. 

Ludwig, W . (1995), 'A subexponential randomized algorithm for the simple 
stochastic game problem', Information and Computation 117, 151-155. 

Petersson, V. & Vorobyov, S. (2001a), Interior-point approach to parity 
games, in 'IEEE Annual Symposium on Logic in Computer Science 
(LICS '2001)', Boston, Massachusetts. Short communication. 

25 



Petersson, V. & Vorobyov, S. (2001b), Parity games: interior-point approach, 
Technical Report 008, Uppsala University / Information Technology. 

Williamson Hoke, K. (1988), 'Completely unimodal numberings of a simple 
polytope', Discrete Applied Mathematics 20, 69-81. 

26 



o 

mPD 
____________ I N F 0 R M A T I K ___________ _ 

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They 
are available by anonymous ftp from ftp.mpi-sb . mpg. de under the directory pub/papers/reports. Most 
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any 
quest ions concerning ftp or WWW access, please contact reportsGmpi-sb.mpg.de. Paper copies (which 
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below. 

Max-Planck-Institut für Informatik 
Library 
attn. Anja Becker 
Stuhlsatzenhausweg 85 
66123 Saarbrücken 
GERMANY 
e-mail: libraryCDmpi-sb.mpg.de 

MPI-I-2001-4-004 s.w. Choi, H. Seidel 

MPI-I-2001-4-003 K. Daubert, W. Heidrich, J. Kautz, 
J . Dischier , H. Seidel 

MPI-I-2001-4-002 H.P.A. Lensch , J. Kautz, M. Goesele, 
H. Seidel 

MPI-I-2001-4-001 H.P.A. Lensch, J . Kautz, M.G. Goesele, 
W. Heidrich, H. Seidel 

MPI-I-2001-2-003 S. Vorobyov 

MPI-I-2001-2-002 P. Maier 

MPI-I-2001-2-001 U. Wald mann 

MPI-I-2001-1-002 U. Meyer 

MPI-I-2001-1-001 P. Krysta 

MPI-I-2000-4-003 S.W. Choi, H. Seidel 

MPI-I-2000-4-002 L.P . Kobbelt, S. Bischoff, K. Kähler, 
R. Schneider, M. Botsch, C . Rössl, 
J. Vorsatz 

MPI-I-2000-4-001 J. Kautz, W . Heidrich, K. Daubert 

MPI-I-2000-2-001 F. Eisenbrand 

MPI-I-2000-1-005 M. Seel, K. Mehlhorn 

MPI-I-2000-1-004 K. Mehihorn, S. Schirra 

MPI-I-2000-1-003 P . Fatourou 

MPI-I-2000-1-002 R . Beier, J. Sibeyn 

MPI-I-2000-1-001 E . Althaus, O. Kohlbacher, H. Lenhof, 
P. Müller 

MPI-I-1999-4-001 J. Haber, H. Seidel 

MPI-I-1999-3-005 T.A. Henzinger, J . Raskin, P. Schobbens 

Linear One-sided Stability of MAT for Weakly Injective 
Domain 

Efficient Light Transport Using Precomputed Visibility 

A Framework for the Acquisition, Processing, 
Transmission, and Interactive Display of High Quality 
3D Models on the Web 

Image-Based Reconstruction of Spatially Varying 
Materials 

? 

A Set-Theoretic Framework for Assume-Guarantee 
Reasooing 

Superposition and Chaining for Totally Ordered 
Divisible Abelian Groups 

Directed Single-Source Shortest-Paths in Linear 
Average-Case Time 

Approximating Minimum Size l,2-Connected Networks 

Hyperbolic Hausdorff Distance for Medial Axis 
Transform 

Geometrie Modeling Based on Polygonal Meshes 

Bump Map Shadows for OpenGL Rendering 

Short Vectors of Planar Lattices Via Continued 
Fractions 

Inflmaximal Frames A Technique for Making Lines 
Look Like Segments 

Generalized and improved constructive separation 
bound for real algebraic expressions 

Low-Contention Depth-First Scheduling of Parallel 
Computations with Synchronization Variables 

A Powerful Heuristic for Telephone Gossiping 

A branch and cut a1gorithm for the optimal solution of 
the side-chain placement problem . 

