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Abstract: We modify Bezem’s [Be] completeness proof for ground resolution in

order to deal with ordered resolution, redundancy, and equational reasoning in

form of superposition. The resulting proof is completely independent of the

cardinality of the set of clauses.

1 Introduction

M. Bezem [Be] presented a completeness proof for ground resolution that is independent of the cardi-
nality of both the language and the set of clauses. As a corollary, he obtained a completeness result
for (first-order) resolution that does not appeal to Herbrand’s theorem. This proof technique easily
extends to the following resolution strategies: Semantic resolution, Hyperresolution, and Ordered
Hyperresolution. In this paper, we give a very similar completeness proof for Ordered Resolution.
Moreover, we define a notion of redundancy similar to that of [BG] and show that (Ordered)
Resolution is still complete if redundant clauses are deleted. Finally, we use the same techniques to
prove completeness of a particular superposition calculus for equational clauses.

In the following, L is an arbitrary set of propositional atoms. A clause is a pair (A,B), written in
the form A → B, where both A and B are finite sets of atoms. The clause A → B is written → B, if A
= ∅, —in which case A → B is called positive—and A →, if B = ∅. We shall usually write A,A instead
of A ∪ {A}.

An interpretation ℑ is a subset of L. We write ℑ |= A → B, (ℑ satisfies A → B), iff A ⊆/  ℑ  or B  ∩ ℑ

≠ ∅. A set S of clauses is called satisfiable, if there exists an interpretation ℑ that satisfies each
member clause of S, in which case ℑ is called a model of S. We write S |= A → B, if each model of S
is also a model of C. The set S is called consistent, iff it does not contain the empty clause.

If C = A → A,B, and D = A',A → B', then the clause A,A' → B,B' is called a resolvent of (the par-
ent clauses) C and D upon the atom A. A resolution derivation from a set S is a sequence S = S0, S1,
… such that Si+1 = Si ∪ {Ci}, where Ci is a resolvent of clauses in Si. A resolution refutation of S is
a finite derivation S = S0, S1, … , Sn, such that Sn contains the empty clause.

The most important properties of logical calculi are correctness and completeness. Resolution is
easily proved to be correct, since both satisfiability and unsatisfiability of a clause sets are pre-
served, when resolvents are added. Completeness of resolution is usually proved in two steps, first
by showing completeness of ground resolution, and then by proving that any ground refutation can
be lifted to the first order level. Our general proceeding for proving (certain restrictions of) ground
resolution to be complete, consists in showing that a consistent set of ground clauses that is closed
under resolution is satisfiable.
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Before proving completeness of ordered resolution, we shall briefly sketch Bezem’s proof. (His
proof is more general, but this sketch will be sufficient for our purposes). Given a consistent set S of
ground clauses that is closed under resolution, we construct an interpretation for S as follows: Let
S+ be the set consisting of all clauses of S that are positive, and let X be the set of atoms which
occur in clauses from S+. A subset Y of X is said to cover S+, if each element of S+ contains an atom
of Y. Now let ℑ be a minimal subset of X covering S+. As S+ may be uncountable, the construction of
ℑ requires the use of Zorn’s lemma. Now the crucial point is that for each A ∈ ℑ, there is a clause in
S+ containing A, but no other atom from ℑ. By construction, ℑ satisfies S+. Assume ℑ does not sat-
isfy some clause C = A → B in S–S+. We can choose C in a way such that |A| is minimal. Then A ≠
∅, A ⊆ ℑ and B ∩ ℑ = ∅ holds. Let A ∈ A and let D = → B' be a clause in S+ with ℑ ∩ B' = {A}. Let
R = A–{A} → B,B'–{A} be the resolvent of C and D, which is in S by the closure assumption. It is
easy to check that ℑ does not satisfy R, which contradicts the minimality assumption on C. The
assumption that ℑ does not satisfy C thus leads to a contradiction, which proves that ℑ satisfies S.

2 Ordered Resolution

A well ordering of a set S is an ordering such that each non-empty subset of S contains a smallest
element. In particular, a well ordering > is total, that is, two elements can always be compared by
>. Zermelo’s well-ordering theorem states that every set can be well–ordered. In the following we
assume a well-ordering > on the set L of atoms. The ordering > on clauses is defined to be the
multiset extension of > (regarding a clause as the set of its atoms).

