Campus Event Calendar

Event Entry

What and Who

Characterizing the IoT Ecosystem at Scale

Said Jawad Saidi
Max-Planck-Institut für Informatik - INET

Said Jawad Saidi is a PhD student of Prof. Anja Feldmann in the INET Research Group. Jawad is passionate about Internet Measurement and Networked Systems. His research journey started by building Systems for the verification of Software Defined Networks. It was followed by building a distributed system called Flowyager that helped network operators to collect, summarize, index, and query Terabytes of Network Flow data interactively. Recently, he has been working on measuring the Client-Server landscape of IoT devices on the Internet.
AG 1, AG 2, AG 3, INET, AG 4, AG 5, D6, SWS, RG1, MMCI  
AG Audience

Date, Time and Location

Friday, 24 February 2023
60 Minutes
E1 4


Internet of Things (IoT) devices are extremely popular with home, business, and industrial users. To provide their services, they typically rely on a backend server in- frastructure on the Internet, which collectively form the IoT Ecosystem. This ecosys- tem is rapidly growing and offers users an increasing number of services. It also has been a source and target of significant security and privacy risks. One notable exam- ple is the recent large-scale coordinated global attacks, like Mirai, which disrupted large service providers. Thus, characterizing this ecosystem yields insights that help end-users, network operators, policymakers, and researchers better understand it, obtain a detailed view, and keep track of its evolution. In addition, they can use these insights to inform their decision-making process for mitigating this ecosystem’s security and privacy risks. In this dissertation, we characterize the IoT ecosystem at scale by (i) detecting the IoT devices in the wild, (ii) conducting a case study to measure how deployed IoT devices can affect users’ privacy, and (iii) detecting and measuring the IoT backend infrastructure.

To conduct our studies, we collaborated with a large European Internet Service Provider (ISP) and a major European Internet eXchange Point (IXP). They routinely collect large volumes of passive, sampled data, e.g., NetFlow and IPFIX, for their operational purposes. These data sources help providers obtain insights about their networks, and we used them to characterize the IoT ecosystem at scale.

We start with IoT devices and study how to track and trace their activity in the wild. We developed and evaluated a scalable methodology to accurately detect and monitor IoT devices with limited, sparsely sampled data in the ISP and IXP.

Next, we conduct a case study to measure how a myriad of deployed devices can affect the privacy of ISP subscribers. Unfortunately, we found that the privacy of a substantial fraction of IPv6 end-users is at risk. We noticed that a single device at home that encodes its MAC address into the IPv6 address could be utilized as a tracking identifier for the entire end-user prefix—even if other devices use IPv6 privacy extensions. Our results showed that IoT devices contribute the most to this privacy leakage.

Finally, we focus on the backend server infrastructure and propose a methodology to identify and locate IoT backend servers operated by cloud services and IoT vendors. We analyzed their IoT traffic patterns as observed in the ISP. Our analysis sheds light on their diverse operational and deployment strategies.

The need for issuing a priori unknown network-wide queries against large volumes of network flow capture data, which we used in our studies, motivated us to develop Flowyager. It is a system built on top of existing traffic capture utilities, and it relies on flow summarization techniques to reduce (i) the storage and transfer cost of flow captures and (ii) query response time. We deployed a prototype of Flowyager at both the IXP and ISP.


Iris Wagner
+49 681 9325 3500
--email hidden

Virtual Meeting Details

972 1666 0855
passcode not visible
logged in users only

Uwe Brahm, 02/08/2023 11:42
Iris Wagner, 02/07/2023 15:52 -- Created document.