Max-Planck-Institut für Informatik
max planck institut
mpii logo Minerva of the Max Planck Society

MPI-INF or MPI-SWS or Local Campus Event Calendar

<< Previous Entry Next Entry >> New Event Entry Edit this Entry Login to DB (to update, delete)
What and Who
Title:Optimal Coordination Mechanisms for Multi-Job Scheduling Games
Speaker:Fidaa Abed
coming from:Max-Planck-Institut für Informatik - D1
Speakers Bio:
Event Type:AG1 Mittagsseminar (own work)
Visibility:D1, D2, D3, D4, D5, RG1, SWS, MMCI
We use this to send out email in the morning.
Level:AG Audience
Date, Time and Location
Date:Thursday, 4 September 2014
Duration:30 Minutes
Building:E1 4
We consider the unrelated machine scheduling game in which players control subsets of jobs. Each player's objective is to minimize the weighted sum of completion time of her jobs, while the social cost is the sum of players' costs. The goal is to design simple processing policies in the machines with small coordination ratio, i.e., the implied equilibria are within a small factor of the optimal schedule. We work with a weaker equilibrium concept that includes that of Nash. We first prove that if machines order jobs according to their processing time to weight ratio, a.k.a. Smith-rule, then the coordination ratio is at most 4, moreover this is best possible among nonpreemptive policies. Then we establish our main result. We design a preemptive policy, {\em externality}, that extends Smith-rule by adding extra delays on the jobs accounting for the negative externality they impose on other players. For this policy we prove that the coordination ratio is $1+\phi\approx 2.618$, and complement this result by proving that this ratio is best possible even if we allow for randomization or full information. Finally, we establish that this externality policy induces a potential game and that an $\varepsilon$-equilibrium can be found in polynomial time. An interesting consequence of our results is that an $\varepsilon-$local optima of $R|\,|\sum w_jC_j$ for the jump (a.k.a. move) neighborhood can be found in polynomial time and are within a factor of $2.618$ of the optimal solution. The latter constitutes the first direct application of purely game-theoretic ideas to the analysis of a well studied local search heuristic.
Name(s):Fidaa Abed
Video Broadcast
Video Broadcast:NoTo Location:
Tags, Category, Keywords and additional notes
Attachments, File(s):
  • Fidaa Abed, 08/22/2014 12:29 PM
  • Fidaa Abed, 08/21/2014 12:25 PM -- Created document.