Ordered Resolution is a restriction of resolution, requiring that the atom resolved upon be maxi-
mal in both parent clauses. In [Be], a variant of hyperresolution, called ordered hyperresolution, is
shown to be complete. This ordering restriction is certainly weaker than ordered resolution, since it
requires the atom resolved upon to be maximal only in one of the parent clauses (the so called
nucleus).

In his paper, Bezem remarks that the minimal covering set ℑ may not be unique. When dealing
with ordered hyperresolution, we have to choose ℑ in a way, such that for each A ∈ ℑ, there is a
clause in S+ containing A as a maximal atom, and no other atom from ℑ. For ordered resolution, we
additionally have to modify the definition of the set S+.

 For any clause C, max(C) denotes the maximal atom occuring in (the antecedent or succedent of)
C. Given a consistent set S of ground clauses that is closed under Ordered Resolution, let S+ be the
set {A → B ∈ S⏐max(A → B) ∈ B}.

The following construction of a minimal model of S+ is due to Bezem. We start with X0 :=
{A⏐there is C ∈ S+, with A = max(C)} and construct inductively sets Xα with Xα+1 = Xα – {min{A | A
∈ Xα and (Xα – {A}) satisfies S+}} for all ordinals α for which Xα is not a minimal model of S+. We
thus obtain a set ℑ, which is a model of S+ satisfying the following property:

For each A ∈ ℑ, there exists a clause A → B, A in S+, such that

(i) A is maximal in A ∪ B and

(ii) A ⊆ ℑ and B ∩ ℑ = ∅.

Now let C = A' → B' be a minimal (w.r.t. >) clause in S – S+, such that ℑ does not satisfy C. This
implies A' ⊆ ℑ and B' ∩ ℑ = ∅. Let A ∈ A' be maximal in A' ∪ B'. Since A ∈ ℑ, there exists a clause
D = A → B, A in S+ such that A = max(D) and A ⊆ ℑ and B ∩ ℑ = ∅ holds. Thus the clause

R = A' – {A},A → B',B

is an ordered resolvent of C and D, and it is easy to see that ℑdoes not satisfy R, either. Moreover,
C > R holds, thus contradicting the choice of C.
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The assumption that ℑ does not satisfy C thus leads to a contradiction, which proves that ℑ

satisfies S. 

We remark that the previous result also holds for any ordering > on L that is not necessarily
total, but is contained in a (total) well-ordering. Such an ordering is always well-founded, that is,
each subset of L contains a minimal element.

3 Equational Reasoning

3.1 Equational Clauses, Interpretations, and Orderings

In this chapter, we use the model construction techniques to prove completeness of a particular
superposition calculus for equational clauses. For the following definitions, see also [BG] or [NR].

We write A[t] to indicate that A contains t as a subexpression. An equation is a term pair s ≈ t.
An (equational) clause is a pair A → B, where both A and B are finite sets of equations. In the fol-
lowing we are interested particularly in ground clauses, that is, equations containing no variables.

An equivalence relation ~ on terms is called a congruence, if s ~ t implies u[s] ~ u[t] for all terms
u, s, and t. If E is a set of ground equations, we denote by E* the smallest congruence containing E.

An (equality Herbrand) interpretation ℑ over E is a congruence E'*, where E' is a subset of E. We
write ℑ  |= A → B, (ℑ satisfies A → B), iff A ⊆/  ℑ or B ∩ ℑ ≠ ∅. A set S of clauses is called satisfiable, if
there exists an interpretation ℑ that satisfies each member clause of S.

A binary relation → on terms is called a rewrite relation, iff s → t implies u[sσ] → u[tσ] for all
terms u and all substitutions σ. A transitive, well-founded rewrite relation is called a reduction or-
dering. By →* we denote the transitive, reflexive closure of → and by ↔* the symmetric, transitive,
and reflexive closure.

A set E of equations is called a rewrite system with respect to an ordering > if s > t or t > s holds
for all equations s ≈ t in E. By →E, we denote the smallest rewrite relation containing E. A term t is
called irreducible with respect to the rewrite system E, if there is no term s with t →E s, and
reducible otherwise. A well-founded rewrite relation → is said to be convergent, if s ↔* t implies the
existence of a term u with s →* u and t →* u. A rewrite system E is called left-reduced, if for every
rule s ≈t in E with s > t, the term s is irreducible by E–{s ≈ t}. It is well-known that left-reduced,
well-founded ground rewrite systems are convergent [Hu].

