
Abstract

Reasoning about programs can be tricky and error-prone. Formal verification
facilitates the formulation and demonstration of rigorous arguments about
program correctness. To be usable and useful, a program logic, i.e. a proof
system for program verification, should accommodate the principal mecha-
nisms of the programming language and crystallise the informal reasoning of
programmers.

Recently, separation logic emerged as a promising tool for reasoning about
shared mutable state, which pervades mainstream programming languages
such as C, Java and Eiffel. Parkinson and others proposed a proof sys-
tem for Object-Oriented (OO) programs that combines separation logic with
mechanisms to reason about inheritance and dynamic dispatch. This system
can verify a wide range of OO programs and design patterns in a concise
way. The flexibility and simplicity of the system made it an attractive target
for further improvement and broader application.

The contributions of this thesis address the following problems:

1. Specifying, verifying and using relationships between state abstrac-
tions. This is especially important when reasoning about OO programs
that use multiple inheritance.

2. Reasoning about executable contracts. Executable contracts are often
weak and may perform side-effects. Yet they capture useful design
information, are programmer-friendly and assist in debugging.

3. Refinement and correctness by construction. Instead of first writing
the code and then proving it correct, these techniques make it possible
to write a correct program in the first place. The program and its
correctness proof grow and evolve together.

State abstraction mechanisms, such as abstract predicates, are useful for
reasoning about programs with modules that encapsulate state and hide in-
formation. Parkinson adapted abstract predicates to the OO setting, and

e



they play a central role in his proof system. Since OO code frequently relies
on relationships between state abstractions of a class or a class hierarchy, this
thesis enhances Parkinson’s system with mechanisms for specifying, verifying
and exploiting such relationships. The extension also makes it possible to
establish the logical consistency of a class hierarchy without considering im-
plementation details, and it facilitates reasoning about multiple inheritance.

Existing OO code often contains contracts in the form of executable pre-
conditions, postconditions and class invariants. These specifications are typ-
ically weaker than separation logic assertions, but they are more lightweight
and perhaps more likely to be written by programmers. Contracts also record
valuable information about program design and are useful for testing and de-
bugging. This thesis contributes a new technique for using the separation
logic assertions to verify that executable contracts will always hold at runtime
and that they will not perform unwanted side-effects. As a result, verified
contracts need not be monitored at runtime, and they add confidence in the
correctness of the code and the separation logic specification.

Correctness by construction is an important feature of a mature engi-
neering discipline. In the context of software engineering, it is realised by
a calculus for top-down program development that features refinement as a
central technique. A refinement calculus helps to construct correct code from
a given specification in a series of steps. This thesis proposes freefinement
– an algorithm for obtaining a sound refinement calculus from a modular
program logic. The resulting refinement calculus can interoperate closely
with the program logic, and it is even possible to reuse and translate proofs
between them.

Many aspects of the work also apply to other settings. None of the contri-
butions relies on a specific flavour of separation logic. The work on multiple
inheritance subsumes interface inheritance, and the reasoning techniques for
executable contracts generalise to non-OO languages that use explicit mem-
ory management. Finally, freefinement applies to a great variety of formal
systems, including program logics for other languages and type systems.

f


