MPI-INF Logo
Campus Event Calendar

Event Entry

What and Who

Hybrid optimization techniques for multi-domain coupling in cyber-physical systems design

Debayan Roy
TU Munich
SWS Colloquium

Debayan Roy is a final-year PhD student in the Department of Electrical and Computer Engineering at the Technical University of Munich, where he is being advised by Samarjit Chakraborty. He obtained his Bachelor’s degree from Jadavpur University in Electrical Engineering with First Class Honors, and his Master's degree in Communications Engineering from TU Munich with a High Distinction. His research interests are in the area of modeling, design, and verification of cyber-physical systems. His work has been recognized with the Best Paper Award at RTCSA 2017 and two Best Paper Nominations at DATE 2019 and DATE 2020, respectively.
AG 1, AG 2, AG 3, INET, AG 4, AG 5, SWS, RG1, MMCI  
AG Audience
English

Date, Time and Location

Friday, 7 February 2020
15:00
60 Minutes
G26
111
Kaiserslautern

Abstract

In a cyber-physical system (CPS), a physical process is controlled by software running on a cyber platform. And there exists a strong interaction between the physical dynamics, the control software, the sensors and actuators, and the cyber resources (i.e., computation, communication, and memory resources). These systems are common in domains such as automotive, avionics, health-care, smart manufacturing, smart grid, among others. The state-of-practice is to design CPSs using a disjoint set of tools handling different design domains. Such a design methodology has proved to be inefficient with respect to resource usage and performance. In this talk, I will discuss how models from different engineering disciplines can be integrated to design efficient cyber-physical systems. In particular, I will show two use-cases. First, I will talk about a multi-resource platform consisting of high- and low-quality resources. Correspondingly, I will show that a cost-efficient switching control strategy can be designed exploiting heterogeneous resources and by effectively managing the interplay between control theory, scheduling and formal verification. Second, I will talk about the cyber-physical battery management systems (BMS) for high-power battery packs. I will specifically discuss the problem of cell balancing which is an important task of BMS. I will show how integrated modeling of the individual cells, battery architecture, control circuits, and cyber architecture, can lead to energy- and time-efficient scheduling for active cell balancing.

Contact

Mouna Litz
--email hidden

Video Broadcast

Yes
Saarbrücken
E1 5
029
SWS Space 2 (6312)
passcode not visible
logged in users only

Mouna Litz, 02/06/2020 10:02
Mouna Litz, 02/06/2020 10:00 -- Created document.