We assume given a reduction ordering > on the set of terms, which is total on the set of ground
terms. We define the ordering >e on equations to be the multiset extension of >. We identify an
occurrence of an equation s ≈t in the antecedent of a clause with the multiset {{s,s},{t,t}}, and an
occurrence in the succedent with the multiset {{s},{t}}. In a similar way, we identify clauses with
multisets of occurrences of equations. Occurrences of equations are ordered by >o, which is the
twofold multiset extension of >, and clauses are ordered by >c, which is the multiset extension of
>o. We point out that the ordering >c on clauses is different from the multiset extension of the order-
ing >e on equations. For instance, if a > b > c, then a ≈ b >e a ≈ c holds, however, we have A, a ≈ c
→ B >c A → B, a ≈ b, as the occurrence of a ≈ c in the antecedent is larger than the occurrence of a ≈
b in the succedent.

Techniques to remove redundant clauses in theorem proving derivations are most common to all
theorem provers. Bachmair and Ganzinger [BG] developed a notion of redundancy that covers all
commonly known simplification techniques like simplification by rewriting, subsumption, etc. A
theorem proving derivation from a set S is a sequence S = S0, S1, … such that Si+1 = Si ∪ {Ci},
where Ci is a clause with Si |= Ci or Si+1 = Si – {Ci}, where Ci is redundant in Si. Completeness of
such derivations is shown by proving that a consistent set of clauses that is relatively closed under
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ordered resolution has a model. A set S of clauses is relatively closed under an inference system, if
any result of an inference step with premises in S is in S or redundant in S.

In the following, equations are always written in the form s ≈ t, such that t >/  s holds.

3.2 An Inference System for Equational Logic

In the following we define a superposition inference system I for ground clauses. There exist more
refined superposition calculi, for instance [BG], [Ru], our intention, however, is to provide a complete-
ness proof without going too much into the details of the inference system.

The system I consists of the following rules:

Equality resolution:
A, t ≈ t → B________

A → B

where t ≈t is a maximal occurrence in A ∪ B.

Superposition left:
A → B, s ≈ t   A', u[s] ≈ v → B'_____________________

A, A', u[t] ≈ v → B, B'

where both s ≈t and u ≈ v are maximal occurrences in their respective clauses.

Superposition right:
A → B, s ≈ t    A' → B', u[s] ≈ v_____________________

A, A' → B, B', u[t] ≈ v

where both s ≈t and u ≈ v are maximal occurrences in their respective clauses.

Equality factoring:
A → B, s ≈ t, s ≈t'____________
A, t ≈t' → B, s ≈t'

where s ≈t is a maximal occurrences in its clause.

As a first observation, we state that a clause derived by one of the inference rules is always
smaller than the maximal parent clause, which is the major reason for our particular choice of the
clause ordering >c.

In the following proof, we use the model construction technique of the previous section.

 Given a consistent set S of ground (equational) clauses, let S+ be the set {A → B ∈ S⏐B con-
tains the maximal element of A ∪ B}. We shall construct a minimal model of S+ in the following
way: Starting with X0 = {s ≈t | s ≈t occurs maximally in a clause of S+}, we construct a sequence X0,
X1, …, Xα, … by removing from each Xα the smallest redundant equation s ≈t. A clause C = A → B,
e with maximal atom e is redundant in some Xα, iff C is satisfied by the interpretation ℑe := {e' ∈ Xα

| e > e'}* or if there is a clause C' = A' → B', e with C' < C that is not satisfied by ℑe. An equation s
≈t is redundant in Xα, if f s is reducible by Xα – {s ≈ t} or every clause of S+ containing s ≈t as a max-
imal atom is redundant in Xα. Formally, we have:

Xα+1 = Xα – {eα}, where eα = min{e ∈ Xα | e is redundant in Xα}

We thus obtain ℜ := ∩ Xα. From the construction immediately follows that ℜis a left-reduced,
hence convergent equational system.

1 Lemma An equation e or a clause C = A → B, e with maximal atom e is redundant in some Xα with
eα > e iff it is redundant in every Xβ with β > α iff it is redundant in ℜ. 

