MPI-INF Logo
Campus Event Calendar

Event Entry

What and Who

Tracking Routes in Communication Networks

Stefano Leucci
Max-Planck-Institut für Informatik - D1
AG1 Mittagsseminar (own work)
AG 1, MMCI  
AG Audience
English

Date, Time and Location

Monday, 17 June 2019
13:00
30 Minutes
E1 4
024
Saarbrücken

Abstract

The minimum tracking set problem is an optimization problem that deals with monitoring communication paths that can be used for exchanging point-to-point messages using as few tracking devices as possible. More precisely, a tracking set of a given graph $G$ and a set of source-destination pairs of vertices, is a subset $T$ of vertices of $G$ such that the vertices in $T$ traversed by any source-destination shortest path $P$ uniquely identify $P$.

The minimum tracking set problem has been introduced in [Banik et al., CIAC 2017] for the case of a single source-destination pair.
There, the authors show that the problem is APX-hard and that it can be 2-approximated for the class of planar graphs, even though no hardness result is known for this case.
In this paper we focus on the case of multiple source-destination pairs and we present the first $\widetilde{O}(\sqrt{n})$-approximation algorithm for general graphs. Moreover, we prove that the problem remains NP-hard even for cubic planar graphs and all pairs $S \times D$, where $S$ and $D$ are the sets of sources and destinations, respectively.
Finally, for the case of a single source-destination pair, we design an (exact) FPT algorithm w.r.t. the maximum number of vertices at the same distance from the source.

Contact

Nitin Saurabh
--email hidden
passcode not visible
logged in users only

Nitin Saurabh, 06/13/2019 12:32
Nitin Saurabh, 06/11/2019 14:41 -- Created document.