A Framework for Evaluating the Quality of Lossy Image 
Compression 

Axioms for Real-Time Logics 



MPI-I-1999-3-004 J . Raskin, P. Schobbens 

MPI-I-1999-3-003 T .A. Henzinger, J . Raskin, P. Schobbens 

MPI-I-1999-3-002 J . Raskin, P . Sehobbens 

MPI-I-1999-3-001 S. Vorobyov 

MPI-I-1999-2-008 A. Bockmayr, F. Eisenbrand 

MPI-I-1999-2-007 G. Delzanno, J . Raskin 

MPI-I-1999-2-006 A. Nonnengart 

MPI-I-1999-2-005 J. Wu 

MPI-I-1999-2-004 V . Cortier, H . Ganzinger, F. Jacquemard, 
M. Veanes 

MPI-I-1999-2-003 U. Waldmann 

MPI-I-1999-2-001 W . Charatonik 

MPI-I-1999-1-007 C. Burnikel, K. Mehlhom, M. Seel 

MPI-I-1999-1-006 M. Nissen 

MPI-I-1999-1-005 J .F . Sibeyn 

MPI-I-1999-1-004 M. Nissen , K. Weihe 

MPI-I-1999-1-003 P. Sanders, S. Egner, J . Korst 

MPI-I-1999-1-002 N.P. Boghossian, O . Kohlbacher, 
H.-. Lenhof 

MPI-I-1999-1-001 A. Crauser, P . Ferragina 

MPI-I-98-2-018 F . Eisenbrand 

MPI-I-98-2-017 M. Tzakova, P. Blackburn 

MPI-I-98-2-014 Y . Gurevich, M. Veanes 

MPI-I-98-2-013 H. Ganzinger, F. Jacquemard, M. Veanes 

MPI-I-98-2-012 G. Delzanno, A. Podelski 

MPI-I-98-2-0U A. Degtyarev, A . Voronkov 

MPI-I-98-2-010 S. Ramangalahy 

MPI-I-98-2-009 S. Vorobyov 

MPI-I-98-2-008 S. Vorobyov 

MPI-I-98-2-007 S. Vorobyov 

MPI-I-98-2-006 P. Blackburn, M. Tzakova 

MPI-I-98-2-005 M. Veanes 

MPI-I-98-2-004 S. Vorobyov 

MPI-I-98-2-003 R.A. Schmidt 

MPI-I-98-2-002 F . Jacquemard, C . Meyer, C . Weidenbach 

MPI-I-98-1-031 G.W . Klau, P . Mutzel 

MPI-I-98-1-030 H. Brönniman, L. Kettner , S. Schirra, 
R. Veltkamp 

Proving a conjeeture of Andreka on temporal logic 

Fully Deeidable Logies , Automata and Classical 
Theories for Defining Regular Real-Time Languages 

The Logie of Event Clocks 

New Lower Bounds for the Expressiveness and the 
Higher-Order Matching Problem in the Simply Typed 
Lambda Caleulus 

Cutting Planes and the Elementary Closure in Fixed 
Dimension 

Symbolie Representation of Upward-closed Sets 

A Deduetive Model Checking Approach for Hybrid 
Systems 

Symmetries in Logic Programs 

Decidable fragments of simultaneous rigid reaehability 

Caneellative Superposition Decides the Theory of 
Divisible Torsion-Free Abelian Groups 

Automata on DAG Representations of Finite Trees 

A simple way to reeognize a eorrect Voronoi diagram of 
line segments 

Integration of Graph Iterators into LEDA 

Ultimate Parallel List Ranking ? 

How generie language extensions enable "open-world" 
desing in Java 

Fast Coneurrent Aecess to Parallel Disks 

BALL: Bioehemical Algorithrns Library 

A Theoretical and Experimental Study on the 
Construetion of Suffix Arrays in External Memory 

A Note on the Membership Problem for the First 
Elementary Closure of a Polyhedron 

Hybridizing Concept Languages 

Partisan Corroboration, and Shifted Pairing 

Rigid Reachability 

Model Checking Infinite-state Systems in CLP 

Equality Reasoning in Sequent-Based Calculi 

Strategies for Conformanee Testing 

The Undecidability of the First-Order Theories of One 
Step Rewriting in Linear Canonieal Systems 

~Equational theory of eontext unification is 
Co-RE-Hard 

The Most Nonelementary Theory (A Direct Lower 
Bound Proof) 

Hybrid Languages and Temporal Logic 

The Relation Between Second-Order Unifieation and 
Simultaneous Rigid E-Unification 

Satisfiability of Functional+Record Subtype 
Constraints is NP-Hard 

E-Unification for Subsystems of S4 

Unifieation in Extensions of Shallow Equational 
Theories 

Optimal Compaction of Orthogonal Grid Drawings 

Applieations of the Generic Programming Paradigm in 
the Design of CGAL 




	MPI0001
	MPI0002
	MPI0003
	MPI0004
	MPI0005
	MPI0006
	MPI0007
	MPI0008
	MPI0009
	MPI0010
	MPI0011
	MPI0012
	MPI0013
	MPI0014
	MPI0015
	MPI0016
	MPI0017
	MPI0018
	MPI0019
	MPI0020
	MPI0021
	MPI0022
	MPI0023
	MPI0024
	MPI0025
	MPI0026
	MPI0027
	MPI0028
	MPI0029
	MPI0030
	MPI0031
	MPI0032
	MPI0033
	MPI0034