Consequently, we shall simply speak of redundancy without referring to a particular Xα. Ob-
viously, the interpretation ℜ* satisfies each redundant clause. In the following, we assume that S is
relatively closed under I, that is, each result of an inference step of I with premises in S is in S or
redundant in S.
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2 Lemma For each s ≈t ∈ ℜ, there exists a clause C = A → B, s ≈t in S+, such that

(i) s ≈t is maximal in C and

(ii) A ⊆ ℜ* and B ∩ ℜ* = ∅ holds.

Proof. Let s ≈t ∈ ℜ. Then s ≈t is non-redundant, and in particular s is irreducible by ℜ – {s ≈ t}.
Moreover, there exists a non-redundant clause C = A → B, s ≈t satisfying (i). We thus can conclude
that A ⊆ {u ≈ v ∈ ℜ | s ≈t > u ≈ v}* ⊆ ℜ* holds. In order to prove the second part of (ii), assume there
is an equation s' ≈ t' in B ∩ ℜ*. Since C is non-redundant, we have s' ≈ t'  ∉ {u ≈ v ∈ ℜ | s ≈t > u ≈
v}*. The system ℜ is convergent, hence s >/  s'. As the ordering > is assumed to be total and s ≈t is
maximal in C, we obtain s = s'. The set S is relatively closed under equality factoring and thus the
clause D = A, t ≈t' → B', s ≈ t' is in S or redundant in S. If D is redundant in S, then the interpreta-
tion {u ≈ v ∈ ℜ | s ≈t' > u ≈ v}* satisfies D, hence also C, which implies that C is redundant in S, too,
which is a contradiction. The clause D is thus non-redundant. We can assume without loss of gener-
ality that s ≈ t' is maximal in D. The equations s ≈t and s ≈t' are both in ℜ*, hence also t ≈t' ∈ ℜ*.
This implies s ≈t' ∈ ℜ, contradicting the irreducibility of s ≈ t. We now have proved the second half
of (ii), thus concluding the proof of the lemma. 

3 Theorem The interpretation ℑ := ℜ* satisfies S.

Proof. Let C = A → B be a minimal clause, such that ℑ does not satisfy C, and let s ≈ t be the maxi-
mal atom in A ∪ B.

Case 1: C ∈ S+. Then s ≈ t ∈ B, and from B ∩ ℑ = ∅ follows s ≈t ∉ ℑ. From the construction of ℑ
we can conclude that s is reducible by some equation u ≈ v ∈ ℜ with s ≈t > u ≈ v. Let D = A' → B', u
≈v be a clause in S+, such that u ≈v is maximal in A' ∪ B' and A' ⊆ ℑ and B' ∩ ℑ = ∅ hold. Then
the superposition right rule applies to C and D, yielding a clause

R = A, A' → B – {s ≈ t}, B', s[v] ≈t

It is easy to check that ℑ does not satisfy R, either. Hence R is not redundant in S, and by the
closedness of S, R ∈ S holds. Moreover, R is smaller than C, which contradicts the choice of C.

Case 2: C ∈ S – S+. In this case, we have s ≈ t ∈ A, and from A ⊆ ℑ follows s ≈ t ∈ ℑ. If s is redu-
cible by some equation u ≈ v ∈ ℜ, then we can—similarly to case 1—infer the existence of a clause R
<  C, derived from C by an application of the superposition left rule, such that ℑ does not satisfy R.
We can thus assume that s is irreducible by the convergent rewrite system ℜ. From s ≈ t ∈ ℜ* thus
follows s >/  t, which in turn implies s = t. Now the equality resolution rule applies to C yielding the
clause C' := A – {t ≈ t} → B. Again, ℑ does not satisfy C', which is smaller than C, thus contradict-
ing the choice of C.

In both cases, we obtain a contradiction to the minimality of C, which proves that ℑ satisfies
every clause in S. 

In fact, all we used in this completeness proof are the following closure properties of S:

(C1) S is relatively closed under equality resolution and equality factoring.

(C2) If S contains clauses C = A → B, u ≈ v, and D, such that D contains an atom s[u] ≈ t in the
antecedent or in the succedent, then there exists a clause R in S, such that (i) D < R, and (ii) if ℑ is
an interpretation that satisfies u ≈v and falsifies both A → B and D, then it falsifies R, too.

Bachmair & Ganzinger [BG] provide another characterization of redundant clauses. They define
a ground clause C to be composite in a set S of ground clauses, if {C} > S and S |= C both hold.

4 Lemma If Cis composite in S, then it is redundant in S.

Proof. Let C = A → B, s≈ t, such that s ≈t is maximal in C. There is a subset S' of S with {C} > S'
and S' |= C. Suppose all clauses C' < C with maximal atom s ≈ t are satisfied by ℑ' := {u ≈ v ∈ ℜ |  s
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≈ t > u ≈ v}*. From the proof of theorem 3, it is easy to see that ℑ' satisfies each clause in S with
maximal atom smaller than s ≈ t. The interpretation ℑ' thus satisfies every clause smaller than C,
and in particular, ℑ' satisfies S'. From S' |= C follows that ℑ' satisfies C, which implies the asser-
tion of the lemma.

4 Another Model Construction

While the model construction technique described in the previous sections uses a minimizing proce-
dure, it is also possible to construct an equational model for a consistent and closed set of clauses in
a more traditional incremental fashion.

Let S be a consistent set of ground equational clauses that is closed under the inference system
I. Let A = {t1, t2, …, tα, … } be the set of terms occurring in clauses of S. For any clause C, let
maxterm(C) be the maximal term occurring in equational atoms of C. Moreover, let Sα = {C ∈ S |
maxterm(C) ≤ tα}.

We define a clause C := A → B, s ≈t with s ≈t maximal in C to be regular w.r.t. the interpreta-
tion ℑ, iff (i) ℑ satisfies C and (ii) A ⊆ ℑ and B ∩ ℑ = ∅.

5 Lemma Let C and D be clauses with C < D, such that C is regular w.r.t. the interpretation ℑ, and
let R be the result of a superposition step of C and D.  If ℑ satisfies R, then it satisfies D, too.

Proof.  Let C = A → B, s ≈t with s ≈t maximal in C, and let D = A' → B', u≈v with u≈v maximal
in D. From the assumption of the lemma follows u= u[s]. We have R = A, A' →  B, B ', u[t] ≈ v.
Suppose ℑ does not satisfy D. Then A ∪ A' ⊆ ℑ and (B ∪ B')  ∩ ℑ = ∅ and from u[s] ≈ v ∉ ℑ and s≈t
∈ ℑ follows u[t] ≈ v ∉ ℑ. Altogether, ℑ does not satisfy R either.

The case where the maximal atom u≈v occurs in the antecedent of D is treated analogously.

We define inductively sets ℜ0 ⊆ ℜ1 ⊆ … ⊆ ℜa ⊆ …, a ∈ A, and ℑα := ℜ*
α by ℜ0 = ∅ and:

ℜα+1  =
 ⎩⎪
⎨
⎪⎧ ℜα,                 if ℑα |=  Sα+1

ℜα ∪ {tα+1 ≈ s}, where s is the smallest term with (ℜα ∪ {tα+1 ≈ s})*  |= Sα+1

for successor ordinals, and ℜα = ∪β<α ℜβ  for limit ordinals. In order to ensure that ℜa is well-
defined, we have to prove that there always exists a term s, such that ℑα ∪ {tα+1 ≈ s} satisfies Sα+1,
provided that ℑα satisfies Sα and does not satisfy  Sα+1.

6 Lemma For every α, the following holds

a) ℜα is a left-reduced rewrite system

b) If α is a successor ordinal and ℑα−1 does not satisfy Sα, then Sα contains a regular clause with
maximal atom tα ≈ s.

c) If α is a successor ordinal and ℑα−1  does not satisfy Sα, then (ℜα ∪ {tα ≈ s})*  |= Sα

Proof. By transfinite induction on α. If α is a limit ordinal, then ℜβ is left-reduced for each β < α,
hence ℜα = ∪β<α ℜβ is left-reduced. Now suppose α is a successor ordinal. Let t := tα and let D be a
minimal clause in Sα, such that ℑα−1 does not satisfy D. Since ℑα−1 satisfies Sα−1 by induction
hypothesis, we have D ∈ Sα – Sα−1, that is, D contains an equation of the form t ≈ s as a maximal
occurrence.

a) Assume that t is reducible by ℜα−1. Then t ≈ t[u], u < t, and there is an equation u≈ v in
ℜα−1. By induction hypothesis, there exists a regular clause C ∈ S, such that u ≈ vis maximal in C.
Then a superposition step applies to C and D, yielding a clause R < D. By lemma 5, ℑα−1 does not
satisfy R, which is a contradiction to the minimality of D. This proves that t is irreducible by ℜα−1

and using the induction hypothesis, we can conclude that ℜα is a left-reduced system.
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b) We show that D is regular w.r.t. ℑα. First, condition (i) is trivially satisfied. Assume, t ≈ s
occurs in the antecedent of D. Then we have t ≈ s ∈ ℑα−1. As ℜα is left-reduced, hence convergent,
we can infer t= s. Then an equational resolution step applies to D, yielding a clause D' < D, such
that ℑα-1 does not satisfy C', contradicting the minimality of D. This shows that t ≈ s occurs in the
succedent of D. Let D = A → B, t≈s. As ℑα−1 does not satisfy D, we have A ⊆ ℑα−1 ⊆ ℑα. Assume
that B ∩ ℑα ≠ ∅. As B ∩ ℑα−1 = ∅, B contains an equation u≈v with u ≈ v ∈ ℑα – ℑα−1. Since ℜα is
a convergent rewrite system, there is a term u' with u →ℜα u' and v →ℜα u'. If u < t, then obviously
u →ℜα−1 u' and v →ℜα−1 u' hold, contradicting the fact that u≈v ∉ ℑα−1. Hence u= t, and D is of the
form A → B, t ≈ v, t≈s. Then the equality factoring rule applies to D, yielding a clause D' = A, s ≈ v
→ B, t≈s with D' < D. Moreover, from t≈s ∈ ℑα and t≈v ∈ ℑα follows s ≈ v ∈ ℑα, and since s< t,
we obtain s≈v∈ ℑα−1. This shows that ℑα−1 cannot satisfy D', which contradicts the minimality of
D. Hence B ∩ ℑα = ∅ holds, thus concluding the proof of b).

c) Let C be a minimal clause in Sα, such that ℑα does not satisfy C. Since ℑα satisfies Sα−1, C
contains an equation of the form t ≈ s' in the antecedent or in the succedent as a maximal occur-
rence. Then a superposition step applies to C and D yielding a clause R < C. Again, ℑα does not
satisfy C, contradicting the choice of C. This proves that ℑα satisfies Sα. 

From the previous lemma follows immediately that the interpretation ℑ := ∪α ℑα is a model of
S.

(E-)Semantic trees [Pe, Ro, HR] are a well-known means to prove completeness of resolution and
superposition calculi. They also serve to illustrate the model construction technique described in this
chapter. Given a set A of (equational) atoms that is ordered by a well-founded ordering >, a partial
(equational) interpretation ℑAe of A is an (equational) interpretation over an initial segment Ae = {e'
∈ A| e' < e} of A. We define a well-founded ordering >I on the class of partial interpretations of A by

ℑA" >I ℑA' iff A' ⊂ A" and ℑA" ∩ A' = ℑA'

The collection of all partial (equational) interpretations of A together with the ordering >I is called
the (E-)semantic tree for A. If ℑA' is a successor of ℑA" w.r.t. >I, then we call ℑA' the right successor
of ℑA", iff ℑA" = ℑA', and the left successor, iff ℑA" ⊂ ℑA'. An interpretation of A can be thought of as
a maximal path in the semantic tree. Let S be a set of clauses over A. Let A' be a node in the
semantic tree, and let tα be the maximal term occurring in A'. Then A' is called a failure node w.r.t.
S, if the corresponding partial interpretation ℑA' does not satisfy Sα, and if no ancestor node of A' is
a failure node. The construction of a model for a clause set S can be seen as the construction of a
maximal path in the semantic tree that does not contain a failure node w.r.t. S.

Our construction proceeds in the following way: Having constructed a path ℑA' without a failure
node, we choose the rightmost successor of ℑA', if this is not a failure node. If, however, it is a failure
node, then there exists a leftmost successor of ℑA', and by lemma 6, this node is not a failure node.
Continuing this way, we obtain a maximal path in the semantic tree. This construction is
illustrated by figure 1. Failure nodes of the semantic tree are squared.

fig. 1
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The role of composite clauses in the context of semantic trees is clarified by the observation that
a partial interpretation ℑ falsifying a clause C that is composite in S, falsifies some clause in S. Any
failure node w.r.t. {C} is a failure node w.r.t. S, and removal of redundant clauses thus preserves the
failure nodes in the semantic tree.

5 Theorem Proving for First-Order Logic

In the previous sections we have proved various calculi to be refutational complete for sets of ground
clauses. Completeness of these calculi for arbitrary first-order clauses can be proved as follows: Let S
be a consistent set of first-order clauses that is closed under an inference system I, and let 

_
S be the

set of all ground instances of clauses in S. We use a lifting lemma to show that 
_
S satisfies a certain

closure property w.r.t. I. Then by the completeness of I for ground clauses, we can infer the existence
of a model for 

_
S, which in turn is a model for S, too. To show completeness of first-order resolution

with factorization, for instance, it is sufficient to show that for any set S that is closed under resolu-
tion and factorization, the set 

_
S is closed, too, which is accomplished by an application of the lifting

lemma. For equational reasoning, things are slightly more complicated. We shall use the following
inference system I for first-order (equational) clauses.

Equality resolution:
A, t ≈ t' → B__________

Aσ → Bσ

where σ is a most general unifier for t and t' and tσ ≈t'σ is a maximal occurrence in Aσ, tσ ≈t'σ  →
Bσ.

Superposition left:
A → B, s ≈ t   A', u[s'] ≈ v → B'_______________________
Aσ, A'σ, u[t]σ ≈ vσ → Bσ, B'σ

where (i) σ is a most general unifier for s and s', (ii) sσ ≈tσ is a maximal occurrence in Aσ → Bσ, sσ ≈
tσ, (iii) uσ ≈ vσ is a maximal occurrence in A'σ, uσ ≈ vσ → B'σ, and (iv) s' is not a variable.

Superposition right:
A → B, s ≈ t    A' → B', u[s'] ≈ v_______________________
Aσ, A'σ → Bσ, B'σ, u[t]σ ≈ vσ

where (i) σ is a most general unifier for s and s', (ii) sσ ≈tσ is a maximal occurrence in Aσ → Bσ, sσ ≈
tσ, (iii) uσ ≈ vσ is a maximal occurrence in A'σ → B'σ, uσ ≈ vσ, and (iv) s' is not a variable.

Equality factoring:
A → B, s ≈ t, s' ≈t'____________________

Aσ, tσ ≈t'σ → Bσ, sσ ≈t'σ

where (i) σ is a most general unifier for s and s', (ii) sσ ≈ tσ is a maximal occurrence in Aσ → Bσ, sσ ≈
tσ, s'σ ≈tσ.

The notion of redundancy is generalized to first-order clauses in the following way: A clause C is
redundant in a set S, iff each ground instance of C is redundant in the set 

_
S of all ground instances

of clauses in S.

In the following, we shall show that given a set S of first-order (equational) clauses that is rela-
tively closed under I, the set 

_
S satisfies properties (C1) and (C2). First, S is relatively closed under

equational resolution and equality factoring. Suppose, the clause Cσ ∈ 
_
S  is the premise of an

equational resolution or equality factoring step yielding a clause D'. Then an appropriate inference
step applies to the clause C  resulting in some clause D  with D' = Dσ. If D  ∈  S, then D' ∈  

_
S.

Otherwise, if D is redundant in S, then D' is redundant in 
_
S. Hence 

_
S satisfies (C1).

Now suppose, 
_
S contains clauses Cσ = Aσ → Bσ, uσ ≈ vσ, and Dσ, such that Dσ contains an

atom sσ[u'σ] ≈ tσ with uσ = u'σ. If u' is not a variable, then an application of the lifting lemma
shows the existence of a clause R, which is the result of a superposition step of C and D. Now R is in
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S or redundant in S, hence Rσ is in 
_
S or redundant in 

_
S. Consequently, 

_
S satisfies property (C2). If,

however, u' is a variable, then the clause D
_
σ is in 

_
S, where 

_
σ is defined by

x
_
σ  = { xσ, if x ≠ u'

vσ, if x = u'

Now the clause D
_
σ satisfies condition (C2).
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